Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf)

Lichtschlag, A. ORCID:; Donis, D.; Janssen, F.; Jessen, G. L.; Holtappels, M.; Wenzhöfer, F.; Mazlumyan, S.; Sergeeva, N.; Waldmann, C.; Boetius, A.. 2015 Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf). Biogeosciences, 12 (16). 5075-5092.

Before downloading, please read NORA policies.
Text (Open Acces paper)
bg-12-5075-2015.pdf - Published Version

Download (2MB) | Preview


The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 μmol O2 L−1) and hypoxic (< 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol m−2 d−1 on average in the oxic zone, to 7 mmol m−2 d−1 on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol m−2 d−1), but declined to 1.3 mmol m−2 d−1 in bottom waters with oxygen concentrations below 20 μmol L−1. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic–hypoxic zone, to 10 % in the hypoxic–anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.

Item Type: Publication - Article
Digital Object Identifier (DOI):
ISSN: 1726-4189
Date made live: 02 Sep 2015 10:57 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...