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Abstract

Physical processes in Antarctica and the Southern Ocean are of great importance

to the global climate system. This thesis considers two such processes, namely ice-

ocean interaction in ice shelf basal crevasses and the conditional instability of frazil

ice growth.

It has been suggested that freezing within basal crevasses can act as a stabilising

influence on ice shelves, preventing their break up. Using Fluidity, a finite element

ocean model, it is found that ocean circulation within a crevasse is highly dependent

upon the amount of freezing in the crevasse. It is also found that frazil ice formation

is responsible for the vast majority of freezing within a crevasse, and that there is

a non linear relationship between the amount of supercooling in a crevasse and its

freeze rate.

The conditional instability of frazil ice growth is a little investigated mechanism of

ice growth. Any frazil forming in the water column reduces the bulk density of a

parcel of frazil-seawater mixture, causing it to rise. Due to the pressure-decrease in

the freezing point, this causes more frazil to form, causing the parcel to accelerate,

and so on. Numerical modelling finds that the instability does not operate in the

presence of strong stratification, high thermal driving (warm water), a small initial

perturbation, high ‘background’ mixing or the prevalence of large frazil ice crystals.

Given a large enough initial perturbation this instability could allow significant rates

of ice growth even in water that is above the freezing point.

The research presented in this thesis forms the material for two peer-reviewed publi-

cations; ‘Modelling ice ocean interactions in ice shelf basal crevasses’ (Jordan et al.,

2014) and ‘On the conditional frazil ice instability in seawater’ (Jordan et al., 2015)
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1 Introduction

1.1 Aim of the Thesis

The main aim of this thesis is to better understand some of the small scale ice-

ocean interactions that happen in and around ice shelves in Antarctica. Large scale

climate models tend to, by necessity, either ignore or simplify a lot of these processes.

Two particular processes are investigated, namely ocean stabilising of ice shelves by

freezing in basal crevasses and the conditional instability of frazil ice growth. Direct

observations of these processes are difficult to obtain whilst laboratory experiments

are impractical. Model simulations, therefore, provide the only practical way of

studying these poorly understood processes. The work presented here is the first two-

dimensional ocean modelling study of an individual ice shelf basal crevasse, as well

as the first modelling study of the conditional instability of frazil ice. To achieve this

Fluidity, a non-hydrostatic finite-element ocean model with a flexible unstructured

mesh, is used. Whilst Fluidity is not an OGCM (oceanic general circulation model)

it is well suited to the complex geometry and high vertical resolution needed to

accurately model the ocean around ice shelves. In effect, Fluidity is used as a means

of carrying out ‘geophysical experiments’ that would otherwise be impossible to do.
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1.2 Antarctica and the Southern Ocean

The Intergovernmental Panel on Climate Change (IPCC) states that the observed

‘Warming of the climate system is unequivocal’, and that ‘Ocean warming dominates

the increase in energy stored in the climate system’ (IPCC , 2013). However, this

warming of the climate system is not uniform in space with places in Antarctica and

the Southern Ocean being amongst those warming the quickest (Bromwich et al.,

2013). The Southern Ocean (Fig. 1.1) covers the immediate area around Antarctica.

As it shares boundaries with the Pacific, Atlantic and Indian oceans, the Southern

Ocean is of vital importance for global circulation and oceanic heat transport.

1.2.1 Thermohaline circulation

The thermohaline circulation is the an important mechanism by which heat is trans-

ported around the worlds ocean (Bryan, 1962; Hall and Bryden, 1982). Warm water

from the equator is transported poleward via wind driven surface currents, where it

cools, becomes denser and sinks. This dense water then returns towards the equator

(Fig. 1.2). The strength of the thermohaline circulation is of vital importance for

the global climate due to the oceanic mixing and global heat transport it provides.

Cold, dense Antarctic Bottom Water (AABW) is the densest observed water mass

and is present in every ocean basin. It forms as a result of ice-ocean interaction

around Antarctica. When new sea ice is formed on the continental shelf the remain-

ing water becomes relatively more saline due to brine rejection and is then known as

High Salinity Shelf Water (HSSW). The density of water at temperatures near the

freezing point is determined mainly by its salinity, and so the water falls down the

continental slope and out to the surrounding ocean basins where it becomes AABW.
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Figure 1.1: Map of Antarctica and the Southern Ocean. Image is sourced from
http://www.geology.com.
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Figure 1.2: Schematic diagram of the global thermohaline circulation. Warm water
is transported poleward from the equator, before cooling and returning at
depth. Image is sourced from http://www.ncdc.noaa.gov.
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1.3 Ice shelves

When Antarctic ice streams flow out over the ocean they form large floating ice

shelves (Pritchard et al., 2012; Rignot et al., 2013). Ice shelves can be of the order

of 100,000 km2, with the largest being over 400,000 km2. They vary in thickness,

getting shallower as they approach the calving front but are typically several hundred

metres thick (Fig. 1.3).

HSSW can enter the cavity beneath cold-water glacial ice shelves such as the Filchner-

Ronne and Ross ice shelves (Nicholls and Østerhus , 2004; Nicholls et al., 2009). The

freezing temperature of seawater decreases with increasing pressure, and therefore

the HSSW can melt the ice shelf at depth. The resulting meltwater cools and fresh-

ens the ambient seawater to form Ice Shelf Water (ISW), which is colder than the

surface freezing point. The density of seawater is controlled by salinity near the

freezing point, and therefore the fresher ISW is lighter than the surrounding sea-

water. When the ISW ascends along the ice shelf, it becomes supercooled (below

the local freezing point) and starts to freeze due to the increase in the local freezing

temperature. This ascending ISW plume is important in determining the spatial

patterns of melting and freezing beneath ice shelves (Hellmer and Olbers , 1989).

The ascending ISW freezes both directly onto the ice shelf and through the forma-

tion of suspended frazil ice crystals. The buoyancy driving a plume is therefore a

result of a mixed freshwater and frazil ice density perturbation. After ISW leaves

the cavity, it contributes to the formation of AABW (Foldvik et al., 2004).

Over the last few decades ice shelves on the Antarctic Peninsula have retreated, and

this is thought to be associated with atmospheric warming (Vaughan and Doake,

1996). The most profound changes in the Antarctic Ice Sheet currently result from

glacier dynamics at ocean margins, namely ice shelves (Pritchard et al., 2009). The

melting of the Antarctic Ice Sheet is predicted to have a large impact on global sea
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level (Shepherd et al., 2012).

1.3.1 Sea level rise

The stability of the Antarctic Ice Sheet is of great importance to future projections of

global sea level rise, as it contains 70 % of the worlds freshwater. A total collapse and

melting of the West Antarctic Ice Sheet would raise eustatic sea level by roughly 3.3

m (Bamber et al., 2009), whilst the collapse of the much more stable East Antarctic

Ice Sheet would raise sea level by around 50 m. Melting of sea ice and ice shelves

has little direct input on sea level rise, as the ice is already displacing the amount

of water that their melting would contribute to sea level rise. However, when ice

shelves are thinning or collapse, the resulting reduction in buttressing of inshore

glaciers can enhance the flow of outlet glaciers from the continental ice sheet and

thus speed up the contribution of the ice sheets to sea level rise (Rignot et al., 2004).

These dramatic collapses are believed to be a result of thinning due to atmospheric

warming and perhaps increased basal melting (Shepherd et al., 2003; Glasser and

Scambos , 2008; Holland et al., 2011). As such a greater understanding of the factors

that affect ice shelf stability is of importance for predicting future sea level rise and

efforts to mitigate against coastal flooding.

1.3.2 Ice shelf stability

As well as a general reduction in Antarctic Peninsula ice shelf area (roughly 28,000

km2 over the last 30 years (Cook and Vaughan, 2010)) there have been dramatic

collapses of individual ice shelves over a short time period, such as Larsen A in

1995 and Larsen B in 2002. In the case of Larsen B an area of roughly 3250 km2

disintegrated over a period of little more than 5 weeks in 2002 (Figure 1.4). The

final collapse of these ice shelves was most likely a result of increased surface melt-
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water production, leading to fracturing of the ice shelf into individual blocks of ice

(Scambos et al., 2000).

It is possible for the ocean to freeze onto the underside of ice shelves. Because the

freezing temperature of seawater decreases with increasing pressure, water at the

surface freezing point melts ice shelves at depth, generating meltwater, which is

cooler and fresher than the surrounding water. The density of water at tempera-

tures near the freezing point is determined mainly by its salinity, and therefore the

meltwater is lighter than the surrounding water. As a result, the meltwater rises,

and may become supercooled due to the pressure decrease (Figure 4.9) and form

‘marine’ ice on the base of the ice shelf (Robin, 1979). As well as direct freezing onto

the ice base, small disc-shaped frazil ice crystals (with radii in the range 0.01–10

mm) form in a turbulent body of water when it becomes supercooled, and these can

deposit on to the ice (Daly , 1984).
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Figure 1.3: Ice thickness (m) for all Antarctic ice shelves. Adapted from Griggs and
Bamber (2011).
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Figure 1.4: Collapse of the Larsen B ice shelf, January–March 2002. Image sourced from
NASA Earth Observatory.

Figure 1.5: Schematic diagram of the thermohaline circulation under an ice shelf (Hol-
land and Feltham, 2005). The formation of sea ice generates High-Salinity
Shelf Water, which sinks down the continental shelf and melts the ice shelf at
its grounding line. The fresh meltwater released initiates an Ice Shelf Water
plume, which becomes supercooled as it rises due to the pressure release and
thus deposits ice at shallower depths.
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1.4 Types of ice

All types of ice formation in salty water act as a source of heat (due to the latent

heat of ice fusion) and salt (due to brine rejection) in the water. Throughout this

work several different types of ice are mentioned, namely meteoric ice, marine ice

frazil ice and sea ice.

The Antarctic Ice Sheet is comprised of meteoric ice that has accumulated from

thousands of years of precipitation. This ice is relatively cold, and as a result is

brittle, with temperature determined by atmospheric conditions. Inland glaciers

flows out towards the sea via ice streams, fast moving areas of the ice sheet that

move at speeds of order 1 km a year. These ice streams flow out onto the sea,

sometimes forming a floating ice shelf.

Marine ice is formed by the ocean freezing onto ice shelves. It is relatively warm,

being formed at the freezing point of seawater (-2 ◦ C). As such it has a relatively low

viscosity, and is more likely than meteoric ice to deform rather than fracture under

stress. There is evidence to suggest that bands of marine ice act as a stabilising

influence on ice shelves by halting the propagation of rifts (Holland et al., 2009).

Marine ice is a combination of direct ice growth and frazil ice deposition onto an ice

surface.

Frazil ice is a collection of loose, randomly oriented disc-shaped ice crystals, formed

in turbulent, supercooled water. The formation of frazil ice is a well known phe-

nomenon in rivers and the uppermost layers of the ocean (Martin, 1981). There

have also been observations at numerous Antarctic ice shelves of frazil ice up to

several kilometres from the ice front, both suspended throughout the water column

and present in sea ice cores (Dieckmann et al., 1986; Smetacek et al., 1992; Penrose

et al., 1994; Leonard et al., 2006; McGuinness et al., 2009; Robinson et al., 2010).
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The presence of ISW during the winter at McMurdo Sound has been linked to the

growth of frazil ice on the underside of sea ice (Mahoney et al., 2011), with up to

3 m of deposited frazil ice observed (Robinson et al., 2014). There have also been

observations of 6–7 m of frazil ice deposited on the underside of land fast sea ice

Price et al. (2014).

Sea ice forms on the surface of oceans when the flow of heat from the ocean to the

atmosphere results in the water becoming supercooled. Being so closely linked to

atmospheric conditions results in a strong seasonal cycle in the extent of sea ice

cover. Whilst both sea ice and marine ice are formed from oceanic freezing, within

this work marine ice refers to ice frozen directly onto an ice shelf and sea ice refers

to the seasonal sea-surface ice cover.

1.5 Basal Crevasses

Basal crevasses can form on the underside of ice shelves allowing seawater to pen-

etrate the ice shelf and rupture the ice up to the level at which longitudinal stress

acting to open the crevasse is sufficiently balanced by the confining presence of the

surrounding ice (Jezek , 1984). An initial flaw in the base of the ice shelf will only

propagate upwards if it exceeds a critical size, typically on the order of 1 m (Rist

et al., 2002). The final crevasses can be many kilometres long and several hundred

metres wide and deep (Luckman et al., 2012; McGrath et al., 2012b,a). An example

of a basal crevasse on the Larsen C Ice Shelf is shown in Fig. 1.6. Basal crevasses

have been observed in detail on, among others, the Larsen (Swithinbank , 1977), Ross

(Jezek and Bentley , 1983) and Fimbul (Humbert and Steinhage, 2011) ice shelves,

and they are a common feature. Crevasses observed by McGrath et al. (2012b) were

found to have their greatest depth and smallest width near their grounding line, with

the crevasses becoming shallower and wider as they propagate towards the calving
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front. McGrath et al. (2012b) suggest that this change in crevasse geometry is a

combination of marine ice accretion at the top of the crevasse and bending stresses

within the ice shelf, with the latter being the dominant process. This would lead

to the formation of a melt-driven ocean convection cycle within the crevasse itself,

with melting happening low down on the crevasse walls and marine ice accretion

higher up (Khazendar and Jenkins , 2003).

The presence of basal crevasses will modify local stresses in the ice, potentially

affecting ice shelf stability (Jezek , 1984; Holland et al., 2009). They also increase the

basal surface area over which melting occurs, and allow heat exchange between the

ice and ocean deep within the ice column, potentially speeding up melting (Hellmer

and Jacobs , 1992). Marine ice may form at the top of basal crevasses because the

pressure freezing point difference between the base and top of the crevasse drives

a thermohaline circulation within it. Khazendar and Jenkins (2003) modelled how

this would cause a widening at the bottom of a crevasse and a narrowing at the top

(Fig. 1.7).

Bands of marine ice, potentially formed in this way, have been observed in Larsen

Ice Shelf, and this marine ice appears to play a role in stabilising the ice shelf (Fig.

1.8). Marine ice is comparatively warmer than meteoric ice and is therefore more

likely to deform rather than fracture in response to stress. Marine ice has also

been shown to heal rifts by binding their edges together with deformable material

(Rignot and MacAyeal , 1998), and there is evidence that bands of marine ice act as

a barrier to the propagation of rifts (Holland et al., 2009). Airborne radar is able to

get a strong return from an air-ice interface as well as a meteoric ice-ocean interface.

When there is a marine ice-ocean interface, however, only a weak return is obtained.

The absence of a radar echo from airborne radar can indicate the presence of marine

ice, the exact thickness of which can be determined by the flotation depth of the ice

shelf assuming hydrostatic equilibrium.
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Obtaining observations of the physical conditions beneath ice shelves is challeng-

ing, and there are particularly few observations of ocean conditions within basal

crevasses. Temperature and salinity profiles measured in the Jutulgryta rift, a 340

m wide and 260 m deep rift on the Fimbul Ice Shelf, were obtained by Orheim et al.

(1990) (reprinted by Khazendar and Jenkins (2003)). A rift differs from a crevasse

in that it extends vertically throughout the entire ice column, however as the Jutul-

gryta rift was “capped” by approximately 40 m of sea ice, marine ice and ice debris

it is assumed to be a fair approximation to a basal crevasse. Ocean properties were

vertically uniform within the rift, with a 60 m thick layer of supercooled water and

frazil ice at the top. Approximately 2 m of ice accumulation occurred at the top of

the rift over the course of two years (Østerhus and Orheim, 1992; Khazendar and

Jenkins , 2003) and the average flow velocity past the crevasse was of the order of

2.5 cm s−1 (Orheim et al., 1990).

Previous studies of ice shelf basal crevasses have mainly considered the formation

and evolution of the crevasse itself rather than ocean flow and freezing within it (e.g.

Luckman et al., 2012; McGrath et al., 2012b,a). Ocean modelling work has generally

been at larger scales, considering ice shelf cavities as a whole rather than individual

basal crevasses. (Khazendar and Jenkins , 2003) modelled in one (vertical) dimension

the freezing rate within a basal crevasse and the impact this has on the water inside.

However, the one-dimensional nature of their model limited the representation of

ocean dynamics. As such there is there is a clear scope for a more in depth study

of a process that is of great importance for ice shelf stability and hence global sea

level rise.
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Figure 1.6: (a) 25 MHz radar profile across basal and surface crevasses. Surface eleva-
tions have been corrected to reflect ice shelf topography. Note down warp-
ing of firn above basal crevasse and hyperbolas on the flanks, highlighted
in red, interpreted as surface crevasses. (b) Three-dimensional view of the
basal crevasse penetrating into the ice shelf. Surface and basal interface in-
terpolated from GPS and GPR profiles, respectively. Figure sourced from
McGrath et al. (2012a)
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Figure 1.7: The profile of the rifts wall after a 25-year integration and at the end of a
50-year standard experiment compared with the initial wall location (which
is represented by the vertical dotted line at the middle of the horizontal
axis). The horizontal extensions of the two curves at the top indicate the
interface between the accumulated ice and the water at the corresponding
times. Over time the ice-ocean interface changes from vertical to sloping,
driven by melting lower down in the water column and freezing higher up.
Notice that the horizontal distance scale is exaggerated relative to the vertical
one. Figure sourced from Khazendar and Jenkins (2003)



1.5 Basal Crevasses 31

Figure 1.8: (a) 1986 Landsat image of LBIS (Sievers et al., 1989) and (b) 2003–2004
MOA image of LCIS Scambos et al. (2007), both with 97–98 survey data.
Red and (overlain) blue points mark surface and basal returns, so visible red
points indicate failure to detect the base. Yellow shading indicates proposed
marine ice and yellow tracks are other surveys incorporated in the ice draft.
Figure sourced from Holland et al. (2009)
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1.6 Conditional instability of frazil ice

Frazil-laden water, such as an ISW plume, can be considered a two-component

mixture of ice and seawater (Jenkins and Bombosch, 1995; Khazendar and Jenkins ,

2003; Holland and Feltham, 2005). It has been suggested that the presence of frazil

ice can lead to a conditional instability in seawater (Foldvik and Kvinge, 1974),

which proceeds as follows. Any frazil forming in the water column reduces the bulk

density of a parcel of frazil-seawater mixture, causing it to rise. This rising causes the

parcel to become further supercooled due to the increase in the freezing point with

decreasing pressure. This causes more frazil to form, causing the parcel to accelerate,

and so on. Foldvik and Kvinge (1974) analysed this instability by considering the

change in temperature of a parcel of water rising through a variety of fixed water

columns, arguing that the release of cool, salty water by this convection process may

reach the seabed and contribute to the formation of AABW. Although the parcel of

frazil-seawater mixture is less dense than the surrounding water, this is solely down

to the frazil ice. Once the frazil ice leaves the parcel, for example by depositing onto

the underside of sea ice, the remaining water is denser than the surrounding water

due to an increased salinity from brine rejection. It is this remaining water that

contributes to AABW formation. This process is summarized in schematic form in

Fig. 1.9.

For this instability to occur, there must be net ice growth as the frazil-seawater par-

cel rises. The frazil growth rate is determined by the thermal driving, the difference

between the temperature of the seawater in the parcel and the local freezing temper-

ature. The instability can only occur if there is a tendency for the thermal driving to

decrease (become more negative) as the parcel rises. If, for example, the parcel rises

into sufficiently warmer waters, the frazil could melt and the instability would then

be terminated. If, on the other hand, the water column is such that the decrease
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in thermal driving due to pressure release is not overcome, the instability exists.

Waters that get colder towards the surface are the norm in the salinity-stratified

Southern Ocean.

However, this instability is not purely a function of the ambient water temperature.

The rate of supercooling due to pressure release depends upon the rate at which the

parcel rises, which is determined by its buoyancy. The relative buoyancy of the parcel

as it rises is determined by the density and stratification of the water column. The

buoyancy is also determined by the volume of frazil in the parcel. The rate of change

of buoyancy of the parcel (i.e. the tendency of perturbations to grow) is therefore

determined by the frazil growth rate per unit supercooling, which is a function

of the detailed geometry of the frazil ice (i.e. its surface area per unit volume).

Furthermore, any tendency of the parcel to mix due to turbulence as it rises will

weaken its buoyancy and thermal contrasts and thus weaken the instability. Finally,

buoyant frazil ice has a tendency to rise relative to its surrounding fluid, raising

the possibility that such relative motion will negate the instability by removing the

buoyancy forcing from the parcel of seawater containing the supercooling. Frazil ice

may also leave the parcel through deposition onto an ice shelf base, removing the

buoyancy forcing. This rate of deposition is affected by the ice shelf plume speed.

These considerations suggest that the frazil ice instability is far more complex than

the original suggestions of Foldvik and Kvinge (1974). In particular, the viability

and growth rate of the instability is expected to be governed by the rate of change

of water temperature with height, the buoyancy of the perturbation, the density

stratification, the details of the frazil crystal geometry, the level of turbulent mixing,

and the rising of frazil relative to the surrounding seawater. No modelling study

of this phenomenon has been carried out, and investigating under what conditions

the instability is likely to exist and the factors that effect its strength may help

to better understand ice formation in the Antarctic and hence the production of
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AABW. There have been no previous modelling studies of the conditional instability

of frazil ice. Hughes et al. (2014) use a 1 dimensional plume model to study the

effects of frazil ice on an ISW plume, and find that the presence of frazil ice in an

ISW plume can enhance its extent, leading to the supercooled water being present

further from the ice front.



1.6 Conditional instability of frazil ice 35

  

Ice shelf is melted at depth, 
forming less dense freshwater

Freshwater rises due to 
the density perturbation

Dense water falls, 
becoming AABW

Frazil forms as a result of the 
change in pressure, increasing 
the density perturbation 

Frazil deposits onto sea ice, 
leaving behind salty, dense waterIce shelf

Sea ice

Seabed

Figure 1.9: Schematic of frazil ice instability in an ISW plume.
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1.7 Overview of the Thesis

This thesis aims to better understand these two particular areas of ice-ocean inter-

action, which as yet have been little studied. Chapter 2 provides an overview of

Fluidity, the ocean-ice model used throughout this work. The full Navier-Stokes

equations are described as well as the frazil ice model of Jenkins and Bombosch

(1995) and its implementation into Fluidity. The results of validating the frazil ice

model are then presented.

Chapter 3 uses this model to investigate ice ocean interaction in ice shelf basal

crevasses, and its implications for ice shelf instability. The majority of the work pre-

sented in this chapter was published in Journal of Geophysical Research: Oceans in

February 2014 (Jordan et al., 2014). The setup for a model of an idealised crevasse

is discussed, and this model is then tested and validated against the observations

of Orheim et al. (1990). A sensitivity study into how various features affect the

freeze rate and oceanic flow within the crevasse is then undertaken using the vali-

dated model as a baseline case. Model results show two different flow régimes, one

dominated by freezing and one dominated by melting. Frazil ice is found to be

responsible for the vast majority of all freezing in crevasses, and it is shown that

under the right conditions freezing within basal crevasses could act as a stabilising

influence on ice shelves. Finally, the model is used to investigate whether ocean

melting can be solely responsible for the observed widening of basal crevasses as

they approach the calving front. Oceanic forcing is found to be unable to be solely

responsible for the widening of basal crevasses.

Chapter 4 uses the model to investigate the conditional instability of frazil ice growth

in seawater. As of the time of writing the majority of the work presented in this

chapter has been submitted for publication in Journal of Physical Oceanography

and received a decision of minor corrections. Any frazil forming in the water column
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reduces the bulk density of a parcel of frazil-seawater mixture, causing it to rise. Due

to the pressure-decrease in the freezing point, this causes more frazil to form, causing

the parcel to accelerate, and so on. The model set up to investigate this instability is

presented, and the conditions investigated under which such an instability can exist.

A sensitivity study into the factors effecting its existence is then carried out, and

model results show that the amount of thermal driving, density gradient, background

mixing and the size of an initial perturbation can each prevent the formation of the

instability. Next, the set up for a second model representing the area in the vicinity

of an ice front is discussed. Model results show that the instability can be responsible

for significant amounts of ice growth up to several kilometres from an ice front, which

could have implications for the formation of AABW.

Finally, Chapter 5 discusses and summarizes the conclusion that can be drawn from

the previous two chapters. Future applications of the model and and potential new

areas for research are also discussed.



2 Model and governing equations

This chapter beings with an introduction to Fluidity and its governing equations.

The frazil ice model of Jenkins and Bombosch (1995) is then described, as well as the

implementation of this model within Fluidity together with its validation. Finally,

the ice shelf melting model implemented into Fluidity by Kimura et al. (2013) is

discussed.

Fluidity is an open source, general purpose, multi-phase, CFD (Computational Fluid

Dynamics) code capable of solving numerically the Navier-Stokes and accompanying

field equations on arbitrary unstructured finite element meshes in one, two and three

dimensions. As such it is very well suited for the small scale processes and complex

geometries involved in ice-ocean interactions in and around ice shelves. The multi-

phase nature of the model also allows the simulation of a full water - frazil ice

system.

2.1 Governing Equations

Fluidity assumes that the density of the fluid is represented by a two-component

mixture of seawater, which is a linear function of temperature T and salinity S, and

38
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ice (Jenkins and Bombosch, 1995). This gives us a density equation of:

ρ = ρ0(1− C)[1 + β(S − S0)− α(T − T0)] + ρiC, (2.1)

where ρ is the density of the ice-seawater mixture, ρ0 = 1030 kg m−3 is the reference

density of seawater, α = 3.87× 10−5 ◦C−1 is the thermal expansion coefficient, T is

the temperature, T0 = −2 ◦C is the reference temperature, β = 7.86 × 10−4 psu−1

is the haline contraction coefficient, S is the salinity, S0 = 34.5 psu is the reference

salinity, ρi = 920 kg m−3 is the ice density and C is the dimensionless frazil ice

concentration (volume of ice per unit volume of ice-seawater mixture).

The domain considered in all of this work is relatively small and the Rossby radius,

the length scale at which rotational effects become important, is equal to Lr =
√
gD
f

,

where D is the depth of the water and f is the Coriolis parameter. Assuming an

average ice shelf is at a latitude of 700 with D = 400 m then the Rossby radius is

roughly 3500 km and so the effects of rotation can be safely ignored.

Under the Boussinesq assumption equations of state are cast in a non-rotating Carte-

sian coordinate system (x, y, z). The resulting field equations describing the tempo-

ral evolution of the instantaneous velocity field ~u(x, y, z, t) = (u, v, w), T , S and C

in accordance with Holland and Feltham (2005) are

∇ · ~u = 0, (2.2)

D~u

Dt
= − 1

ρm
∇P − g ρ

ρm
k̂ +Kν∇2~u, (2.3)

DT

Dt
= KT∇2T +

(
Tc − T −

L

cp

)
wc, (2.4)
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DS

Dt
= KS∇2S − Swc, and (2.5)

DC

Dt
+ wi

∂C

∂z
= KC∇2C − wc, (2.6)

where D
Dt

= ∂
∂t

+ u · ∇ is the material derivative, g = 9.81 m s−2 is the acceleration

due to gravity, ρm = 1030 kg m−3 is the characteristic mixture density, Kν , KT ,

KS and KC represent the effective diffusivities of momentum, heat, salt and frazil

ice respectively, the variable Tc is the temperature of the ice-ocean interface at the

edge of a frazil crystal, the variable P represents the pressure, wc is the melt rate of

frazil ice per unit volume of mixture, wi is the rising velocity of frazil ice and k̂ is

the vertical unit vector. All quantities are subject to a uniform, isotropic turbulent

diffusivity/viscosity of 10−3 m2 s−1 unless otherwise stated. With typical velocities

of the order of a few centimetres, this gives a Rossby number of the order of 103

over the length scale of an ice shelf basal crevasse. Over the 10 m length scale of

the model mesh, however, we are much better able to resolve this turbulence. The

second term on the right hand sides of (2.4) and (2.5) accounts for the temperature

and salinity changes in a fixed volume of the water fraction due to a frazil crystal

phase change.

Fluidity uses triangular cells for it’s finite element mesh. Velocities are defined on

a discontinuous Galerkin mesh, whilst pressure is defined on a separate continuous

mesh. All other variables (temperature, salinity, frazil concentration, etc.) are

defined on the pressure mesh and are spatially discretised using a control volume

method.

Solid boundaries, such as an ice surface or a sea bed boundary, are simulated with

no slip velocity boundary conditions and as such have no flow in the direction par-

allel to the boundary on the boundary (ie, u = 0). Zero-flux conditions for heat,
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salt and frazil are applied at the seabed. Inflow boundary conditions in the model

are steady Dirichlet boundary conditions, where temperature, salinity, velocity and

frazil ice concentration are prescribed along the boundary. Outflow boundary con-

dition are zero-flux Neumann boundary conditions. Preliminary work found that

using strongly applied boundary conditions caused problems at the inflow boundary,

causing anomalously high velocities. As a result all boundary conditions are now

‘weakly’ applied; conditions are not rigidly applied along a boundary but are allowed

to relax.

Model meshes throughout this work have been generated using GMSH, a 3D finite

element grid generator. The resolution in areas of interest, such as inside a basal

crevasse, is set to be higher. Whilst Fluidity has the ability to adapt mesh resolution

within the simulation this capability has not been used, as the areas of interest in

this work remain in a static, fixed location. Model runs investigating the effect of

varying mesh resolution were carried out, with the final chosen resolution (roughly

20 m) being able to resolve the processes being investigated whilst maintaining an

acceptable run time.

The Fluidity standard k - ε Turbulence Model has been used for all model runs. This

has the effect of adding eddy viscosity to the background viscosity when solving for

velocity. This was considered appropriate for flow with a Reynolds number of the

order of several hundred. (The Reynolds number is defined as Re = vL/ν, with v

being a characteristic velocity, L a characteristic length scale and ν the kinematic

viscosity. This gives the ratio between viscous and momentum forces and the relative

importance of each.)



2.2 Frazil ice model 42

2.2 Frazil ice model

Frazil ice can be modelled by either representing the distribution of ice crystal sizes

(Smedsrud and Jenkins , 2004; Holland and Feltham, 2005; Galton-Fenzi et al., 2012)

or, more simply, by using a single representative size class (Jenkins and Bombosch,

1995). The use of multiple size classes requires several additional tracers, so for

computational simplicity the single-size-class frazil ice model of Jenkins and Bom-

bosch (1995) has been incorporated into Fluidity for this study. This is justified

on the grounds that in both application areas we seek a basic qualitative study of

the effect of frazil ice rather then exact quantitative answers. Sensitivity studies are

undertaken to ascertain the effect of varying this single representative size class, in

particular it is found that changing the crystal radius has a large effect upon the

growth rate of frazil ice, if not the total amount of ice grown.

2.2.1 Frazil ice dynamics

Fluidity already has a sediment model (Parkinson et al., 2014) that has previously

been used to develop a full multi-phase (both water and ice) model of fluid-particle

mixtures to simulate volcanic ash settling into water (Jacobs et al., 2012). In many

ways this is analogous to frazil crystals in water, only with frazil rising rather than

sediment falling. This is done in Fluidity by setting the submerged specific gravity

and sinking velocity to be negative, as the density of ice is less than seawater. This

will have the effect of lowering the bulk density of seawater where frazil ice is present

and also giving the frazil ice a rising velocity relative to the seawater containing it.

Frazil ice has submerged specific gravity, R:

R =
ρi − ρw
ρw

, (2.7)
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where ρi is the density of ice and ρw the density of seawater. While calculating R it

is assumed that ρi = 920 kg m−3 and ρw = 1030 kg m−3, giving R = −0.107. The

frazil rise velocity wi relative to the moving fluid is approximated by frazil’s buoyant

drift velocity in still water (Gosink and Osterkamp, 1983):

w2
i =

4Rgrε

Cd
, (2.8)

where r is the chosen radius of frazil ice discs, g = 9.81 m s−2 is the acceleration due

to gravity and ε = 1/16 is the aspect ratio of the frazil ice disc (Clark and Doering ,

2006). Laboratory experiments find that the distribution of frazil crystal radii takes

a log normal form, with mean radii ranging from 0.35 mm to 1 mm (Ye et al., 2004;

Clark and Doering , 2006; McFarlane et al., 2014), whilst field observations have

measured crystal radii of the order of 1 cm (Dieckmann et al., 1986; Robinson et al.,

2010). These larger crystals tend not to be observed directly in the water column

but rather on the underside of sea ice where they have had time to grow. This

work is mainly focussed on the effects of frazil ice growth within the water column,

not what happens once frazil ice has been deposited. The mean distribution by

volume is skewed towards smaller crystal radii and so it was decided to focus on

these smaller crystal radii for this work. As a result it is assumed r=0.75 mm for

the baseline representative frazil crystal radius. Sensitivity studies will be carried

out to ascertain the effect of varying the frazil crystal radius. The drag coefficient

Cd varies considerably with the disc Reynolds number, defined as:

Re =
wi2r

ν
, (2.9)

where ν = 1.95 × 10−6m2 s−1 is the kinematic viscosity of seawater. Gosink and

Osterkamp (1983) used published experimental data on the drag coefficient of discs
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of varying sizes to determine the following empirical relationship:

log10(Cd) = 1.386− 0.892 log10(Re) + 0.111(log10(Re))
2. (2.10)

Due to the number of unknown variables in (2.8), (2.9) and (2.10) an iterative

method is required to obtain an estimate for wi for a given crystal radius. A first

guess is made for wi, which is refined by obtaining values of Re and Cd with this

initial guess. Frazil ice crystals are given no explicit horizontal advection, it is

assumed they only move in the vertical due to their submerged gravity. They are

still advected in all directions with the fluid that contains them, however.

When frazil ice comes into contact with an ice boundary it is assumed to freeze onto

the boundary and leave the fluid. The total flux through an ice boundary, and hence

the frazil ice deposition rate, is calculated via:

∂η

∂t
= wbCb, (2.11)

where η is the thickness of frazil ice in metres, Cb is the volumetric frazil concen-

tration at the ice shelf ocean boundary and wb is the component of wi normal to

the boundary (adapted from Parkinson et al. (2014)). Resuspension of frazil ice

crystals has been ignored in this work, as it is assumed that the crystals will ad-

here to the ice boundary. wb is orientated directly upwards, so frazil cannot deposit

onto vertical walls. The model uses no-slip velocity boundary conditions that are

’weakly applied’ (not strictly enforced). As a result of this some flow normal to

the ice-ocean boundaries is present as an artefact of the numerical solution. This

creates a negligible amount of frazil ice deposition onto any vertical walls, of the

order of 10−7 m per year, which has been ignored in any calculation of freeze rate.

The rate of frazil deposition is combined with direct freezing (Kimura et al., 2013)

to give a total freeze rate for an ice-ocean boundary. In this work melting is defined
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as negative freezing, and so a negative freeze rate as given by an equation is a melt

rate.

2.2.2 Frazil ice thermodynamics

The growth of frazil ice acts as a source of heat and salt in the temperature and

salinity equations due to the release of latent heat and brine rejection (Jenkins and

Bombosch, 1995). The ice-ocean interface at the edge of a frazil crystal is assumed

to be at the freezing temperature, so the temperature and salinity are related by a

linear expression for the pressure freezing point of seawater:

Tc = aSc + b+ czc, (2.12)

where Tc and Sc are the temperature and salinity at the edge of the frazil ice crystal,

the variable zc represents the elevation and a, b and c are the constants -0.0573

◦C PSU −1, 0.0832 ◦C and 7.61×10−4 ◦C m−1 respectively. Balancing heat and

salt transfer through the frazil boundary layer with the latent heat and freshwater

release of melting obtains:

(1− C)γcT (T − Tc)
2C

r
=
L

c0
wc, (2.13)

(1− C)γcS(S − Sc)
2C

r
= wcSc, (2.14)

where L = 3.35 × 105J kg−1 is the latent heat of ice fusion, c0 = 3974 J kg−1

◦C−1 is the specific heat capacity of sea water, w′ (s−1) is the melt rate of frazil

ice volume per unit volume of mixture, and γcT and γcS are the ocean heat and salt

transfer coefficients at the edge of frazil ice crystals. For transfer at the disc edges

the appropriate length scale is the half-thickness of the disc (Daly , 1984), so the
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transfer coefficients are calculated as follows:

γcT =
NuκT
εr

, γcS =
NuκS
εr

(2.15)

where κT = 1.4 × 10−7 m2s−1 is the molecular thermal diffusivity of seawater,

κS = 8 × 10−10 m2 s−1 the molecular haline diffusivity of seawater and Nu is the

dimensionless Nusselt number, the ratio between convective and conductive heat

transfer, which is assumed to be Nu=1. In reality the relative difference in salinity

between the ice and seawater will cause the Nusselt number to vary, for simplicity,

however, it is assumed to be 1.

This gives three equations and three unknown variables Tc, Sc and w′. To eliminate

w′ (2.13) is substituted into (2.14):

γcT (T − Tc)
c0
L

=
γcS(S − Sc)

Sc
(2.16)

Then Tc is eliminated by substituting (2.12) into (2.16):

γcT (T − aSc + b+ czc)
c0
L

=
γcS(S − Sc)

Sc
(2.17)

This can be rearranged into a quadratic in terms of Sc:

aS2
c −

(
(T + b+ cz) +

γcSL

c0γT

)
Sc +

SγcSL

c0γT
= 0 (2.18)

There are two solutions to (2.18), one positive and one negative. As salinity can by

definition never be negative the value of Sc is deemed to be the positive solution

to (2.18). This can then be used to eliminate Sc from (2.14) and thus solve for

wc. As these equations require some frazil to be present before any freezing can

occur, a very small minimum concentration of frazil (Cmin = 5× 10−9) is used when
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C < Cmin in the solution of (2.16)–(2.18). This background concentration is only

used to determine frazil growth rates and is not part of the frazil ice concentration

conserved in the model, as in Jenkins and Bombosch (1995).

The formation of frazil ice provides a source of heat and salt, the full derivation of

which is shown in Holland and Feltham (2005):

DT

Dt
= wc

(
L

c0
+ T − Tc

)
(2.19)

DS

Dt
= wcS (2.20)

where δT and δS are the change in temperature and salinity per second due to the

growth of frazil ice. When frazil is formed or melted these two equations provide a

source or sink term within the model domain for heat and salt respectively.

2.2.3 Implementation of frazil ice model in fluidity

As previously stated, the frazil ice model of Jenkins and Bombosch (1995) has been

implemented in Fluidity. This has been done by modifying a sediment field to

represent frazil ice crystals rather than sediment particles. At each point of the

model mesh the concentration of frazil ice is defined, and this concentration affects

the bulk density of the fluid at this point (2.1). In addition to the frazil crystals

rising velocity relative to the fluid they are subjected to a uniform isotropic diffusion.

At each time step w′ is calculated for each mesh point, applied constantly between

each time step. It is also assumed that, as w′ is defined in terms of melting, negative

values of w′ cause freezing. The constant rate of w′ used causes no problems in the

freezing case, however problems can arise during a melting case if the melt rate

applied at one time step would cause there to be negative frazil ice concentration at
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the next. To prevent this the value of w′ used in such cases is set to be such that

at the end of the time step the frazil concentration will be exactly 0. This revised

value of w′ is then used for the temperature and salinity changes caused by frazil

ice.

2.2.4 Validation of frazil model

The implementation of the frazil ice model has been validated against calculations

of latent heat change by cooling a 1 m two dimensional square of water at sea

level by a given amount. The temperature, salinity and frazil ice concentration

change in the model are then compared to expected values. As the model assumes

a single representative size class, the effects of varying the frazil crystal radius is

also shown. In the validation test the water is cooled to 0.1◦C below the freezing

point. The model will always form frazil ice provided there is supercooled water,

and in the steady state of the model it is expected that enough frazil will have

formed to eliminate the thermal driving (Fig. 2.1a). There is a corresponding rise

in temperature due to the latent heat of ice formation (Fig. 2.1b), although the

total temperature change is slightly less than 0.1◦C because of the increased salinity

due to brine rejection lowering the freezing temperature (Fig. 2.1c). Finally, a final

frazil ice concentration of 1.1863 ×10−3 is observed (Fig. 2.1d). If seawater is cooled

by imposing a negative thermal driving (T ∗ < 0) below the freezing point the total

change in frazil ice concentration is given by:

∫
dC

dt
dt =

−T ∗C0

L
(2.21)

The model results do indeed match this value. Varying the crystal radius has no

effect on the temperature, salinity or frazil ice concentration changes, however it does

effect the rate at which these changes occur. A small crystal radius has a greater
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surface area to volume ratio than a larger crystal, and so freezes at a faster rate.

The reverse for larger crystals is also true. Frazil crystal growth is non-linear, with

the rate of growth being proportional to both the amount of thermal driving and

the frazil ice concentration. This results in the fastest growth of frazil ice being seen

during the middle of the simulation, where there is both a large amount of thermal

driving remaining and some initial frazil crystal formation has already taken place.
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Figure 2.1: Validation of frazil ice model. Modelled change in (a) thermal driving, (b)
temperature, (c) salinity and (d) amount of frazil ice in a 1 m2 box of water
at sea level cooled by 0.1 ◦C is shown for r=0.25 mm (blue), r=0.75 mm
(black) and r=1.25 mm (red).
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2.3 Ice shelf melt model

Direct melting and freezing onto ice shelves has been implemented in Fluidity by

Kimura et al. (2013). This has been achieved by applying thermodynamic boundary

conditions at the ice-ocean interface. The temperature at the ice-ocean interface

(Tb) is at the local freezing temperature, determined by the salinity at the ice-ocean

interface (Sb) in a similar fashion to (2.12):

Tb = aSb + b+ czb (2.22)

where zb is the elevation of the ice-ocean interface relative to sea level. The local

freezing relation is linked with the balance of heat and salt fluxes between the ice

and ocean (Jenkins and Bombosch, 1995; McPhee, 2008):

m′L+m′c0(Tb − T∞) = c0γTu∞(T∞ − Tb) (2.23)

m′Sb = γSu∞(S∞ − Sb) (2.24)

where cI = 2009 J kg−1 ◦C−1 is the specific heat capacity of ice, m′ the melting

freshwater flux velocity of the ocean in the direction normal to the ice-ocean inter-

face, TI = −25 ◦ C the far-field internal temperature of ice, T∞ the far field ocean

temperature, S∞ the far field ocean salinity and u∞ the speed of ocean flow oriented

parallel to the ice shelf in the far field, which is taken to be the source of turbulence

that drives the mixing of heat and salt towards the ice. The melt rate of ice is

defined as m = m′ρw
ρi

. The resulting heat (FH) and salt (SH) fluxes to the ocean are

calculated according to Jenkins et al. (2001).

FH = c0(γTu∞ +m)(T∞ − Tb) (2.25)
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FS = (γSu∞ +m)(S∞ − Sb) (2.26)

The three unknowns, Tb, Sb, and m, are solved by combining (2.22)–(2.3) to produce

a quadratic equation. Similarly to (2.18), one solution of Sb is positive definite. This

approach is applied to calculate a melt rate on any element boundary surface that

is defined to be ice. A negative melt rate in this case represents direct freezing.



3 Modelling ice-ocean interaction

in idealised ice shelf basal

crevasses

3.1 Overview

This chapter shows how the model described in Chapter 2 has been used to study

ice-ocean interactions and ocean dynamics in ice shelf basal crevasses. The particular

model set-up of the model described in Chapter 2 is described, and then validated

by a comparison with observational data. A sensitivity study is then undertaken

around this validated baseline case. As the model is validated against a rectangular

crevasse the effect of varying the geometry to represent a triangular crevasse is then

discussed. Finally, work looking at whether the ocean can be solely responsible

for the observed widening of crevasses as they propagate towards the calving front

is presented. Most of the work in this chapter has been published in Journal of

Geophysical Research: Oceans as Jordan et al. (2014).

53
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3.2 Model set-up

As there is no observational data of oceanic conditions inside an ice shelf basal

crevasse it has been decided to calibrate the model against the only set of comparable

data available, namely the observations of the Jutulgryta rift made by Orheim et al.

(1990). A rift differs from a crevasse in that it extends through the entire ice shelf

thickness unlike a crevasse which only extends part of the way, whether from the

surface or the base. In the case of the Jutulgryta rift, however, a mélange of ice

roughly 40 m thick had formed in the top of the rift, effectively ‘capping’ it and

making it resemble a crevasse.

The model domain has been chosen to represent the dimensions of the Jutulgryta

rift. The domain is a two-dimensional rectangular channel 5 km long in the stream-

wise (x) and 100 m in the vertical (z) directions, representing a section of the

cavity beneath an ice shelf (Fig. 3.1). The upper surface is considered glacial ice

and the bottom seabed. A single, idealised rectangular basal crevasse 260 m wide

by 340 m deep is placed in the middle of the ice shelf, making the water column

thickness 440 m at its thickest. By using a finite-element ocean model the grid

resolution can be increased in areas of interest while maintaining a coarser resolution

elsewhere, reducing the computational expense. As such, mesh resolution is 20 m

except in the crevasse, where a higher resolution of 5 m has been used. A timestep

of 5 s was used in all simulations in order to obtain a Courant number < 1. An

inflow enters the domain from the upstream side (left, x=0) under steady Dirichlet

boundary conditions (w = 0, u = Uin, T = Tin, S = Sin and C = 0) and leaves via

the downstream side (right, x=5 km) with zero-flux Neumann boundary conditions

(∂u
∂x

= ∂w
∂x

= ∂T
∂x

= ∂S
∂x

= ∂C
∂x

= 0). No-slip boundary conditions are weakly applied

in discretised space (allowing the existence of a boundary layer) at the ice shelf

boundary and the seabed. Zero-flux conditions for heat, salt and frazil are applied



3.2 Model set-up 55

at the seabed.

3.2.1 Model calibration

The model has been calibrated to reproduce the observed temperature and salinity

profiles and freezing rate within the Jutulgryta rift. Reproducing the observed 60 m

of supercooling and ∼ 1 m yr−1 freezing rate observed by Orheim et al. (1990) was

given priority, as conditions within the rift are of more interest to this study than

conditions outside the rift. In keeping with these observations, a constant initial

temperature and salinity of -1.965 ◦ C and 34.34 psu has been used, with a constant

0.025 m s−1 inflow velocity with the same temperature and salinity as the initial

conditions. This water mass crosses the freezing temperature at 60 m from the the

top of the crevasse. A frazil crystal radii of 0.75 mm has been used as the single

representative size class for the frazil ice model described in Chapter 2.

When compared with observations (Fig. 3.2) it is possible to obtain a matching

‘calibration’ temperature profile within the rift, including the 60 m of supercooled

water at the top. The salinity profile is a good fit over the majority of the crevasse,

except for the failure to reproduce the slight freshening observed at the top of the

crevasse. This could be a result of the model imposing a distinct boundary at the ice-

ocean interface at the top of the crevasse, whereas in reality there is a continuum

between ocean, ice and a mixture of the two. The model cannot reproduce the

conditions observed outside the rift, below about 300 m, which are governed by the

general circulation in the Fimbulsen cavity (Hattermann et al., 2012). The ocean

modelled freezing rate was found to be 1.2 m yr−1 at the top of this profile, which

compares favourably with the observed ice growth rate of 2 m after 2 years in their

single profile. However, as shown by the results below, salinity and temperature

within the modelled rift are not horizontally uniform, and so there will always be
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a considerable uncertainty in the calibration. Fig. 3.2 also shows a ‘comparison’

profile from near the upstream boundary in the rift, and it is clear that in this

location the supercooling has been taken up to a greater extent by frazil ice growth.

At the top of this profile there is a correspondingly larger freezing (of 16 m yr−1).

Since there are only observational measurements at a single location within the rift,

the strongest calibration it is possible to perform is to match the behaviour of one

location in the model. The evolution over time of maximum frazil ice production,

maximum supercooling, maximum velocity magnitude and maximum ice shelf melt

rate are shown in Fig. 3.3. It is immediately apparent that freezing within a crevasse

creates an inherently complex, chaotic system in this model. Due to the lack of any

observable long term trends after the initial few days of model run time it has

been assumed that averaging results over the two week period following day 10 will

provide representative results of the system. This calibrated set-up has been used

as a baseline case for a variety of sensitivity studies.
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Figure 3.1: Model mesh. Resolution varies from 5 m inside the basal crevasse to 20 m
outside. A flow past the crevasse is imposed from left to right.

Figure 3.2: Model calibration. The modelled calibration profiles of salinity and tem-
perature are shown in black, with comparison profiles shown in green and
observations shown in red (Orheim et al., 1990; Khazendar and Jenkins,
2003). The freezing point of the inflow water is shown in blue.
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Figure 3.3: (a) Maximum frazil ice production, (b) maximum supercooling, (c) maximum
velocity magnitude in the crevasse and (d) maximum ice shelf melt rate for
the baseline/calibration case.
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3.3 Base case

To provide a general overview, Fig. 3.4 shows the density in the base case and a

schematic illustration of the oceanic flow field. Flow enters from the left and is

sufficiently warm to melt the base of the ice shelf outside the crevasse. Melting of

the ice shelf provides a source of relatively cool and fresh meltwater which is less

dense than the surrounding water. The meltwater rises up into the basal crevasse on

its downstream side until, roughly 60 m from the top by construction, it reaches its

freezing point and becomes supercooled. This supercooling leads to frazil ice forma-

tion within the water column, but not quickly enough to remove all the supercooling,

so the supercooled water continues rising to the top of the crevasse, aided by the

buoyancy of the frazil ice. Direct freezing occurs on the top and upper sides of the

crevasse. Freezing, both direct and through frazil ice production, creates relatively

warmer and saltier water by the release of latent heat and freshwater extraction.

Some frazil ice accretes to the ice shelf base, so the water left behind is denser than

the water below it, creating an overturning circulation within the entire crevasse

that is inherently statically unstable. The dense water descends down the upstream

side of the crevasse and is then partially vented into the passing flow.

A closer inspection of the model results (Fig. 3.5) shows that the time-averaged

velocity of the circulation is greater than the inflow velocity, leading to greater rates

of melting and freezing within the crevasse than outside it. The passing flow beneath

the crevasse forces the overturning circulation to move in an anticlockwise direction

(Fig. 3.5a), with colder meltwater rising up on the downstream side, freezing at

the top and then returning warmer on the upstream side (Fig. 3.5a,b). Fig. 3.5b

shows contours of thermal driving T ∗ = T − (aS+ b+ cz), which represent the local

potential to freeze or melt ice (where the quantity in parenthesis is the local freezing

temperature). The thermal driving field leads to maximum frazil ice formation
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on the upstream side of the supercooled upper region (Fig. 3.5c), as the frazil

crystals multiply in the horizontal flow across the crevasse (Fig. 3.5a).This causes

a significant lateral variation in the rate of ice deposition at the top of the crevasse,

which accounts for the variation in model calibration results (Fig. 3.2). This can be

seen in Fig. 3.5d, which shows the effect the calculated melt/freeze rate would have

on crevasse geometry if maintained for 5 years (geometry changes not included in

model). This freezing is dominated by frazil ice, as shown in Table 3.1. Ice is also

directly melted on the lower half of the crevasse sides, and re-frozen higher up on

the sides and at the top. This secondary effect would create a widening at the base

of the crevasse and narrowing at the top, as predicted by Khazendar and Jenkins

(2003), however the slight widening of the crevasse by direct melting is much less

than the amount of frazil ice deposition at the top of the crevasse.
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Figure 3.4: Overview of ocean dynamics for the whole domain in the baseline case. Flow
enters from the left and leaves via the right. Meltwater rises into the crevasse
and freezes on the top, creating a cold and saline dense layer. This dense
layer enhances the overturning circulation within the crevasse.
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Figure 3.5: Baseline case showing (a) time-averaged mean density with mean velocity
vectors, (b) mean temperature (colours) with mean thermal driving (con-
tours), (c) mean frazil crystal production and (d) change in crevasse geome-
try as a result of mean melt rate maintained for 5 years with the position of
the calibration and comparison profile shown in black and green respectively.
The white contour in panel b is at zero thermal driving while black contours
are every 0.1 degree above and black dashed contours are every 0.01 degree
below this point. The pressure dependent freezing point (FP) of the water
properties used for initial and inflow conditions is also shown.
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3.4 Sensitivity study

To gain a qualitative understanding of ocean processes and melting and freezing in

ice-shelf crevasses, the effects of varying ocean temperature, inflow velocity, crystal

radius and crevasse geometry have been investigated in a set of sensitivity simula-

tions. Specifically, these simulations have five different inflow and initial tempera-

tures (T1 = -1.89 ◦ C, T2 = -1.93 ◦ C, T3 = -1.965 ◦ C (baseline), T4 = -1.99 ◦

C and T5 = -2.02 ◦ C), five different inflow velocities (U01 = 0.01 m s−1, U025 =

0.025 m s−1 (baseline), U05 = 0.05 m s−1, U10 = 0.1 m s−1 and U20= 0.20 m s−1),

seven different mean crystal radii (R025 = 0.25 mm, R065 = 0.65 mm, R070 = 0.7

mm, R075 = 0.75 mm (baseline), R080 = 0.8 mm, R085 = 0.85 mm and R150 =

1.5 mm), and five different crevasse geometries (260 m by 340 m (baseline), 260 m

by 170 m, 130 m by 340 m, 260 m by 130 m crevasse with the cavity beneath the

crevasse extended to 200 m and a triangular crevasse 340 m at the base and 240

m in height). Simulations without the frazil ice and/or direct melting and freezing

were also performed. The pressure-decrease in the freezing temperature means that

supercooling increases with height above seabed, so the temperature sensitivities

were chosen to place the initial freezing point 20 m above the crevasse top (T1, i.e.

no supercooling), 20 m below the crevasse top (T2), 60 m below the crevasse top

(T3, baseline), 100 m below the crevasse top (T4) and 140 m below the crevasse top

(T5) respectively. All settings except the one under investigation are held constant

at their baseline values.

3.4.1 Temperature variation

In cases warmer than the baseline (Fig. 3.6a,b), there is less or no frazil and dense

water production, so the circulation in the crevasse is primarily driven by meltwater

as opposed to rejected brine. This leads to the buoyant meltwater rising up into the
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Table 3.1: Average freezing rate and frazil ice contribution to freezing rate for the base-
line, T2 (warmer than baseline), T3 (colder than baseline), R025 (smaller radii
than baseline, R150 (larger radii than baseline). Freezing rates are spatially
averaged over the top of the crevasse.

Run Average freezing rate (m/a) Frazil ice percentage contribution
Baseline 8.32 97.8

T2 (warm) 0.05 1.7
T4 (cold) 31.8 99.7

F025 (small crystal radii) 5.81 99.9
F150 (large crystal radii) 0.06 3.3

crevasse on the upstream side before leaving on the downstream. A simulation colder

than the baseline has a greater amount of frazil growth within the crevasse and less

melting outside (Fig. 3.6d). This leads to a greater production of dense water at

the top of the crevasse and a faster and less stable overturning circulation. When

there is significant frazil ice production in the crevasse the density of the water-ice

mixture at the very top of the crevasse falls overall, even though the density of the

water fraction has increased due to the greater salinity. In freezing dominated cases,

such as T3 and T4, frazil ice precipitation has a higher proportion of the freezing

rate than direct freezing (Table 3.1).

Warmer cases (Fig. 3.7a, b) have flatter thermal driving contours than the baseline

case (Fig. 3.7c). At these temperatures the circulation is driven by meltwater rather

than dense rejected brine, and this can be seen by the presence of slightly cooler

meltwater along the sides and top of the crevasse. In the colder case (Fig. 3.7d)

the contours are sloped, with colder water rising up the downstream side of the

crevasse. The warmer, dense water produced by freezing can be seen descending

down the upstream side. Significant amounts of supercooled water are in contact

with the ice high up the downstream side and at the top of the crevasse, leading to

freezing there (Fig. 3.8a). In melt dominated cases, such as T2, a higher proportion

of the freeze rate results from direct freezing than deposition of frazil ice (Table 3.1).
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Table 3.2: The effect of far field temperature on freeze rate.

Far field temperature (◦ C) Average freeze rate (m/yr)
-1.93 0.9
-1.96 6.7
-1.99 25.3
-2.02 47.2

The results of an ocean-temperature sensitivity study show a nonlinear relationship

between the ‘far-field’ temperature and the overall freezing rate (Table 3.2). The

freezing rate for the coldest cases is so large, several tens of metres per year, that

any crevasse with this amount of supercooled water will quickly fill in with marine

ice and thus limit the amount of supercooling present. As such it would be highly

unlikely for a crevasse to have much more than the observed 60 m of supercooling.

This could also explain the rapid initial decrease in crevasse depth as they propagate

towards the calving front seen by Luckman et al. (2012), assuming that the thermal

driving is roughly laterally uniform in space. This sensitivity to temperature change

is highly asymmetric, with a very small cooling filling a crevasse with marine ice,

but a reversal of that cooling would take decades to melt the marine ice.

3.4.2 Velocity variation

Greater inflow velocities were found to create a stronger overturning circulation

within the crevasse, due to the increased meltwater supply from outside the crevasse

and the shear of the flow past the crevasse bottom. While the freezing rate generally

increases with velocity, the overall magnitude remains largely the same (Fig. 3.8b).

As the freezing rate is dominated by frazil ice production rather than direct freezing

the velocity-driven increase in direct freezing is weak. The circulation in the crevasse

is buoyancy driven, and while increasing the inflow velocity does increase melting

outside the crevasse, and therefore the buoyancy, this has little effect on the flow in
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the crevasse.

3.4.3 Frazil crystal size variation

Even with no freezing or melting in the model at all there is still a circulation driven

by the shear past the crevasse (Fig. 3.9a), although this circulation is an order of

magnitude slower than the inflow velocity and is negligible when compared with the

baseline case (Fig. 3.9d). When only direct melting and freezing are used (Fig.

3.9b) the crevasse hosts a large amount of supercooled water, as direct freezing is

too slow to quench the supercooling (Fig. 3.10a). As only a small amount of freezing

is occurring a similar melt-driven flow pattern as with warmer temperatures (Fig.

3.9b) is observed, with only a hint of the brine-driven recirculation.

When frazil melting and freezing is activated, varying the size of frazil crystals

dramatically changes the rate at which supercooling is quenched in the crevasse,

and hence the amount of dense water production. Smaller crystals freeze faster

due to their larger surface area per unit volume. For extremely small crystals, this

has the effect of removing virtually all supercooling from the water column (Fig.

3.10b, r = 0.25 mm). Crucially, however, the smaller crystals have a very low rising

velocity, so they remain in suspension and lower the density of the mixture (Fig.

3.9c). Larger crystals form at a slower rate, and so more supercooling is present in

the crevasse; thermal driving contours are flat, and resemble the no-frazil case (Fig.

3.10d, r = 1.5 mm). Brine production slows down and the circulation returns to the

meltwater-driven flow seen in other cases with low freezing rates.

It is important to note that the frazil radii used in Figures 3.9 and 3.10 are at the

extreme ends of the range of radii observed in laboratory experiments (Ye et al.,

2004; Clark and Doering , 2006; McFarlane et al., 2014) and are shown for illustrative

purposes only. The model requires a single representative crystal radius, and these
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extreme values will never be representative of the entire frazil population. When

the frazil crystal radius is varied by a smaller amount around the baseline value the

general, asymmetric pattern of freezing remains the same, although with a flattening

of the spatial distribution (Fig. 3.8c). With smaller radii frazil ice is produced

quicker, increasing deposition on the downstream side, whilst the slower forming

larger radii deposit less on the upstream side. Once again, the freezing rate in

freeze-dominated cases (low to medium crystal radii) is dominated by frazil ice

precipitation, whilst melt-driven cases (high crystal radii) are dominated by direct

freezing (Table 3.1).

3.4.4 Crevasse geometry variation

If the width of the crevasse is larger than its height the crevasse is sufficiently shallow

that it is not permitted to generate its own independent circulation (Fig. 3.11a).

If the crevasse is much taller than its width, several counter-rotating circulations

can form on top of each other (Fig. 3.11b). Extending the depth of the cavity

below the ice shelf (Fig. 3.11c) has little effect on the qualitative nature of the

flow field. A triangular shaped crevasse (Fig. 3.11d) sees a weaker freeze-driven

overturning circulation, due to the narrowing of the crevasse reducing the total

amount of supercooled water present at the top of the crevasse. Triangular shaped

crevasses are discussed in more depth in the next section.
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Figure 3.6: Mean density with mean velocity vectors for the inflow temperatures (a) T1,
(b) T2, (c) T3 (baseline) and (d) T4. The pressure dependent freezing point
(FP) of the four different inflow temperatures is also shown.
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Figure 3.7: Mean temperature (colours) with thermal driving (contours) for the inflow
temperatures (a) T1, (b) T2, (c) T3 and (d) T4. The white contour is at
thermal driving equal to 0, while black contours are every 0.1 degree above
and black dashed contours are every 0.01 degree below this point.
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Figure 3.8: Change in crevasse geometry as a result of averaged melt rate maintained for
10 years for (a) temperature variation of inflow water, (b) velocity variation
of inflow water, (c) variation in frazil crystal radii and (d) effect of no frazil
component in the model. An increase in crevasse size represents melting
whilst a decrease represents freezing.
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Figure 3.9: Time averaged mean density with time averaged mean velocity vectors for
(a) the no-melting case, (b) the no-frazil case, (c) R025, (d) R075 (baseline)
and (e) R150.



3.4 Sensitivity study 72

Figure 3.10: Mean temperature (colours) with thermal driving (contours) for (a) the
no-frazil case, (b) R025, (c) R075 (baseline), (d) R150. The white contour
is at thermal driving equal to 0, while black contours are every 0.1 degree
above and black dashed contours are every 0.01 degree below this point.



3.4 Sensitivity study 73

Figure 3.11: Mean density with mean velocity vectors for different crevasse geometries
(a) 260 m wide and 170 m deep, (b) 130 m wide and 340 m deep, (c) cavity
extended to 200 m deep and (d) cavity extended to 500 m deep.
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3.5 Triangular crevasses

Observations of basal crevasses find that they tend to be triangular in nature rather

than the rectangular ‘rift’ case the model has been calibrated against (McGrath

et al., 2012b). As such the results from Fig. 3.11 are expanded upon here with a

comparison to the baseline case (Fig. 3.5). While the results are initially similar

they are some differences that arise from the fact that the triangular shape of the

crevasse limits the total amount of supercooled water present when compared to

the rectangular crevasse. The circulation within the crevasse is still present, but

is slower due to the reduced amount of dense water formation resulting from the

limited amount of supercooled water present (Fig. 3.12a). The direction of the

circulation is opposite to the baseline case, rising on the upstream side and falling

on the downstream side. This is again due to the limited amount of supercooled

water, making the baseline triangular case more resemble the melting dominated

rectangular cases. Another consequence of the relatively smaller amount of super-

cooling present is that, unlike the rectangular case, the contours of equal thermal

driving are not sloped but are nearly level (Fig. 3.12b). Frazil ice is concentrated on

the top of the downstream side of the crevasse (Fig. 3.12c), which has the effect of

concentrating freezing in the same location (Fig. 3.12d). The asymmetrical freeze

pattern seen in the rectangular case is not seen here and the crevasse top fills in

rapidly.

3.5.1 Long term ocean stabilisation of crevasses

Basal crevasses also have a tendency to widen as they propagate towards the calving

front (McGrath et al., 2012b), though it is unclear whether this is a result of melting

within the crevasse or ice shelf dynamics. To investigate whether ocean driven

melting of a crevasse could be responsible for their widening a comparison is made
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between the averaged melt rate inside the crevasse normal to the crevasse wall and

the averaged melt rate outside the crevasse. This ‘melt ratio’ is defined as being

the ratio of the melting inside the crevasse to the melting outside the crevasse in an

area 1000 m either side of the crevasse (Fig. 3.13). A melt ratio of > 1 represents a

crevasse that is melting faster than surrounding ice (thus growing), a ratio < 1 but

> 0 represents a crevasse that is melting quicker outside the crevasse than inside,

whilst a negative melt ratio represents a crevasse that is freezing. Model simulations

are run to determine the effect of varying ocean temperature, inflow velocity, crevasse

depth and crevasse width.

Parameters are varied around a baseline case with inflow velocity at 0.025 m s−1

and water temperature at 1◦C. The crevasse is triangular in shape with a depth and

width of 300 m. All parameters except the one under investigation are held constant.

In the temperature varying cases we could not determine any temperature where

the crevasse is widening (Table 3.3). As the temperature increases the melt ratio is

increasing towards the critical value of 1 but it never exceeds 1 and in any case these

temperatures are far warmer than those observed under cold water ice shelves, such

as Larsen C, where crevasses have been observed. By increasing the inflow velocity

the melt ratio is reduced, as the crevasse fills with stagnant melt water which in

turn reduces the velocity which drives the crevasse melt rate. Varying the depth

(Table 3.5) and width of the crevasse (Table 3.6) has virtually no effect upon melt

ratio.

Combined with the earlier results this means that the ocean can not be solely respon-

sible for the observed widening of crevasses. For the ocean to be solely responsible

for the widening of crevasse than one of two things needs to occur; either the area

inside the crevasse must melt faster than the crevasse itself or the area outside the

crevasse must freeze quicker than the crevasse. The former does not happen because

in warm cases the crevasse fills with stagnant meltwater, limiting the flow within
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Table 3.3: The effect of temperature variation on melt ratio.

Temperature (◦C) Melt ratio
-2 -0.53
-1 0.25
0 0.41
1 0.58
2 0.68
3 0.73

Table 3.4: The effect of inflow velocity variation on melt ratio.

Inflow velocity (m s−1) Melt ratio
0.025 0.58
0.05 0.13
0.01 0.06
0.015 0.04

the crevasse. The latter does not occur because in cold cases the depth dependency

of freezing will always result in more freezing higher up in the crevasse than outside.

As crevasses are a common feature on the undersides of ice shelves there must be

some ice-dynamical mechanism responsible for maintaining crevasses in the face of

melt-driven erosion or marine-ice filling.

Table 3.5: The effect of crevasse depth on melt ratio.

Depth (m) Melt ratio
300 0.58
100 0.57
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Table 3.6: The effect of crevasse width on melt ratio.

Width (m) Melt ratio
100 0.59
200 0.58
300 0.58

Figure 3.12: Triangular crevasse with the same set up parameters as the baseline case
showing (a) time-averaged mean density with mean velocity vectors, (b)
mean temperature (colours) with mean thermal driving (contours), (c)
mean frazil crystal production and (d) change in crevasse geometry as a
result of mean melt rate maintained for 5 years. The white contour in
panel b is at zero thermal driving while black contours are every 0.1 degree
above and black dashed contours are every 0.01 degree below this point.
The pressure dependent freezing point (FP) of the water properties used
for initial and inflow conditions is also shown.



3.5 Triangular crevasses 78

A A 

B B 

Melt ratio = A 
                      B 

Figure 3.13: Definition of melt ratio. The melt ratio is equal to the mean melt rate of
the inside walls of the crevasse in the direction perpendicular to the wall
(A) divided by the mean melt rate of the outside the of the crevasse (B).
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3.6 Conclusions

Fluidity has been used to study the circulation and ice-ocean interaction in an

idealised, two-dimensional ice shelf basal crevasse. The following conclusions are

drawn:

1. Circulation within a crevasse is highly dependent upon the amount of freezing.

Two different circulation patterns are found, one freeze dominated and one melt-

dominated. In the first an unstable overturning circulation is formed due to dense

water formation at the top of the crevasse, whilst in the second a stable melt water

layer is formed along the sides and top of the crevasse. Which circulation is present

is determined by the amount of freezing taking place in the crevasse, with the melt-

driven circulation for low amounts of freezing and the freezing-driven case otherwise.

In the absence of melting and freezing there is essentially no flow in the crevasse.

2. Frazil ice precipitation is the dominant factor in the freeze rate within basal

crevasses, providing roughly 99% of the freeze rate in the baseline case. At lower

amounts of supercooling direct freezing becomes more important, although frazil

ice precipitation is still the prime means of freezing. Frazil ice formation is largely

determined by ocean temperature and crystal radius, with higher ocean velocities

providing only a small increase in freezing. Future modelling studies of ice shelves

with basal crevasses therefore need to be aware of the crucial role played by frazil

ice.

3. Freezing in the crevasse is primarily dependent upon the temperature of the

inflow water and the chosen size of the model’s ‘representative’ frazil crystal radius,

with inflow velocity having a much smaller effect. Use of a multiple size class frazil

model would reduce the dependency on frazil crystal radius, and would be a logical

first step for future model improvements. There is a nonlinear relationship between
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inflow temperature and freezing rate, with temperatures 0.03 ◦ C colder than the

baseline case quickly approaching freezing rates of 50 m a year. As such, it is

considered highly unlikely that much more than 60 m of supercooling would be

present in a basal crevasse, as otherwise it would quickly fill with marine ice. The

rapid freezing permitted by frazil ice creates a strong asymmetry where crevasses

can fill with marine ice after a cooling far more rapidly then the marine ice would

be eroded after a similar warming.

4. Oceanic forcing can not be solely responsible for widening of basal crevasse. For

this to happen the ice shelf outside the crevasse must either melt at a slower rate or

freeze at a faster rate when compared to the inside of the crevasse. This does not

happen due to stagnant meltwater restricting flow in a crevasse in the former and

the pressure dependency of freezing in the latter.

Freezing in ice shelf crevasses provides a strong stabilising influence on ice shelves

underlain by cold water that is not found elsewhere, and frazil ice deposition is the

dominant means by which this occurs.



4 The conditional instability of

frazil ice in seawater

4.1 Overview

This chapter is an investigation into the conditional instability of frazil ice growth in

seawater, and the majority of the work presented in this chapter has been published

in Journal of Physical Oceanography as Jordan et al. (2015). It has been suggested

that the presence of frazil ice can lead to a conditional instability in seawater. Any

frazil forming in the water column reduces the bulk density of a parcel of frazil-

seawater mixture, causing it to rise. Due to the pressure-decrease in the freezing

point, this causes more frazil to form, causing the parcel to accelerate, and so on.

Frazil ice formation requires a ”seed” (another frazil ice crystal, grain of sediment,

etc.) for nucleation to occur. Throughout this work such seeds are assumed to

be always present, allowing nucleation to occur anywhere water is below its local

freezing point. The model set up described in Chapter 2 is used to examine how

this system evolves over time, focusing on the density perturbation expressed as

an initial frazil ice concentration. The model is then used to investigate frazil ice

growth in a scenario representing an ISW outflow from beneath an ice shelf. Finally,

the conclusions that can can be drawn from this work are summarised.

81
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4.2 Numerical modelling of an idealised

instability

4.2.1 Model setup

ISW plumes are a mixture of frazil ice and a freshwater anomaly. This leads to a

density perturbation comprised of the two, with the frazil ice instability enhancing

the underlying convection where present. It is this combination of a frazil and

freshwater anomaly density perturbation that is being investigated in this section.

This is done by using the model described in Chapter 2.

To investigate the full conditional instability of frazil ice growth a simple, two-

dimensional box model 400 m deep by 200 m wide, with a 5 m mesh resolution

throughout is used. Unlike in the previous section, the water has a vertically uniform

initial thermal driving T ∗ = T ∗in except within the bottom 20 m, which has T ∗ =

0. A constant initial density gradient ∂ρ
∂z in

is imposed by salinity. The vertical

uniform thermal driving and density gradient are a simplification for the idealised

experiment; observations near ice shelves during frazil ice formation generally show

depth varying thermal driving and density gradients (e.g. Mahoney et al., 2011). The

bottom 20 m has an initial concentration of frazil ice Cin, while the rest is ice-free.

Zero-flux Neumann boundary conditions for scalars and no-slip boundary conditions

for velocity are applied in discretised space (‘weakly applied’) at all boundaries

except for frazil at the top boundary, which is allowed to deposit (Jordan et al.,

2014). As in the previous chapter a time step of 5 s has been used.

The baseline case has Cin = 10−3, T ∗in = 10−1 ◦C, ∂ρ
∂z in

= −10−5 kg m−4, frazil

crystal radius r=0.75 mm and diffusivity K of 10−3 m2 s−1 (Fig. 4.1). A sensitivity

study around this baseline was carried out for a range of thermal drivings (T ∗in=10−2
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to 1 ◦C), density gradients (∂ρ
∂z in

= −10−3 to −10−6 kg m−4), frazil crystal radii

(r=0.25 and 1.25 mm), diffusivities/viscosities (K=10−1 and 10−5 m2 s−1) and initial

frazil ice concentrations (Cin=2× 10−3 and 5× 10−4). For the sensitivity study all

parameters except the one under investigation are held at their baseline value. In

the baseline case the frazil concentration reached a maximum after 12 hours and so

model runs in the sensitivity study were carried out for this time. At the end of

a run the total amount of frazil ice suspended in the water column and deposited

on the top boundary is recorded. A stable case is deemed to be one where there is

no frazil ice at the end of the run, while an unstable case one in which frazil ice is

present.
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Figure 4.1: Idealised non-hydrostatic ocean model setup. Initial profiles for the baseline
case (T ∗in=10−1 ◦C, ∂ρ

∂z in
= −10−5 kg m−4, Cin = 10−3, r = 0.75 mm and

K = 10−3 m2 s−1) of (a) T (black) and TF (blue), (b) S and (c) C.
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ISW plumes in nature are a mixture of a freshwater anomaly and frazil ice. For

simplicity the freshwater perturbation is not provided explicitly in the simulations,

but this perturbation is implicitly present in the choice of frazil perturbation Cin. In

the setup, if the frazil melts then the meltwater drives a conventional gravitational

instability, which may or may not then be assisted by frazil regrowth. Due to the

role of a freshwater anomaly this is a ‘mixed’ instability. The effect of this choice is

investigated by also manufacturing a ‘pure’ frazil instability by salt-compensating

the initial frazil concentration such that if all the frazil were to melt instantaneously,

there would be no initial density perturbation.

4.2.2 Results

The evolution of the instability in the base case is shown in Fig. 4.2. The ini-

tial density perturbation (defined as ρin, the initial density, minus ρ, the density

of the ice-seawater mixture) coalesces into separate ‘blooms’ which merge as they

rise. The maximum local density perturbation decreases in strength from around

t = 900 s until it recovers at around t=4500 s, which is associated with a decline

and re-establishment of the frazil. The density perturbation is largely manifested

as a freshwater anomaly perturbation during t = 1800 − 3600 s. The interplay be-

tween density, thermal driving and frazil ice concentration allows the growth of the

instability, even if it is only manifested in frazil after t = 4500 s. The largest density

perturbations are caused by frazil ice, as illustrated by the density perturbation

being present even when there is a positive salinity anomaly (e.g. t = 5400 s).
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Figure 4.2: Results of the idealised non-hydrostatic ocean model setup. The instability
for the unstable baseline case (T ∗in=10−1 ◦C, ∂ρ

∂z in
= −10−5 kg m−4, Cin =

10−3, r = 0.75 mm and K = 10−3 m2 s−1) in terms of (a) density relative to
initial density, (b) thermal driving, (c) salinity relative to initial salinity and
(d) frazil ice concentration.
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The instability can be suppressed in a number of ways (Fig. 4.3). These stable cases

initially progress similarly to the unstable case (Fig. 4.3a), but following the initial

melting of the frazil ice the density perturbation never re-establishes itself. In the

stratification-limited case, the perturbation does not rise fast enough to overcome

the frazil melting given by the thermal driving (Fig. 4.3b). In the thermally-

limited case the thermal driving is too strong to be overcome by freezing-temperature

change even if the parcel is rising relatively quickly (Fig. 4.3c). The increased

temperature also reduces the relative magnitude of the initial density perturbation.

Warming decreases the initial density perturbation because the bottom 20 m is

held at the freezing temperature while the rest of the domain is warmed. In this

particular case the frazil-seawater mixture is lighter than the warmer water, but

the equivalent freshwater anomaly is not, so once the ice melts the instability is

suppressed (see below). In the mixing-limited case the perturbation follows the

evolution of the stable case initially but the density anomaly decreases because the

background mixing erodes the negative density anomaly faster than it can rise (Fig.

4.3d).

This section considers a combined frazil-freshwater anomaly ice instability. To il-

lustrate the role of frazil, a ‘pure’ frazil instability can be simulated by setting an

initial salt perturbation in the bottom 20 m of the model domain that precisely

offsets the freshwater anomaly input that would arise from the melting of the initial

frazil ice. In this case the density anomaly driving the instability is purely from

frazil ice growth, and the instability does not cause increased frazil ice (Fig. 4.3e).

Therefore it is concluded that in the baseline case the frazil is actually assisting an

underlying gravitational instability.
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Figure 4.3: Results of the idealised non-hydrostatic ocean model setup. Panels show the
density relative to the initial density of (a) the baseline case (T ∗in=10−1 ◦C,
∂ρ
∂z in

= −10−5 kg m−4, Cin = 10−3, r = 0.75 mm and K = 10−3 m2 s−1) and

also cases for which the instability is limited by (b) stratification (∂ρ∂z in =
−10−3), (c) thermal driving (T ∗in=1◦C), (d) background mixing (K = 10−1

m2 s−1) and (e) salinity compensated case where the salinity in the bottom
20 m has been increased by an amount equal to melting the initial frazil ice
concentration. Note the different time axes.
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The thermal stabilisation of the baseline case (Fig. 4.3c) is a result of the combina-

tion of warming prohibiting frazil ice formation and also reducing the initial density

perturbation. If the density difference caused by the warming is compensated by

a freshening in the bottom 20 m, pure thermal suppression of the frazil instability

can be shown (Fig. 4.4). In contrast to the baseline case the density perturbation

does not grow in size, but reduces in magnitude as the water rises (Fig. 4.4a). The

density perturbation does not rise fast enough to overcome the warming and never

freezes (Fig. 4.4b). The density perturbation in this particular case is driven solely

by a freshwater anomaly, as can be seen in the negative salinity anomaly (Fig.4.4c)

and lack of frazil ice (Fig. 4.4d). This case is gravitationally unstable, but the

growth of frazil ice is stabilised by the thermal driving.
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Figure 4.4: Results of the idealised non-hydrostatic ocean model setup. The instability
for the purely thermally stable case (T ∗in=1◦C, ∂ρ∂z in = −10−5 kg m−4, Cin =
10−3, r = 0.75 mm and K = 10−3 m2 s−1 with salinity in the bottom 20 m
reduced to compensate the 1◦C warming of the rest of the domain) in terms
of (a) density of the combined frazil-seawater mixture relative to the initial
density, (b) thermal driving, (c) salinity relative to initial salinity and (d)
frazil ice concentration.
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The effect of varying thermal driving and density gradient upon overall frazil ice

growth whilst initial frazil ice concentration, background mixing and frazil crystal

radius are held constant is shown in Fig. 4.5. The results are linearly interpolated

between the set of discrete runs marked in white, with the white contour showing

where the initial amount of frazil ice is the same as that at the end of the model run.

Significant instabilities are found forming in water that is initially above freezing.

Decreasing the density gradient much beyond ∂ρ
∂z in

= −10−3 kg m−4 or increasing

thermal driving beyond T ∗in=10−1 ◦C suppresses the instability, either by preventing

the parcel from rising or by preventing it from supercooling as it rises. The zone

of instability resembles the behaviour found in the linear stability analysis (Fig.

??a), though the results are not directly comparable due to the difference in the

background conditions as well as the time scales involved. In both cases there is a

zone of instability, dependent upon thermal driving, density gradient, initial frazil

concentration and frazil crystal radius. The exact area of the zone of instability for

thermal driving and density gradient will depend upon the values of initial frazil ice

concentration, background mixing and frazil crystal radius used. A greater initial

frazil ice concentration, for example, would promote the formation of the instability

by lowering the necessary values of thermal driving and background mixing for the

instability to be present. The general shape of the zone of instability, however,

remains the same.
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Figure 4.5: Total frazil ice at the end of the idealised non-hydrostatic ocean model sim-
ulation as a function of thermal driving and density gradient for Cin=10−3,
r=0.75 mm and K = 10−3 m2 s−1. Model runs were carried out for the 18
combinations of T ∗in and ∂ρ

∂z in
marked in white, with results linearly interpo-

lated between. The white contour shows where the initial frazil ice concentra-
tion is the same as the final frazil ice concentration (note logarithmic scale).
The final locations of the (a) the baseline, (b) the stratification-limited cases
and (c) the thermal-driving limited shown in Fig. 4.3 are marked.
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The sensitivity of the results to higher and lower temperatures (T ∗in = 1 ◦C, T ∗in =

10−2 ◦C), stratification (∂ρ
∂z in

= −10−3 kg m−4, ∂ρ
∂z in

= −10−6 kg m−4), frazil crystal

radius (r = 0.125 mm, r= 0.25 mm), background mixing (K =10−1 m2 s−1, K=10−5

m2 s−1), initial frazil concentration (Cin= 2×10−3, Cin= 5×10−2), frazil rise velocity

(wi = 0 m s−1) and the previously discussed ‘pure’ (salinity compensated) case is

shown in Fig. 4.6. The baseline case can be separated into two phases, the first

being an initial period of melting while the frazil ice is coalescing into a bloom (Fig

4.6a) and the second a period of freezing as the bloom rises (Fig. 4.6b).
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Figure 4.6: Evolution of total frazil ice in the idealised non-hydrostatic ocean model for
(a) the full 20000 s of the model run and (b) the first 2500 s. The baseline
case (T ∗in=10−1 ◦C, ∂ρ

∂z in
= −10−5 kg m−4, Cin = 10−3, r = 0.75 mm and

K = 10−3 m2 s−1) is shown, and the black dashed line shows the amount of
frazil ice at the start of the simulation. Also shown are the results of varying
higher and lower temperatures (T ∗in = 1 ◦C, T ∗in = 10−2 ◦C), stratification
(∂ρ∂z in = −10−3 kg m−4, ∂ρ

∂z in
= −10−6 kg m−4), frazil crystal radius (r =

0.125 mm, r= 0.25 mm), K (10−1 m2 s−1,10−5 m2 s−1) Cin, initial frazil
concentration (Cin= 2×10−3 and Cin= 5×10−2), salinity compensated case
(where salinity in the bottom 20 m has been increased to directly offset the
freshwater anomaly gained from melting the initial frazil ice concentration),
pure thermally stableaised case (where salinity in the bottom 20 m has been
reduced to off set the density change arise from the increase in thermal
driving of the rest of the domain) and frazil rise velocity (wi = 0 m s−1)
whilst keeping all other parameters at their baseline values.
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The results are highly sensitive to temperature, with lower values of T ∗in showing

a rapid increase of frazil ice with only a small fraction of the initial melting seen

in the baseline case. High T ∗in cases rapidly melt the frazil ice, both in the base-

line thermally stabilised case and the solely thermally stabilised case. Varying the

density stratification has little impact on the initial melting period, but it does

affect how quickly the frazil ice can rise and so impacts the freeze period. The

low-stratification case shows an increased rate of freezing during this period, whilst

the high-stratification case shows no freezing because the frazil-seawater mixture

is unable to rise. The frazil crystal radius affects the rate at which the individual

crystals freeze or melt, with larger crystals both melting and freezing slower than

the baseline case due to the decreased ratio of surface area to volume. This can be

seen in the delay of the onset of the freezing period, with the inverse true for the

smaller frazil crystal radii. Increasing the diffusivity makes it harder for the frazil

concentration to reach the critical volume needed for a buoyant bloom. Reducing the

diffusivity has little impact on the results. By reducing the initial frazil concentra-

tion, and thus reducing the perturbation, it is possible to shut down the instability

as there is less initial buoyancy forcing driving the frazil rising. Similarly, increasing

the initial concentration reduces the time needed for the instability to grow ice due

to the increase of the initial buoyancy forcing. In the salinity compensated case

the size of the initial density perturbation and buoyancy forcing has been reduced,

shutting down the instability in a similar way to the smaller initial concentration

case. Finally, by disabling the frazil rise velocity only a very slight increase in final

frazil ice is seen.
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4.3 Numerical modelling of an Ice Shelf Water

outflow

4.3.1 Model setup

Having investigated the combined frazil-freshwater anomaly instability in a simple

box model Fluidity is now used to consider the suspended frazil ice observed in

front of ice shelves in Antarctica. The area in front of an ice shelf is modelled by

means of a two-dimensional domain 400 m deep by 2500 m wide, with a 20 m mesh

resolution used throughout (Fig. 4.7). Ignoring the effects of rotation is justified

in that, assuming a typical ice shelf around Antarctica is at 700 South, the Rossby

radius of deformation is of the order of 3500 km. The water has a constant initial

thermal driving and a density gradient imposed by salinity. Diffusivities/viscosity of

K =10−3 m2 s−1 are used. The top 300 m of the left boundary represents the front

of an ice shelf with the bottom 100 m the cavity underneath. The right boundary

represents the ocean, the top boundary is the sea surface and the bottom boundary

is the sea bed. An inflow (Uin) enters the domain at the bottom of the left side (x=0)

under steady Dirichlet boundary conditions (u = Uin, w = 0, T ∗ = 0, S = Sin and

C = 0) and leaves via the bottom 100 m of the right side (x=2.5 km) with zero-flux

Neumann boundary conditions. By limiting the outflow to the bottom 100 m of the

water column it is ensured that rising water is caused solely by the frazil instability

as the inflow water leaves at the same depth at which it enters the domain. The

instability is ‘pure’ in the sense that there is no initial density anomaly, all frazil

ice within the model is generated by the instability. No-slip boundary conditions

are applied in discretised space (‘weakly applied’) at all other boundaries. Zero-flux

conditions for heat, salt and frazil are applied at the seabed, top and sides (excepting

the inflow and outflow regions). The one exception to this is that frazil is allowed



4.3 Numerical modelling of an Ice Shelf Water outflow 97

to deposit at the top and leave via the right hand boundary. The total amount of

frazil ice depositing on the top of the model domain is recorded after 24 hours of

simulation time.
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Figure 4.7: Schematic of non-hydrostatic ice-shelf model setup. An inflow enters the
domain from the bottom 100 m on the right-hand side and leaves via the
bottom 100 m on the right-hand side. The inflow water is at the freezing
temperature, whilst the rest of the domain has a constant thermal driving.
No frazil is present in the inflow or initial conditions.
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4.3.2 Results

The evolution of a frazil ice ‘bloom’ within the domain for the unstable baseline

case (T ∗in=10−2 ◦C, ∂ρ
∂z in

= −10−6 kg m−4, r = 0.75 mm, K = 10−3 m2 s−1 and

Uin = 0.05 m s−1) is shown in Fig. 4.8. As the inflow water is at the local freezing

temperature, any upwards motion will cause frazil ice to form, though whether this is

sufficient to create an instability depends on the factors previously discussed. Unlike

in the previous section the density perturbation is always dominated by frazil ice

due to the initial conditions; there is no period during which it is expressed as a

freshwater anomaly. The inflow causes a large amount of supercooling as it rises.

Once the ‘bloom’ of frazil ice begins at t = 13800 s there are corresponding areas

of descending, salty waters. As before, frazil concentration has a greater effect on

density than the salinity anomaly caused by freezing.
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Figure 4.8: Evolution of frazil ice growth in the non-hydrostatic ice shelf model for the
baseline case (T ∗in=10−2 ◦C, ∂ρ

∂z in
= −10−6 kg m−4, r = 0.75 mm and K =

10−3 m2 s−1) in terms of (a) density relative to initial density, (b) thermal
driving, (c) salinity relative to initial salinity and (d) frazil ice concentration.
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The dependence of mean frazil deposition on density gradient and thermal driv-

ing over the domain (whilst background mixing and frazil crystal radius are held

constant) is shown in Fig 4.9. There is a strong agreement with the earlier results

(Fig. 4.5), in that density gradients greater than ∂ρ
∂z in

= −10−3 kg m−4 and thermal

driving greater than T ∗in=10−1 ◦C will shut down the instability. The results are lin-

early interpolated between the set of discrete runs marked in white, with the white

contour showing the line of zero frazil deposition. As before the exact area of the

‘zone of instability’ will vary with the frazil crystal radius and background mixing,

but the general shape should remain the same. Mean frazil ice deposition at the sea

surface is of the order of 0.1 m/day, a highly significant amount compared to typical

growth rates of sea ice in winter.
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Figure 4.9: Results of the non-hydrostatic Ice Shelf Water model setup. Spatial mean
frazil ice deposition after 24 hours as a function of thermal driving and density
gradient for r = 0.75 mm and K = 10−3 m2 s−1. Model runs were carried
out for combinations of T ∗in and ∂ρ

∂z in
marked in white, with results linearly

interpolated between. The white contour shows the zero deposition contour.
The location of (a) the baseline case is shown.
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The baseline case is used for a sensitivity study, with all parameters except the one

under investigation held constant. Fig. 4.10 shows the total amount of frazil ice

deposited during 24 hours as a function of distance from the ice front and the effects

of varying thermal driving, diffusivities/ viscosity, density gradient, crystal radius,

inflow velocity and simulation run time. Higher temperatures cause a decrease in

the amounts of frazil deposited due to the increased frazil melt rate and, to a lesser

extent, by reducing the density of the ‘ambient’ and therefore stabilising the inflow.

At T ∗in = 1 ◦C there is no deposition of frazil ice (Fig. 4.10a). A higher value of K

has the effect of dispersing and smoothing the frazil deposition (Fig. 4.10b). Less

frazil deposits with a stronger stratification, as the frazil-seawater mixture rises at a

slower rate (Fig. 4.10c). A density gradient of −10−3 kg m−4 is sufficient to stop the

instability forming. By varying crystal radius it can be seen that smaller radii form

frazil at a much faster rate and so the pattern of deposition is skewed towards the

area just in front of the ice front (Fig. 4.10d). A larger radius results in noticeably

less deposition, at a greater distance, as the frazil crystals freeze at a slower rate

due to the increased surface area to volume ratio. This is in agreement with the

difference observed in Fig. 4.6. A greater inflow velocity (Fig. 4.10e) provides an

increase in frazil deposition due to the larger volume flux of cold water into the

model domain. Greater inflow velocities also move the peak of deposition away

from the ice front. To put these ‘snapshot’ results into context, there is a relatively

uniform increase in frazil deposition with time in the baseline case (Fig. 4.10f).
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Figure 4.10: Results of the non-hydrostatic Ice Shelf Water model setup. Sensitivity of
frazil ice deposition after 24 hours to (a) thermal driving, (b) background
mixing, (c) stratification,fff (d) frazil crystal radius, (e) inflow velocity and
(f) time. In each case the baseline case is shown in black.
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The model shows that frazil ice can deposit on the underside of sea ice a significant

distance from the ice front of nearby ice shelves. The instability could be a process

important in the known formation of frazil ice beneath sea ice in Antarctica (Leonard

et al., 2006; Mahoney et al., 2011). The water conditions observed by Leonard et al.

(2006) and Robinson et al. (2010) fall within the bounds that the results indicate for

instabilities and frazil ice growth, given an initial perturbation from an ISW plume.

Given the right conditions, the ice growth rates from frazil ice growth found here

are orders of magnitude greater than congelation (ice that forms directly onto the

underside of an established ice growth) sea ice growth.

4.4 Conclusions

The conditional frazil ice-generated instability in seawater has been investigated

by firstly considering the response to an infinitesimal perturbation using a linear

stability analysis, and then the full conditional stability using a non-hydrostatic

ocean model. The effect of this instability upon ice growth in front of ice shelves has

also been examined. It should be noted that direct validation of the work presented

here is extremely difficult due to the location and physical conditions under which

the conditional instability of frazil ice is likely to occur both in the laboratory and

nature. As such this work should be seen in the context of a first look at an unstudied

physical process which could be indirectly responsible for numerous observations of

frazil ice in various locations around Antarctica. The following conclusions are

drawn:

1. In a marginally gravitationally unstable water column, the frazil ice instability

can co-exist with the ‘background’ convection. Convection becomes dominant as

the ‘background’ temperature and salinity are more unstable.
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2. The instability does not operate in the presence of strong stratification, high

thermal driving (warm water), a small initial perturbation, high ‘background’ mixing

or the prevalence of large frazil ice crystals. It is largely unmodified by frazil crystals

rising relative to their surrounding water.

3. ISW plumes in reality contain a mixture of frazil ice and a freshwater anomaly,

and as such the presence of a frazil ice instability can enhance an underlying fresh-

water anomaly-driven density perturbation. The density perturbation driving the

instability is not necessarily expressed in frazil ice at all times; an initial frazil per-

turbation may melt into a freshwater anomaly perturbation that drives re-growth

of ice.

4. Given a large enough initial perturbation this instability could allow significant

rates of ice growth.

5. The model shows significant ice growth several kilometres from an ice shelf, under

similar conditions to observations of frazil ice growth under sea ice. The presence

of this instability could be a factor affecting the growth of sea ice near ice shelves,

with implications for AABW formation.



5 Conclusions

This thesis has investigated ice-ocean interactions in and around ice shelves using

Fluidity, a finite element ocean model. In particular, the model has been used to

investigate ocean dynamics and melting and freezing within ice shelf basal crevasses

and the conditional instability of frazil ice growth. The overall aim of this work has

been to provide a first examination of processes that are impractical to study in the

field or the laboratory.

Chapter 3 presented the results of using this model to investigate ice-ocean interac-

tion and ocean dynamics within an ice shelf basal crevasse. The circulation within a

crevasse was found to be highly dependent upon the amount of freezing happening

within the crevasse. Two distinct flow régimes were found, one dominated by freez-

ing and one by meltwater. In the freezing dominated case, freezing at the top of

the crevasse produces relatively denser water due to the salinity increase from brine

rejection. This dense water then drives an overturning within the crevasse itself. In

the meltwater driven case the less dense water rises into the crevasse, filling it. This

stratifies the water column, and the crevasse has a negligible effect on the ocean

flow. Freezing in the crevasse was found to be dominated by frazil ice precipita-

tion rather than direct freezing. The key factors affecting freeze rates within basal

crevasses were found to be the size of the single representative frazil crystal radius

used and the amount of supercooling present within the crevasse. The amount of
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supercooling has a non linear relationship with the freeze rate and as such it was

thought to be unlikely that more than roughly 60 m of supercooling would exist in

nature as the crevasse would quickly freeze over if this was the case. Ocean forcing

was found to be insufficient to explain the widening of crevasses as they propagate

towards the calving front, implying that glacial processes are required to maintain

crevasses.

The presence of basal crevasse affects the stability of ice shelves, and the work

presented here shows the conditions under which freezing can occur in them, thereby

increasing ice shelf stability. The key factor in whether this freezing takes place is

the temperature of the ocean itself. The state to which the ice shelf-ocean system

tends is always one in which all supercooled water is replaced by ice. This means

that cold water ice shelves, such as the Larsen and Filchner-Ronne ice shelves will

be a lot more stable, as any basal crevasses that appear can be filled in with newly

formed marine ice. In contrast, warm water ice shelves such as Pine Island Glacier

will be unable to fill in any basal crevasse that appear and are likely to be inherently

less stable as a result (though note that our results suggest that in such a situation

the ocean will erode crevasses by preferentially melting ice around them.

If a changing climate were to result in a warming of the ocean under cold water

ice shelves, raising the freezing point to higher than that of the top of their basal

crevasses, then freezing will no longer occur in them, with a reduction in ice shelf

stability.

Chapter 4 presented an investigation into the conditional instability of frazil ice. It

was found that frazil ice growth caused by the rising of supercooled water was able

to generate a buoyancy driven instability. However, this instability can not exist in

the presence of strong stratification, high thermal driving, high background mixing,

the prevalence of large frazil ice crystals or if there is a small initial perturbation.
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The perturbation is largely unmodified by frazil crystals rising relative to the sur-

rounding water. Whilst frazil ice growth generates this instability it is primarily

a density perturbation; an initial frazil ice perturbation can melt into a freshwater

perturbation and then refreeze. Provided there is a large enough initial perturbation

this instability could be responsible for significant amounts of ice growth. Ice growth

can even happen in a water column that is initially everywhere above the freezing

point. Model results show significant amounts of ice growth up to several kilometres

from an ice shelf. The presence of this instability could be a factor affecting the

growth of sea ice near ice shelves, with implications for AABW formation.

5.1 Future Work

A key limitation of this work has been the use of a frazil ice model with a single

representative size class. Sensitivity studies show that the frazil crystal radius used

has significant effects upon the results. Models that assign a probability distribution

to frazil crystal radius do exist (Smedsrud and Jenkins , 2004; Holland and Feltham,

2005; Galton-Fenzi et al., 2012), and their use could potentially remove this element

of uncertainty from the model. It is likely to significantly increase the computational

expense, however.

The basal crevasse model in chapter 3 is limited to two dimensions. Expanding the

model to three dimensions would allow ocean flow that is not directly across the

crevasse to be modelled. The ‘angle of attack’ of the inflow water could have an

effect on both the circulation within a crevasse and also the melting and freeze rates

within the crevasse. The strength of the overturning circulation within the crevasse

could be a result of the two dimensional nature of the model restricting flow in the

along crevasse direction. It seems unlikely the general pattern of flow will change,

as the dense water formed by freezing at the top of the crevasse will still need to
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sink, but there could be spatial variation along a crevasse.

By using mesh adaptivity within Fluidity it should be possible to change the model

mesh geometry in response to melting and freezing. This would allow the evolution

of a crevasse with time to be investigated. Observations of crevasse’s show that they

tend to be triangular in shape, and it would be interesting to see if a crevasse will

over time tend towards this shape.

This model has initially been used to study basal crevasses on the underside of an ice

shelf, however it could easily be adapted to study other cases of ice-ocean interaction.

For example, large, terrace-like features hundreds of meters wide separated by 5–

50m high walls have been observed in the flanks of channels on the underside of Pine

Island and Petermann glaciers (Dutrieux et al., 2014). The processes leading to their

formation are as yet unknown, and the model used in this work would be well suited

to investigating this problem, particularly if the model were to incorporate feedback

between melt rates and model mesh geometry.



Bibliography

Bamber, J. L., R. E. M. Riva, B. L. A. Vermeersen, and A. M. LeBrocq (2009), Re-
assessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic
Ice Sheet, Science, 324, 901–903. 1.3.1

Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller,
G. A. Weidner, and A. B. Wilson (2013), Central west antarctica among
the most rapidly warming regions on earth, Nature Geoscience, 6, 139–145,
doi:10.1038/ngeo1671. 1.2

Bryan, K. (1962), Measurements of meridional heat transport by
ocean currents, Journal of Geophysical Research, 67 (9), 3403–3414,
doi:10.1029/JZ067i009p03403. 1.2.1

Clark, S., and J. Doering (2006), Laboratory experiments on frazil-size characteris-
tics in a counterrotating flume, Journal of Hydraulic Engineering, 132 (1), 94–101,
doi:10.1061/(ASCE)0733-9429(2006)132:1(94). 2.2.1, 3.4.3

Cook, A. J., and D. G. Vaughan (2010), Overview of areal changes of the ice shelves
on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98. 1.3.2

Daly, S. F. (1984), Evolution of frazil ice in natural water bodies, in International
Association for Hydraulic Research Working Group on Thermal Regimes: Report
on Frazil Ice, edited by S. F. Daly, pp. 19–24, US Army Cold Regions Research
and Engineering Laboratory, Hanover, New Hampshire. 1.3.2, 2.2.2

Dieckmann, G., G. Rohardt, H. Hellmer, and J. Kipfstuhl (1986), The occurrence of
ice platelets at 250 m depth near the filchner ice shelf and its significance for sea
ice biology, Deep Sea Research Part A. Oceanographic Research Papers, 33 (2),
141 – 148, doi:10.1016/0198-0149(86)90114-7. 1.4, 2.2.1

Dutrieux, P., C. Stewart, A. Jenkins, K. W. Nicholls, H. F. J. Corr, E. Rignot,
and K. Steffen (2014), Basal terraces on melting ice shelves, Geophysical Research
Letters, 41 (15), 5506–5513, doi:10.1002/2014GL060618. 5.1

Foldvik, A., and T. Kvinge (1974), Conditional instability of sea water at the freez-
ing point, Deep Sea Research and Oceanographic Abstracts, 21 (3), 169 – 174,
doi:10.1016/0011-7471(74)90056-4. 1.6, 1.6

Foldvik, A., T. Gammelsrd, S. sterhus, E. Fahrbach, G. Rohardt, M. Schrder, K. W.
Nicholls, L. Padman, and R. A. Woodgate (2004), Ice shelf water overflow and

111

http://dx.doi.org/10.1038/ngeo1671
http://dx.doi.org/10.1029/JZ067i009p03403
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:1(94)
http://dx.doi.org/10.1016/0198-0149(86)90114-7
http://dx.doi.org/10.1002/2014GL060618
http://dx.doi.org/10.1016/0011-7471(74)90056-4


Bibliography 112

bottom water formation in the southern Weddell Sea, Journal of Geophysical
Research: Oceans, 109 (C2), doi:10.1029/2003JC002008. 1.3

Galton-Fenzi, B. K., J. R. Hunter, R. Coleman, S. Marsland, and R. C. Warner
(2012), Modelling the basal melting and marine ice accretion of the Amery Ice
Shelf, Journal of Geophysical Research, doi:10.1029/2012JC008214. 2.2, 5.1

Glasser, N. F., and T. A. Scambos (2008), A structural glaciological analysis of 2002
Larsen B Ice Shelf collapse, Journal of Glaciology, 54, 3–16. 1.3.1

Gosink, J. P., and T. E. Osterkamp (1983), Measurements and analyses of velocity
profiles and frazil ice-crystal rise velocities during periods of frazil-ice formation
in rivers, Annals of Glaciology, 4, 79–84. 2.2.1, 2.2.1

Griggs, J., and J. Bamber (2011), Antarctic ice-shelf thickness from
satellite radar altimetry, Journal of Glaciology, 57 (203), 485–498,
doi:doi:10.3189/002214311796905659. (document), 1.3

Hall, M. M., and H. L. Bryden (1982), Direct estimates and mechanisms of ocean
heat transport, Deep Sea Research Part A. Oceanographic Research Papers, 29 (3),
339 – 359, doi:http://dx.doi.org/10.1016/0198-0149(82)90099-1. 1.2.1

Hattermann, T., O. A. Nst, J. M. Lilly, and L. H. Smedsrud (2012), Two years of
oceanic observations below the Fimbul Ice Shelf, Antarctica, Geophysical Research
Letters, 39 (12), n/a–n/a, doi:10.1029/2012GL051012. 3.2.1

Hellmer, H., and D. Olbers (1989), A two-dimensional model for the thermohaline
circulation under an ice shelf, Antarctic Science, 1, 325–336. 1.3

Hellmer, H. H., and S. S. Jacobs (1992), Ocean interactions with the base of Amery
Ice Shelf, Antarctica, Journal of Geophysical Research: Oceans, 97 (C12), 20,305–
20,317, doi:10.1029/92JC01856. 1.5

Holland, P. R., and D. L. Feltham (2005), Frazil dynamics and precipitation in a
water column with depth-dependant supercooling, Journal of Fluid Mechanics,
530, 101–124. (document), 1.5, 1.6, 2.1, 2.2, 2.2.2, 5.1

Holland, P. R., H. F. J. Corr, D. G. Vaughan, A. Jenkins, and P. Skvarca
(2009), Marine ice in Larsen Ice Shelf, Geophysical Research Letters, 36 (11),
doi:10.1029/2009GL038162. (document), 1.4, 1.5, 1.8

Holland, P. R., H. F. Corr, H. D. Pritchard, D. G. Vaughan, R. J. Arthern, A. Jenk-
ins, and M. Tedesco (2011), The air content of Larsen Ice Shelf, Geophysical
Research Letters, 38 (10), L10,503. 1.3.1

Hughes, K. G., P. J. Langhorne, G. H. Leonard, and C. L. Stevens (2014),
Extension of an Ice Shelf Water plume model beneath sea ice with applica-
tion in McMurdo Sound, Antarctica, Journal of Geophysical Research: Oceans,
doi:10.1002/2013JC009411. 1.6

http://dx.doi.org/10.1029/2003JC002008
http://dx.doi.org/10.1029/2012JC008214
http://dx.doi.org/doi:10.3189/002214311796905659
http://dx.doi.org/http://dx.doi.org/10.1016/0198-0149(82)90099-1
http://dx.doi.org/10.1029/2012GL051012
http://dx.doi.org/10.1029/92JC01856
http://dx.doi.org/10.1029/2009GL038162
http://dx.doi.org/10.1002/2013JC009411


Bibliography 113

Humbert, A., and D. Steinhage (2011), The evolution of the western rift area of the
Fimbul Ice Shelf, Antarctica, The Cryosphere, 5, 931–944, doi:10.5194/tc-5-931-
2011. 1.5

IPCC (Ed.) (2013), IPCC, 2013: Climate Change 2013: The Physical Science Ba-
sis., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, doi:10.1017/CBO9781107415324. 1.2

Jacobs, C. T., G. S. Collins, M. D. Piggott, S. C. Kramer, and C. R. G.
Wilson (2012), Multiphase flow modelling of volcanic ash particle settling in
water using adaptive unstructured meshes, Geophysical Journal International,
doi:10.1093/gji/ggs059. 2.2.1

Jenkins, A., and A. Bombosch (1995), Modeling the effects of frazil ice crystals on
the dynamics of Ice Shelf Water plumes, Journal of Geophysical Research, 100,
6967–6981. 1.6, 1.7, 2, 2.1, 2.2, 2.2.2, 2.2.2, 2.2.3, 2.3

Jenkins, A., H. H. Hellmer, and D. M. Holland (2001), The role of meltwater ad-
vection in the formulation of conservative boundary conditions at an iceocean
interface, Journal of Physical Oceanography, 31, 285–296. 2.3

Jezek, K. C. (1984), A modified theory of bottom crevasses used as a means for mea-
suring the buttressing effect of ice shelves on inland ice sheets, Journal of Geophys-
ical Research: Solid Earth, 89 (B3), 1925–1931, doi:10.1029/JB089iB03p01925.
1.5, 1.5

Jezek, K. C., and C. R. Bentley (1983), Field studies of bottom crevasses in the
Ross Ice Shelf, Antarctica, Journal of Glaciology, 29, 118–129. 1.5

Jordan, J. R., P. R. Holland, A. Jenkins, M. D. Piggott, and S. Kimura (2014), Mod-
eling ice-ocean interaction in ice-shelf crevasses, Journal of Geophysical Research:
Oceans, 119 (2), in press, doi:10.1002/2013JC009208. (document), 1.7, 3.1, 4.2.1

Jordan, J. R., P. R. Holland, A. Jenkins, M. D. Piggott, and S. Kimura (2015), On
the conditional instability of frazil ice, Journal of Physical Oceanography, doi:doi:
10.1175/JPO-D-14-0159.1. (document), 4.1

Khazendar, A., and A. Jenkins (2003), A model of marine ice formation within
Antarctic ice shelf rifts, Journal of Geophysical Research, 108(C7), 3235,
doi:10.1029/2002JC001673. (document), 1.5, 1.5, 1.5, 1.7, 1.6, 3.2, 3.3

Kimura, S., A. Candy, P. Holland, M. Piggott, and A. Jenkins (2013), Adaptation
of an unstructured-mesh, finite-element ocean model to the simulation of ocean
circulation beneath ice shelves, Ocean Modelling. 2, 2.2.1, 2.3

Leonard, G. H., C. R. Purdie, P. J. Langhorne, T. G. Haskell, M. J. M. Williams,
and R. D. Frew (2006), Observations of platelet ice growth and oceanographic
conditions during the winter of 2003 in McMurdo Sound, Antarctica, Journal of
Geophysical Research: Oceans, 111 (C4), doi:10.1029/2005JC002952. 1.4, 4.3.2

http://dx.doi.org/10.5194/tc-5-931-2011
http://dx.doi.org/10.5194/tc-5-931-2011
http://dx.doi.org/10.1017/CBO9781107415324
http://dx.doi.org/10.1093/gji/ggs059
http://dx.doi.org/10.1029/JB089iB03p01925
http://dx.doi.org/10.1002/2013JC009208
http://dx.doi.org/doi: 10.1175/JPO-D-14-0159.1
http://dx.doi.org/doi: 10.1175/JPO-D-14-0159.1
http://dx.doi.org/10.1029/2002JC001673
http://dx.doi.org/10.1029/2005JC002952


Bibliography 114

Luckman, A., D. Jansen, B. Kulessa, E. C. King, P. Sammonds, and D. I. Benn
(2012), Basal crevasses in Larsen C Ice Shelf and implications for their global
abundance, The Cryosphere, 6 (1), 113–123, doi:10.5194/tc-6-113-2012. 1.5, 1.5,
3.4.1

Mahoney, A. R., A. J. Gough, P. J. Langhorne, N. J. Robinson, C. L. Stevens,
M. M. J. Williams, and T. G. Haskell (2011), The seasonal appearance of ice shelf
water in coastal Antarctica and its effect on sea ice growth, Journal of Geophysical
Research: Oceans, 116 (C11), doi:10.1029/2011JC007060. 1.4, 4.2.1, 4.3.2

Martin, S. (1981), Frazil ice in rivers and oceans, Annu. rev. Fluid Mech., 13, 379–
397. 1.4

McFarlane, V., M. Loewen, and F. Hicks (2014), Laboratory measurements of
the rise velocity of frazil ice particles, Cold Regions Science and Technology,
106107 (0), 120 – 130, doi:http://dx.doi.org/10.1016/j.coldregions.2014.06.009.
2.2.1, 3.4.3

McGrath, D., K. Steffen, H. Rajaram, T. Scambos, W. Abdalati, and E. Rignot
(2012a), Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications
for meltwater ponding and hydrofracture, Geophysical Research Letters, 39 (16),
doi:10.1029/2012GL052413. (document), 1.5, 1.5, 1.6

McGrath, D., K. Steffen, T. Scambos, H. Rajaram, G. Casassa, and J. L. Ro-
driguez Lagos (2012b), Basal crevasses and associated surface crevassing on the
Larsen C Ice Shelf, Antarctica, and their role in ice-shelf instability, Annals of
Glaciology, 53 (60), 10–18, doi:doi:10.3189/2012AoG60A005. 1.5, 1.5, 3.5, 3.5.1

McGuinness, M. J., M. J. M. Williams, P. J. Langhorne, C. Purdie, and J. Crook
(2009), Frazil deposition under growing sea ice, Journal of Geophysical Research:
Oceans, 114 (C7), doi:10.1029/2007JC004414. 1.4

McPhee, M. G. (2008), Air-Ice-Ocean Interaction, Springer. 2.3

Nicholls, K. W., and S. Østerhus (2004), Interannual variability and ventilation
timescales in the ocean cavity beneath Filchner-Ronne Ice Shelf, Antarctica, Jour-
nal of Geophysical Research: Oceans, 109 (C4), doi:10.1029/2003JC002149. 1.3

Nicholls, K. W., S. sterhus, K. Makinson, T. Gammelsrd, and E. Fahrbach (2009),
Ice-ocean processes over the continental shelf of the southern Weddell sea, Antarc-
tica: A review, Reviews of Geophysics, 47 (3), doi:10.1029/2007RG000250. 1.3

Orheim, O., J. O. Hagen, S. Østerhus, and A. C. Sactrang (1990), Glaciological and
oceanographic studies on Fimbulisen during NARE 1989/90, Filchner-Ronne Ice
Shelf Programme Report, 4, 120–129. (document), 1.5, 1.7, 3.2, 3.2.1, 3.2

Østerhus, S., and O. Orheim (1992), Studies through Jutulgryta, Fimbulisen in the
1991/92 season, Filchner-Ronne Ice Shelf Programme Report, 6, 103–109. 1.5

http://dx.doi.org/10.5194/tc-6-113-2012
http://dx.doi.org/10.1029/2011JC007060
http://dx.doi.org/http://dx.doi.org/10.1016/j.coldregions.2014.06.009
http://dx.doi.org/10.1029/2012GL052413
http://dx.doi.org/doi:10.3189/2012AoG60A005
http://dx.doi.org/10.1029/2007JC004414
http://dx.doi.org/10.1029/2003JC002149
http://dx.doi.org/10.1029/2007RG000250


Bibliography 115

Parkinson, S., J. Hill, M. D. Piggott, and P. A. Allison (2014), Direct numerical
simulations of particle laden currents with adaptive, discontinuous finite elements,
Geoscientific Model Development, doi:10.5194/gmd-7-1945-2014. 2.2.1, 2.2.1

Penrose, J. D., M. Conde, and T. J. Pauly (1994), Acoustic detection of ice crystals
in antarctic waters, Journal of Geophysical Research: Oceans, 99 (C6), 12,573–
12,580, doi:10.1029/93JC03507. 1.4

Price, D., W. Rack, P. J. Langhorne, C. Haas, G. Leonard, and K. Barnsdale (2014),
The sub-ice platelet layer and its influence on freeboard to thickness conversion of
Antarctic sea ice, The Cryosphere, 8 (3), 1031–1039, doi:10.5194/tc-8-1031-2014.
1.4

Pritchard, H. D., R. J. Arthern, D. G. Vaughan, and L. A. Edwards (2009), Exten-
sive dynamic thinning on the margins of the Greenland and Antarctic ice sheets,
Nature, 461, 971–975, doi:10.1038/nature08471. 1.3

Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den
Broeke, and L. Padman (2012), Antarctic ice-sheet loss driven by basal melting
of ice shelves, Nature, 484, 502–505, doi:10.1038/nature10968. 1.3

Rignot, E., and D. R. MacAyeal (1998), Ice-shelf dynamics near the front of the
Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometery, Journal
of Glaciology, 44, 405–418. 1.5

Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas
(2004), Accelerated ice discharge from the Antarctic Peninsula following the
collapse of Larsen B Ice Shelf, Geophysical Research Letters, 31 (18), n/a–n/a,
doi:10.1029/2004GL020697. 1.3.1

Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl (2013), Ice-Shelf melting around
Antarctica, Science, 341 (6143), 266–270, doi:10.1126/science.1235798. 1.3

Rist, M. A., P. R. Sammonds, H. Oerter, and C. S. M. Doake (2002), Fracture of
antarctic shelf ice, Journal of Geophysical Research: Solid Earth, 107 (B1), ECV
2–1–ECV 2–13, doi:10.1029/2000JB000058. 1.5

Robin, G. (1979), Formation, flow and disintegration of ice shelves, J. Glaciol, 24,
259–271. 1.3.2

Robinson, N. J., M. J. M. Williams, P. J. Barrett, and A. R. Pyne (2010), Observa-
tions of flow and ice-ocean interaction beneath the McMurdo Ice Shelf, Antarctica,
Journal of Geophysical Research: Oceans, 115 (C3), doi:10.1029/2008JC005255.
1.4, 2.2.1, 4.3.2

Robinson, N. J., M. J. M. Williams, C. L. Stevens, P. J. Langhorne, and T. G.
Haskell (2014), Evolution of a supercooled Ice Shelf Water plume with an ac-
tively growing subice platelet matrix, Journal of Geophysical Research: Oceans,
doi:10.1002/2013JC009399. 1.4

http://dx.doi.org/10.5194/gmd-7-1945-2014
http://dx.doi.org/10.1029/93JC03507
http://dx.doi.org/10.5194/tc-8-1031-2014
http://dx.doi.org/10.1038/nature08471
http://dx.doi.org/10.1038/nature10968
http://dx.doi.org/10.1029/2004GL020697
http://dx.doi.org/10.1126/science.1235798
http://dx.doi.org/10.1029/2000JB000058
http://dx.doi.org/10.1029/2008JC005255
http://dx.doi.org/10.1002/2013JC009399


Bibliography 116

Scambos, T., T. Haran, M. Fahnestock, T. Painter, and J. Bohlander (2007), Modis-
based mosaic of antarctica (moa) data sets: Continent-wide surface morphol-
ogy and snow grain size, Remote Sensing of Environment, 111 (23), 242 – 257,
doi:http://dx.doi.org/10.1016/j.rse.2006.12.020, remote Sensing of the Cryosphere
Special Issue. (document), 1.8

Scambos, T. A., C. Hulbe, M. Fahnestock, and J. Bohlander (2000), The link be-
tween climate warming and break-up of ice shelves in the Antarctic Peninsula,
Journal of Glaciology, 46 (154), 516–530, doi:doi:10.3189/172756500781833043.
1.3.2

Shepherd, A., D. Wingham, T. Payne, and P. Skvarca (2003), Larsen ice shelf has
progressively thinned, Science, 302, 856–859. 1.3.1

Shepherd, A., E. R. Ivins, G. A, V. R. Barletta, M. J. Bentley, S. Bettadpur, K. H.
Briggs, D. H. Bromwich, R. Forsberg, N. Galin, M. Horwath, S. Jacobs, I. Joughin,
M. A. King, J. T. M. Lenaerts, J. Li, S. R. M. Ligtenberg, A. Luckman, S. B.
Luthcke, M. McMillan, R. Meister, G. Milne, J. Mouginot, A. Muir, J. P. Nicolas,
J. Paden, A. J. Payne, H. Pritchard, E. Rignot, H. Rott, L. S. Srensen, T. A.
Scambos, B. Scheuchl, E. J. O. Schrama, B. Smith, A. V. Sundal, J. H. van
Angelen, W. J. van de Berg, M. R. van den Broeke, D. G. Vaughan, I. Velicogna,
J. Wahr, P. L. Whitehouse, D. J. Wingham, D. Yi, D. Young, and H. J. Zwally
(2012), A reconciled estimate of ice-sheet mass balance, Science, 338 (6111), 1183–
1189, doi:10.1126/science.1228102. 1.3

Sievers, J., A. Grindel, and W. Meier (1989), Digital satellite image mapping of
Antarctica, Polarforschung, 59, 25–33. (document), 1.8

Smedsrud, L. H., and A. Jenkins (2004), Frazil ice formation in an Ice
Shelf Water plume, Journal of Geophysical Research: Oceans, 109 (C3),
doi:10.1029/2003JC001851. 2.2, 5.1

Smetacek, V., R. Scharek, L. I. Gordon, H. Eicken, E. Fahrbach, G. Rohardt, and
S. Moore (1992), Early spring phytoplankton blooms in ice platelet layers of the
southern Weddell Sea, Antarctica, Deep Sea Research Part A. Oceanographic
Research Papers, 39 (2), 153 – 168. 1.4

Swithinbank, C. (1977), Glaciological research in the antarctic peninsula, Philosoph-
ical Transactions of the Royal Society of London. B, Biological Sciences, 279 (963),
161–183, doi:10.1098/rstb.1977.0080. 1.5

Vaughan, D. G., and C. S. M. Doake (1996), Recent atmospheric warming and
retreat of ice shelves on the Antarctic Peninsula, Nature, 379, 328–331. 1.3

Ye, S. Q., J. Doering, and H. T. Shen (2004), A laboratory study of frazil evolution
in a counter-rotating flume, Canadian Journal of Civil Engineering, 31, 899–914,
doi:10.1139/L04-056. 2.2.1, 3.4.3

http://dx.doi.org/http://dx.doi.org/10.1016/j.rse.2006.12.020
http://dx.doi.org/doi:10.3189/172756500781833043
http://dx.doi.org/10.1126/science.1228102
http://dx.doi.org/10.1029/2003JC001851
http://dx.doi.org/10.1098/rstb.1977.0080
http://dx.doi.org/10.1139/L04-056

	Introduction
	Aim of the Thesis
	Antarctica and the Southern Ocean
	Thermohaline circulation

	Ice shelves
	Sea level rise
	Ice shelf stability

	Types of ice
	Basal Crevasses
	Conditional instability of frazil ice
	Overview of the Thesis

	Model and governing equations
	Governing Equations
	Frazil ice model
	Frazil ice dynamics
	Frazil ice thermodynamics
	Implementation of frazil ice model in fluidity
	Validation of frazil model

	Ice shelf melt model

	Modelling ice-ocean interaction in idealised ice shelf basal crevasses
	Overview
	Model set-up
	Model calibration

	Base case
	Sensitivity study
	Temperature variation
	Velocity variation
	Frazil crystal size variation
	Crevasse geometry variation

	Triangular crevasses
	Long term ocean stabilisation of crevasses

	Conclusions

	The conditional instability of frazil ice in seawater
	Overview
	Numerical modelling of an idealised instability
	Model setup
	Results

	Numerical modelling of an Ice Shelf Water outflow
	Model setup
	Results

	Conclusions

	Conclusions
	Future Work

	Bibliography

