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Abstract 

The Sherwood Sandstone Group of the northeast UK (East Midlands Shelf) has hitherto never 

been studied in detail to ascertain it’s palaeoenvironment of deposition, largely because it is 

poorly exposed. As such, this paper aims to provide the first modern sedimentological 

interpretation of the Sherwood Sandstone in the east of England based on a field outcrop at 

the disused quarry at Styrrup. This is in stark contrast to the western parts of England where 

the Sherwood Sandstone is well exposed and offshore in the North Sea Basin where it is 

represented by a substantial library of core material where it is also relatively well understood. 

The outcrop at Styrrup Quarry allows contrasts to be made with the style and expression of 

the Sherwood Sandstone between eastern and western England. Specifically, this highlights 

differences around the variation in fluvial discharge (between lowstand and highstand) and 

the absence of aeolian facies types. It is interpreted that these differences relate to discharge 

variations between ephemeral and perennial systems with a perennial model proposed for 

Styrrup Quarry. This model draws upon inferences of additional water input from more local 

areas, likely topographic uplands of the London-Brabant and Pennine Highs which 

supplement the primary source of the Variscan Mountains in France with additional water and 

sediment. 

Keywords: Triassic, fluvial, braided, ephemeral, perennial  

1 Introduction  

The Sherwood Sandstone Group is of great importance in the UK for a number of applied, 

including economic, reasons: i) it is one of the largest producing aquifers in the country (Allen 

et al., 1997), with groundwater being exploited for is use in agricultural and industrial practices 

in addition to a potable supply, ii) the unit is actively mined as both a source of aggregate and 

sandstone for the construction industry, iii) the interval is hydrocarbon producing in the East 

Irish Sea Basin (Meadows and Beach, 1993b), iv) the lateral equivalent within the North Sea 

Gas Province – the Bunter Sandstone Formation – have produced 5.5 tcf of gas (~12% of gas 
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produced to date; Gray, 2014), and, v) the Sherwood Sandstone underlies numerous urban 

centres (including Nottingham, Doncaster, York and Middlesbrough) which are at risk from a 

legacy of historic industrial contamination (Hough et al., 2006). Given the range and 

importance of the applications for the Sherwood Sandstone Group there currently exists a gap 

in our knowledge over the detailed internal composition of the facies and architectural 

elements within the group and any heterogeneity arising from them. This is most keenly felt in 

the north-eastern locations of the Sherwood Sandstone (separated from the western areas by 

the topographic high of the Carboniferous Pennines, and from south-western areas by a 

basement high between Charnwood and Nottingham; Fig. 1) where a lack of good-quality 

outcrop hampers characterisation, including even attempts at formational sub-division of the 

Group. It is however not necessarily appropriate to supplement a lack of understanding in 

north-eastern England with the comparatively well exposed Sherwood Sandstone in western 

England as there are known spatial variations in character between them (Barnes et al., 1994). 

For example, there are readily identifiable differences in the depositional environments, 

including; i) an absence of identified aeolian facies in the eastern Sherwood Sandstone 

contrasting the mixed aeolian-fluvial formations of the group in the north-east of England 

(Cowan, 1993; Mountney and Thompson, 2002; Bloomfield et al., 2006), and ii) an absence 

of well-developed/regionally pervasive palaeosols (pedogenic processes) in the eastern parts 

of England compared to western and southern. 

As such, there is a requirement to better understand the spatial variations in the Sherwood 

Sandstone with examples pertaining to each region. Such outcrop driven studies will provide 

data and application at a resolution beyond geophysical techniques for applications where 

direct observation is not always possible, i.e. reservoir characterisation. An understanding of 

the sandstone strata that places it in a modern sedimentological context that describes the 

internal heterogeneity could be up-scaled and used to parameterise models using a prediction 

of sandbody geometry will be relevant to a wide user community. 

Deposition of the Sherwood Sandstone Group in central Britain is ascribed to a terrestrial 

mixed fluvial and aeolian environment that resulted in a sandstone-dominated succession with 

minor amounts of mudstone that accumulated in perennial and ephemeral water bodies 

(Cowan, 1993; Mountney and Thompson, 2002; Bachmann et al., 2010; Ambrose et al., 2014). 

Although the Sherwood Sandstone Group has been the focus of numerous previous studies 

throughout the UK and offshore (Warrington, 1970; Benton et al., 2002; Hounslow and Ruffell, 

2006) there are relatively few descriptions of the Group on the east Midlands Shelf. Where 

published, research within this area has primarily been focussed on the applications related 

to groundwater extraction and contaminant transport (e.g. Bath et al., 1987; Green, 1989; 

Smedley and Edmunds, 2002). Diagenesis and deformation are also important aspects when 
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understanding the petrophysical properties of aquifers or hydrocarbon reservoirs, but these 

secondary processes are influenced by the primary sedimentology of the host rock. For 

instance at Styrrup Quarry, McKinley et al. (2013) has linked diagenetic processes (secondary 

processes) to specific architectural elements (primary depositional). Indeed such facies 

control on deformation is also widely acknowledged (Fossen et al., 2007). This implication of 

primary sedimentary control/influence on secondary processes only validates more the need 

to address the relatively little work conducted to characterised the sedimentology of the group 

beyond its primarily fluvial origin (Warrington et al., 1980) and address this gap in our 

knowledge.  

2 Geological Setting 

The onset of redbed sedimentation during the Permo-Triassic of Britain defines a transition 

from shallow marine and carbonate platform sedimentation during the Kazanian – Tatarian to 

continental deposition of the Induan – Olenekian. During the Lower Triassic, Britain lay at a 

palaeolatitude of approximately 20 degrees north, within the Pangaea supercontinent (Ziegler, 

1988). The Southern Permian Basin developed in response to crustal extension during initial 

stages of the break-up of Pangaea (Ziegler, 1988). The basin is characterised by east-west 

extension and some associated syn-depositional faulting has been speculated (Leeder and 

Hardman, 1990). This broad area of sediment accumulation stretched across much of north-

west Europe towards modern-day Poland (Doornenbal and Stevenson, 2010). In the western 

part of the basin, northwards-draining fluvial systems developed, supplying vast quantities of 

sediment derived from the American and Variscan highlands located approximately 600 km to 

the south, in present-day northern France (McKie and Williams, 2009). The East Midlands 

Shelf is located on the northern margin of the London-Brabant structural high, a regional 

platform that bounded the southern Permian Basin from highlands to the south and west, and 

represents a restricted sub-basin in the western part of the Southern Permian Basin. In 

contrast to the much smaller part fault-bounded Permo-Triassic basins to the west (e.g. 

Cheshire, Stafford, Needwood), the East Midlands Shelf is characterised by be fanning 

geometries and pinch-outs onto highs rather than faulted stratigraphic relationships.  

The accumulation of Early Triassic sediment preserved on the East Midlands Shelf has been 

assigned to the Sherwood Sandstone Group. This crops out between Nottingham 

(Nottinghamshire) in the south and Darlington (North Yorkshire) in the north, and extends 

eastwards beneath a cover of younger Mesozoic rocks, where it becomes contiguous with the 

Bunter Sandstone of the Southern North Sea. Subsidence rates during the deposition of 

Sherwood Sandstone on the East Midlands Shelf are unknown though they are considered to 

have been relatively constant and of sufficient rate for the accumulation of thick ~200 – 300 m 
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thick of fluvial succession of the Sherwood Sandstone in areas like Nottingham, where the 

fluvial expression is indicative of constant subsidence rates (cf. Howard et al., 2009). 

The Sherwood Sandstone Group (sensu Ambrose et al., 2014) is characterised by an 

accumulation of arenaceous sandstone, pebbly sandstone and subordinate breccio-

conglomerates and mudstone that range in thickness up to 450 m thick in eastern England 

(e.g. Berridge and Pattison, 1994; Gaunt, 1994). Age-diagnostic fossils within this succession 

are rare, resulting in difficulties associated with the chronostratigraphic subdivision and 

correlation of the group (Jeans, 2006), although the imprint of broader climatic changes results 

in gross variations in sedimentary character that can be regionally correlated (Smith et al., 

1974) and confirmed by the response on down-hole geological logs. The Group is part of the 

siliciclastic Permo-Triassic New Red Sandstone Supergroup, which preserves multiple 

intervals of continental fluvial and aeolian deposition. The Sherwood Sandstone in eastern 

England overlies the Permian Lenton Sandstone, which itself represents a transition from 

fluviatile to aeolian sedimentation (Howard et al., 2009); where the Lenton Sandstone is not 

present, the Sherwood Sandstone overlies marine mudstones of the Roxby Formation. 

Overlying the Sherwood Sandstone, the Mercia Mudstone, deposited during a transgression 

from estuarine shales followed by sabkha-style sedimentation across a coastal plain as the 

Southern Permian Basin filled (Doornenbal and Stevenson, 2010). 

Formal subdivision of the Sherwood Sandstone is based predominantly on the presence or 

absence of extra-formational pebble content (see Ambrose et al., 2014), with little regard to 

acknowledge the primary depositional facies.  

Published reviews of the Permo-Triassic succession of the East Midlands Shelf are given by 

Kent et al. (1980) and Aitkenhead et al. (2002). More regional syntheses are available (e.g. 

Wills, 1970; Doornenbal and Stevenson, 2010).  

3 Data Collection and Field site  

The Sherwood Sandstone on the East Midlands Shelf has been commercially exploited 

principally as a source of sand for use in construction aggregate. This has resulted in a number 

of quarry faces that provide discontinuous exposures that allow the sedimentology and 

architecture of facies elements of the Sherwood Sandstone to be observed. Styrrup Quarry, 

located in the northern part of Nottinghamshire [460600 390000] (Fig. 2), exposes 5 – 8 m 

faces of sandstone in a quarry face that extends some 140 m laterally. The limits of the quarry 

extend beyond the dimensions stated but these cliff-lines are unfortunately of poor quality and 

heavily vegetated (Fig. 2). Mean palaeocurrent data from the outcrop at Styrrup is to the 
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southeast, varying slightly from a more regional considered trend to the northwest (Ambrose 

et al., 2014).  

Styrrup Quarry is located in the lower part of the Chester Formation (formerly the Nottingham 

Castle Sandstone; Fig. 3), approximately 15 m above the presumed junction with the Lenton 

Sandstone Formation. The strata exposed have been described previously (Kitching et al., 

1977; Burley, 1984; McKinley et al., 2011; McKinley et al., 2013), and summarised in Benton 

et al. (2002), where the depositional setting of transverse barforms within a minor and major 

channels in a broadly northwards-draining major fluvial system was suggested.  

The quarry at Styrrup would have originally exposed a length of ~400 m of sandstone cliff lines 

with almost a complete 360o configuration. However, of all these cliffs, a single very well 

exposed 140 m long and up to 8 m high section forms the basis of this work, where the other 

quarry faces are of generally poor quality with some forming as only as scree slopes. 

Data collection comprises a single large architectural panel that covers approximately 

~1400 m2 (Fig. 4). The architectural panel has a long ~110 m section broadly orientated NNW-

SSE with a southern ~30 m orientated broadly perpendicular, ENE-WSW. The architectural 

panel details the constituent architectural elements of the cliff there geometry and relationship 

to one another. Four sedimentological logs (Fig. 5) were also conducted on the panelled 

section and their positions can be viewed in Fig. 4. Additionally palaeocurrent data was also 

obtained from a range of forsets types and sizes. These readings were normalised for a slight 

(3 – 4o) local structural tilt.  

4 Facies and Architectural Elements  

For the sake of brevity the description and interpretation of the ten lithofacies can be viewed 

in Table 1, additionally photographic examples of the different lithofacies are included in Fig. 

6. 

Five architectural elements are recognised and a brief description of each, including 

constituent facies types, is provided in Table 2. The following sections describe the same 

architectural elements in greater detail, and the nomenclature as devised by Miall (1996; 2014) 

is used. 

4.1 Lateral accretion element - LA 

Description. Wedge to lensoidal shaped elements that have a thickness of 1 – 2 m and 

measured lateral extents 10 – 18 m. Component lithofacies include facies Sp (planar 

crossbedded sandstone), St (trough crossbedded sandstone), Sh1 (upper plane-beds) and Sr 

(ripple-laminated sandstone; Table 1). The azimuth of inclined surfaces from facies Sp and St 
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are highly variable (constituting a range from 351o – 173o) and occur both perpendicular to, 

and congruent with, the prevailing measured drainage direction. Some examples of 

crossbedding in this element appear with a sigmoidal shape whereby the foresets show an 

asymptotic base and top and are arranged in a toplap, offlap and downlap relationship with 

the adjacent beds. Some of these crossbeds show a component of vertical thickening where 

adjacent asymptotic topsets of individual beds extend and cap numerous adjacent (toplap). 

The base of this element may contain pebble intraformational and extraformational clasts of 

quartz and mudstone and in rarer examples, these facies are also observed higher up within 

the element on some of the steeper inclined coset surfaces. Sparse examples of cross-

laminated sandstone (facies Sr) interdigitated with horizontally laminated sandstone (facies 

Sh1) are observed at the upper portions of some elements, though this is often poorly defined 

and more commonly partially removed by overlying erosively based units. Where facies Sh1 

and Sr are present it overlies facies Sp and St with a first-order bounding surface. 

Palaeocurrent readings from facies Sr have an average flow direction to the 128o. 

This element contains numerous examples of first-order surfaces within set boundaries that 

truncate multiple cross-stratum of facies Sp and St. Additionally larger sharp inclined surfaces 

dip concordant with the present cross-strata but at lower angles (8 – 12o). These surfaces 

truncate multiple individual sets bounding surfaces and often extend in an inclined fashion 

from the top to the base of the element.  

Interpretation. This element represents bedforms that underwent lateral growth with lesser 

extent of down-stream (Bridge, 1993; Bridge et al., 1995; Ghazi and Mountney, 2009; Grenfell 

et al., 2012). Lateral accretion may have occurred coeval with downstream accretion or may 

have resulted from periods of falling-stage flow where flow conditions promoted the margins 

of the bedforms to laterally accrete. Examples where this element comprises rounded 

(sigmoidal) trough crossbeds are interpreted as larger bedforms that experienced a more 

continual component of lateral accretion. The more complete and regular spaced beds of such 

foresets likely reflects the more constant lateral growth of bed-forms associated with 

differential flow velocities of water on the outside of a sinuous path (Olsen, 1988) rather than 

an ephemeral effect of falling-stage conditions. 

The presence of facies Sr and Sh1 at the upper portions of this element indicates subaqueous 

flow over some of the bedforms. Variations between the deposition of facies Sr and Sh1 result 

from variations between upper and lower regime conditions, possibly reflecting subtle changes 

in water depth and or velocity linked to discharge variability. 
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The observed instances of first-order surfaces truncating cross-strata within individual sets are 

likely reactivation surfaces and likely represent more local changes in flow conditions. Larger 

observed surfaces are interpreted as third-order erosive surfaces within the larger bedforms, 

and probably relate scour associated with falling stage flow conditions (Bristow and Best, 

1993).  

4.2 Channel element – Ch 

Description. Erosively based (5th order surface) ‘u’ shaped elements (in sections perpendicular 

to palaeoflow) that have measured lateral extents where continuity of outcrop allows of at least 

20 m and a thickness of 1 – 3 m. Compositional facies types of Spb (pebbly sandstone), St, 

Sh1 and Sm (massive sandstone) can sometimes individually and collectively show a crude 

upward-fining character, with gravel clasts (facies Spb), if present, forming as the basal 

constituent facies type; often overlain by trough crossbedded sandstone (facies St). Facies St 

is commonly overlain by facies Sh1 and in rare examples this can be subsequently overlain 

by ripple cross-laminated sandstone (facies Sr) which grades vertically from facies Sh1. Such 

complete successions are rarely preserved and the top part of the successions are frequently 

locally removed due to the erosive cross-cutting nature of the lateral and vertical stacking of 

such multi-storey erosively based elements. The pebble content of this element is often 

observed forming at the base of individual trough crossbedded sets and isn’t always restricted 

to the basal facies component (e.g., facies Spb). These pebbles are primarily of rounded 

quartz composition but other clasts including locally derived thin (~0.5 cm thick) smears of 

red-brown mud and rare examples of limestone are also observed. Much larger examples of 

mud clasts (mud ‘cobbles’) are also observed at the base of this element type and 

photographic examples are presented in Fig. 7. Some elements of this type have a basal 

component of facies Spb that forms as laterally restricted (0.1 – 0.4 m wide) isolated lenses 

that doesn’t always encompass the entire flatter (near horizontal) lower portions of the erosive 

bounding surface.  

Interpretation. This element is interpreted to represent erosively based channel elements 

(Bridge, 1993; Gibling, 2006; Bridge and Lunt, 2009), with the presence of facies St recording 

the migration of smaller sinuous crested bedforms. Palaeocurrent measurements from trough 

crossbeds have a mean azimuth of 162o in keeping with the local broad south-easterly 

palaeodrainage direction. Basal pebble intraclasts overlying the erosive lower bounding 

surface of the element (base of channel) are interpreted to represent channel lag deposits 

formed in initial high flow conditions. Isolated examples of facies Spb may reflect deposition 

from the thalweg in a channel where the prevailing flow energy (apart from the thalweg) was 

insufficient to entrain larger pebble material. 
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Where the succession includes facies type Sh1 it records a progression from lower to upper 

flow regime with the deposition of upper plane beds (Cheel and Middleton, 1986). Indeed the 

observed constituent facies type and the vertical succession, where complete, detail a gradual 

infilling of the eroded channel under progressively low energy conditions. 

The observed mud cobbles and their size suggest that the material was derived from the 

immediate vicinity to the channels to have remained so relatively complete. However, no such 

sufficiently mud-rich units are identified at Styrrup Quarry, suggesting perhaps that the source 

overbanks have a very low preservation potential and were likely extensively reworked or 

removed. The presence of intraclasts of limestone is likely resulting from the Carboniferous 

sediments exposed in the Pennine High.  

4.3 Downstream accreting element – DA 

Description. Lensoidal shaped element with constituent facies Spb, St, Sp and Sh1 though 

facies Sp, St and Sl (low-angle sandstone) account for >80% by volume of the element. Low-

angle and planar and trough crossbedded facies occur in sets 0.4 – 2.2 m thick that exhibit 

lateral and vertical stacking in to cosets that have lateral extents up to 40 m and can attain 

thickness of up to 2.6 m. Individual sets are bounded by first-order set boundaries and cosets 

are bounded by second-order coset bounding surfaces. Erosively-based coset bounding 

surfaces (3rd order surface) down-cut and truncate underlying sets of crossbedding with the 

surface commonly orientated at low angle in a broadly downstream orientation. Numerous 

higher-angle (20-25o) surfaces are observed within set boundaries and these truncate 

individual cross-strata within the sets.  

The boundaries of the element are defined commonly by the coset surfaces (2nd order) with 

the lower bounding surfaces commonly containing mudstone and extraclasts of quartz. In rare 

examples the toesets of individual cross-strata become indistinct as they grades into thin 

(5 – 11 cm thick) pebbly sandstone layers (facies Spb) down-dip defining a 3rd order surface.  

The southern section of outcrop, orientated broadly perpendicular to the palaeodrainage 

direction, shows that the crossbedding with this element type are commonly dominated by 

low-angle crossbedding (facies Sp) at the margins; becoming progressively lower angle 

towards those lateral margins. Rare examples of horizontally bedded sandstone (facies Sh1) 

are observed restricted to the uppermost portions of this element. Where this is observed they 

occur as thin (<0.2 m) units that cap the element. Very crudely formed small ripple-forms are 

also observed in such instances. 

Interpretation. This element represents the migration of complex bedforms in a downstream 

direction (Rust, 1972; Miall, 1977; Dalrymple and Rhodes, 1995). The coset bounding surfaces 
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are indicative of the migration of larger 2D barforms with smaller sets of facies Sp and St 

(0.1 – 0.3 m) indicative of smaller 2D and 3D mesoforms (respectively) migrating in front of, 

or on the larger macroforms (Miall, 1988; Bristow and Best, 1993; Ghinassi, 2011). 

Successions of vertically stacked sets separated by first-order surfaces record trains of dunes 

(mesoforms) moving over barforms (macroforms) (Walker and Cant, 1984; Miall, 2014). 

Reactivation surfaces (2nd order surface) are identified within individual sets and these reflect 

minor erosion events likely associated with bedform realignment due to small fluctuations in 

flow rate and direction (cf. Røe and Hermansen, 2006). Flow variation for the smaller migrating 

bedforms could be a product of localised adjustment of the current associated with the 

proximity of the larger interpreted barforms. Alternately, erosively based coset surfaces could 

relate to similar flow variability and realignment of the larger barforms, or could relate to the 

frontal scour associated with the re-attachment point of the flow-line beyond the barform brink 

(Nichols, 2009).  

The presence of facies Sh1, representing upper plane beds, indicates that the barforms were 

likely subject to subaqueous conditions during high flow stage events; whether these 

conditions prevailed constantly is not known. The lack of observation of facies Sh1 in all 

interpreted downstream accreting elements could relate to: i) removal of the upper plain beds 

by subsequent migrating bars and bedforms, ii) removal during periods of low, or high-flow 

stages, or, iii) that conditions pertaining to the deposition of upper plane beds (upper flow 

conditions) didn’t exist on all interpreted barforms. 

4.4 Chute channel – Cch 

Description. Erosively based (4th order surface) ‘u’ shaped elements with a lateral extent from 

1.2 – 2.6 m and thicknesses ~0.5 m. The observed ‘u’ shaped geometry of the element is 

relatively symmetric, a well-preserved example shown in Fig. 8. Constituent facies types 

include from base to top small-scale (0.3 – 0.4 cm thick) examples of predominately trough-

crossbeds (facies St) some minor inclusion of planar-crossbedding (facies Sp), overlain by 

variably observed instances of horizontally bedded sandstone (facies Sh1). Some of the 

elements have a basal bounding surface that is directly overlain by scattered pebbles of 

quartz, though this isn’t always preserved.  

Interpretation. This element is interpreted as the cut and establishment of a small chute 

channel during high discharge/flood stage conditions (Blum et al., 1994; Grenfell et al., 2012). 

The dimension of the observed chute channels are concordant with Ghinassi’s (2011) ‘type 1’ 

chute channels. Indeed the largely symmetric cross-section of the channels suggests that they 

have a linear (low-sinuosity) morphology. Pebbly basal extraclasts likely represent small 

channel lag deposits resulting from bedload tractional conditions (Nemec and Postma, 2009).  
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The presence of the lateral accretion elements suggest the course of the river system was in 

part sinuous enough to promote the cutting of more efficient channels for the discharge of 

water, i.e. straighter channels. The formation of chute channels likely occurred in response to 

the forcing of water over barform tops during periods of higher discharge, generating the 

energy required to incise the smaller channel feature through existing barforms (Peakall et al., 

2007; Grenfell et al., 2012).  

4.5 Sandy floodplain (overbank) – SF 

Description. Comprises highly discontinuous tabular elements of horizontally laminated and 

bedded sandstone (facies Sh2) Laminated mudstone (facies Fl) and cross-laminated 

sandstone (facies Sr). Where outcrops allows this element has a lateral extent of up to 20 m 

and a thickness that varies from 0.1 – 3 m. This element commonly comprises of fine- and 

very-fine sandstone and in rare cases very thin (3 – 4 cm thick) layers of laminated mudstone. 

In many examples, this element is locally eroded by numerous other element types and as 

such typically forms as discontinuous tabular-like bodies. 

Small-scale upward-fining sequences within the horizontal bedding and lamination are 

observed. In some examples, the more readily evident of these show a very slightly erosive 

surface (4th order) that cuts underlying horizontal lamination/bedding (erosion on a sub-cm-

scale). Small ripple forms can be identified within this element though they are often poorly 

developed; some isolated small highly round pebbles of quartz and purple-red sandstone are 

also present. 

Within this element, numerous examples of facies Sh2 are observed with a pale-coloured 

mottling. This mottling occurs as white to white-green circular or oval isolated patches of 

sandstone and compositionally and structurally appears similar to the rest of the facies. The 

more oval instances of this element show a vertical trend to the long axis of the mottling oval. 

Interpretation. This element is interpreted as overbank deposition on a sandy floodplain 

(Sadler and Kelly, 1993; Bristow et al., 1999; Stanistreet and Stollhofen, 2002; Fisher et al., 

2007). The individual erosive surface and upward-fining units represent individual discrete 

flood events. The discrete flood events are the product of non-channelised discharge 

(crevasse splay) onto the surrounding proximal areas and the subsequent reduction in flow 

velocity and energy associated with non-channelised pervasive flow (Walling and He, 1998; 

Fisher et al., 2007). The presence of some isolated pebbles suggests that the flooding of the 

adjacent areas was of sufficient vigour at least initially to deposit coarser-grade material on 

the overbank before standing water conditions and deposition from settling occurred. The thin 

laminated mudstone component for this element is interpreted to represent the latter stages 

of settling from suspension. This mudstone component appears to have experienced 
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perennial subaqueous exposure, and lacks evidence of drying indicators, though such 

instances would unlikely to be widely evident due to the small amount of finer-grained fraction 

for this element. 

Observed instances of white-mottling are of an unknown origin. It was initially assumed that 

the white-mottling was the result of rhizolith development in the overbank areas; an expected 

feature where vegetation exploits available moisture in a semi-arid setting (Wakefield and 

Mountney, 2013). However, no calcified root structures or features indicating pedogenesis 

such rooting are observed at Styrrup, although calcification and evidence of colonization has 

been described elsewhere in the Sherwood Sandstone (e.g. Bouch et al., 2006; Newell, 2006). 

Alternately, the mottling may have been caused by the deposition of isolated plant fragments 

which were incorporated and entrained in the flow. As such, the plant fragments could have 

originated from an overbank area upstream that differ in character compared to those 

identified in the Styrrup outcrop. The relatively sand-rich, mud-poor deposits of the floodplain 

identified likely reflects the overbank deposition from the sand-rich adjacent fluvial system (cf. 

Lewin and Ashworth, 2014) combined with the prevalence of arid and semi-arid regions to 

favour calcisol development over clay enrichment pedogenic processes (Cooke et al., 1993). 

5 Depositional Model and Discussion 

Fig. 9 represents a diagrammatic conceptual model for the observed palaeoenvironment for 

the outcrop at Styrrup Quarry. This model was created using architectural panel data (Fig. 4) 

based on the aforementioned architectural elements including their relationship to one 

another. The model proposed is that of a moderate-sinuosity sand-dominated braided river 

system. Channel fills with erosive bases are accompanied by lateral and mid-channel bar 

forms showing a mixture of lateral and downstream accretion. A braided river interpretation is 

concordant with observations by other authors for the lower part of the Sherwood Sandstone 

elsewhere in the UK and Ireland: Northwest England (Burley, 1984; Jones and Ambrose, 

1994), East Irish Sea Basin (Cowan, 1993; 1993b; Meadows and Beach 1993a), Southern 

England (Holloway et al., 1989), Ireland (Schmid et al., 2004) and West Midlands (Steel and 

Thompson, 1983). 

The identification of a braided system for the numerous parts (and locations) of the Sherwood 

Sandstone Group is likely a function of the variable discharge rates associated with fluvial 

systems in semi-arid and arid systems (Graf, 1988; Bullard, 1997; Bullard and Livingstone, 

2002; Belnap et al., 2011; Harvey, 2011) and the tendency for such variable fluvial systems to 

have a braided morphology (Miall, 1977). This is also observed in other systems where 

variable discharge promotes braiding (Lesemann et al., 2010; Ashmore et al., 2011; Lee et 
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al., 2015). As such, there is a reasonable expectation that braided rivers, especially those in 

arid and semi-raid settings, never achieve equilibrium conditions with their flow. Indeed, the 

evidence of reactivation surfaces (flow adjustment) and the establishment of chute channels 

suggest some relative variation in flow discharge. However, the nature of this variation is 

considered relatively small, with evidence suggesting that the river was potentially 

continuously flowing (perennial) for at least significant periods of time at Styrrup Quarry. This 

is significant when considering that the widely accepted source for the water and a good 

proportion of the sediment within the fluvial system was derived from the Caledonian Uplands 

(McKie and Williams, 2009) approximately 500 – 600 km away. This is not necessarily usual 

as it has been observed that fluvial systems in dryland settings (arid/semi-arid) can sometimes 

exhibit water levels higher than expected, with the water levels reflecting upstream conditions 

not necessarily within the arid setting (Miall, 1977; Bullard and McTainsh, 2003). However, 

given that the river must was flowing across multiple semi-arid basins to reach the Styrrup 

location suggests that the catchment must have had a significant input of water to have 

managed such a feat, and or, that supplementary amounts of water were added more locally. 

Indeed the variations between the preserved expression of the Sherwood Sandstone between 

east and west England suggest that more localised conditions must have had a controlling 

influence given the shared source in northern France.  

A perennial interpretation is also supported by the complete absence of aeolian facies; notable 

when general environmental conditions are believed conducive to aeolian development. In 

western England the Sherwood Sandstone is observed interdigitating with aeolian and fluvial 

facies types where interpreted quiescence in the fluvial system promotes the flourishing of the 

coeval aeolian systems (Mountney and Thompson, 2002; Bloomfield et al., 2006). However, 

the continuous wet conditions of a more perennial fluvial system in the east of England may 

have retarded aeolian development through the capture and inhibiting of aeolian entrainment. 

The source of an additional source of water and sediment is likely from the London-Brabant 

High situated to the south, or the Pennine High situated to the west. Given that localised pebbly 

facies in the Sherwood Sandstone are identified fringing the Pennine High suggest that is was 

indeed shedding detritus and water into the system (Steel and Thompson, 1983). Provenance 

analysis of the sediment at Styrrup Quarry will be conclusive to this interpretation, though such 

a study was beyond the scope of this project. 

  

This lack of preservation potential is likely the reason for the absence of the source sediment 

for the mud cobbles incorporated in the section. These mud cobbles by virtue of the cohesive 

strength of the material implies an immediate local source; a source that is not evidenced 

within the outcrop. This absence could be related to the limits of the outcrop, however, the 
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Sherwood Sandstone exposed in Nottingham City where the exposure is generally very good 

also exhibit mud intraclasts without evidence of the source (Howard et al., 2009). Overbank 

elements as well as being devoid of mud material are also lacking any indication of 

pedogenesis or colonisation by vegetation. This is important as Gran and Paola (2001) note 

that during dry periods, both channels and floodplain areas may also be subject to increased 

pedogenic development, especially calcrete cementation, which may increase resistance to 

erosion and subsequently alter channel form (Huang and Nanson, 1998). However, calcrete 

development is also not observed within the outcrop or in the wider region, though significant 

amounts of calcrete are observed in southern parts of England (Newell, 2006); suggesting that 

the lower flow or dry periods noted by Gran and Paola (2001) may not be occurring – 

supporting the hypothesis of a perennial flow regime. It is unusual however that given the 

interpretation of a more constant source of water in an arid/semi-arid environ that evidence of 

plant colonisation isn’t prevalent. The authors consider this lack to be possibly related to; i) 

the removal of plant-rich overbanks during normal fluvial processes, ii) that conditions with the 

presence of water were still too restrictive for wide-spread plant colonisation and flourishing, 

and or, iii) that the Quarry at Styrrup is immediately within the braided system, and hence was 

most favourable to the quarrying of sandstone blocks. It is also conceivable (based on modern 

dryland systems) that overbank regions were subject to microbial crust development rather 

than plant colonisation (cf. Dickerson et al. 2013). However, despite conditions possibly being 

favourable to the growth of microbial communities no such evidence is also observed, perhaps 

suggesting that the outcrop did indeed occupy a position within the braid system.   

 

6 Conclusions  

The Sherwood Sandstone is very poorly exposed in the East Midlands Shelf and the outcrop 

at Styrrup Quarry represents the first opportunity to characterise the paleaoenivronment in 

detail for the area. As such, the Sherwood Sandstone exposed at Styrrup Quarry records the 

deposition of a moderately sinuous sand-dominated braided river system. The record fluvial 

system at Styrrup Quarry is interpreted to have been more perennial-like, this is based on; i) 

the lack of the establishment of aeolian facies, a result of water inhibiting wind entrainment, 

and, ii) the lack of evidence for lowstand flow conditions. Some variability within the fluvial 

system is however identified through the establishment of reactivation surfaces and the 

establishment of chute channel. The lack of observed instances of plant colonisation is 

possibly due to a number of features relating to, outcrop scale, inhospitable palaeo-

environment and anthropogenic selection to the most competent sandstone horizons. 
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Figure Captions 

Fig. 1 – Map depicting surface expression of the SSG (highlighted in yellow) with topographic 

highs (areas of non-deposition) during the Triassic. Note dashed lines that delineate informal 

geographic divisions of the Sherwood Sandstone Group into eastern, western, central and 

southern areas. 

Fig. 2 – Location map. A) Map of the northern England depicting the surface crop of the 

Sherwood Sandstone Group. B) Aerial photographs of Styrrup Quarry. DiGMapGB data, BGS 

© NERC. Contains Ordnance Survey data © Crown Copyright and database rights 2015 

Fig. 3 – Example stratigraphic columns of the SSG. A) Example from the western SSG around 

Runcorn. B) Eastern SSG example for the area around Styrrup Quarry, note the nomenclature 

change and removal of the Lenton Sandstone Formation from the Group (see Ambrose et al., 

2014). Zech. Grp. = Zechstein Group, Rox. F. = Roxby Formation, Broth. F. = Brotherton 

Formation, Edling. F. = Edlington Formation. 
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Fig. 4 – Panel data set from Styrrup Quarry, see Fig. 1b for location. A) Panels depicted as 

planar 2D sections; palaeocurrent information portrayed from collection points. B) Panel 

depicted in 3D form to match orientation outcrop, note north direction.  

Fig. 5 – Sedimentary logs from Styrrup Quarry. Log positions are depicted on Fig. 2. 

Fig. 6 – Photographic example of lithofacies. A) Pebbly sandstone (Spb), B) Trough 

crossbedding (St) and planar crossbedded sandstone (Sp), C) Low-angle crossbedded 

sandstone, note mud intraclasts (Sl), D) Upper plane beds (Sh1), E) Horizontally laminated 

sandstone (Sh2), F) Massive Sandstone (Sm), G) Multiple sets of ripple cross-laminated 

sandstone (Sr), H) Silty sandstone (Fl) overlain by erosive surfaces with pebble lags. 

Fig. 7 – Examples of larger observed mud intraclasts. A) Multiple mud cobbles at base of 

facies St, B) Larger >30 cm wide highly weathered mud clast, C) Broken mud clast at base of 

facies Sp. 

Fig. 8 – Photograph example of a chute channel element (A) and diagrammatic interpretation 

(B). 

Fig. 9 – Conceptual palaeogeographic model for the Styrrup Quarry locality. 

Table Caption 

Table 1 – Identified lithofacies for the Sherwood Sandstone Group at Styrrup Quarry. 

Table 2 – Identified architectural elements for the Sherwood Sandstone Group at Styrrup 

Quarry. 
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