

Gateway to the Earth

Forecasting secular variation using accelerated core surface flows

Ciarán Beggan Kathy Whaler

British Geological Survey, Edinburgh, UK School of GeoSciences, University of Edinburgh, UK

> IUGG2015 Prague 22-30 June 2015 Session:

© NERC All rights reserved

Magnetic Field variation

- CHAOS-5 main field variation
 - RMS differences (to degree 13):

Years	Total RMS difference [nT]
2005 – 2000	382
2010 – 2005	400
2015 – 2010	440

IGRF and WMM series

- Secular variation forecasts from :
 - IGRF-9, 10 and 11 (to degree 13)
 - WMM2000, WMM2005, WMM2010 (to degree 12)

Year	IGRF SV	WMM SV
2005	79	98
2010	109	122
2015	84	104

Can we improve on this?

- IGRF-12 SV candidate submissions
 - Instantaneous SV extrapolations
 - Data assimilation into geodynamo models
 - Core Flow / Accelerated core flows
- Look at forecasts from core flows derived from SV and SA
 - Flows from inversion of *SV* only
 - Flows from inversion of SV and SA
 - Flows with steady acceleration from SV and SA

Assumptions

- Frozen flux approximation
 - No diffusion assumed
- Solve for toroidal and poloidal flow and accelerations
 - Compute flow and accelerations to degree 14
 - Bloxham 'strong' norm damping above degree 8
 - Slightly damped to impose geostrophic flow
- Use SV and SA from ~160 observatory and 648 'virtual observatory' satellite data
- Solve flow and acceleration models in six sets of years:
 - 2001-2005; 2003-2005; 2001-2007; 2001-2010; 2005-2010; 2007-2010;

Example models [2007 - 2010]

Constant Flow

Forecasting

- Start at year e.g. 2005 or 2010
 - Compute MF coeffs from model (e.g. CHAOS-5)
 - Use core flow and/or acceleration to compute instantaneous SV and SA for timestep (i.e. 1 month)
 - Add to MF, update Gaunt/Elsasser matrices
 - Compute RMS difference
 - Repeat ..
- Can also compute hindcasts

Flow model (2010-2015)

Flow model with acceleration (2010-2015)

RMS Diff [nT] at 2015.0	SV only	SV and SA	SF with accel	IGRF-11	WMM2010		
2001-2007	113	111	113				
2001-2010	85	84	107	- 04	101	404	
2005-2010	80	79	85	84	104		
2007-2010	77	85	75				

Flow model (2005-2010)

Flow model with acceleration (2005-2010)

RMS Diff [nT] at 2010.0	SV only	SV and SA	SF with accel	IGRF-11	WMM2010
2001-2005	64	60	64	109	122
2003-2005	69	68	68		

Improvements over previous generations?

Conclusions

- Usually able capture > 75% of the field change
- Jerks/accelerations are significant for goodness of forecast
- Core flows using 3-5 years of data are best
- Slightly better to somewhat better than standard instantaneous SV extrapolation

