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Steady, barotropic wind and boundary-driven circulation on a polar plane
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Steady, linear, barotropic wind and boundary forced circulation solutions in the presence of linear bottom
friction are analytically derived in a circular basin of uniform depth on a polar tangent plane in which only
first order effects of the Earth’s curvature are retained. Approximate solutions are constructed by using
the well known method of aggregating the interior inviscid Sverdrup balance solution and the frictional
wall boundary layer solution. In contrast to the width of mid-latitude frictional western boundary layers
that scale as O(µ/f), the width of the polar frictional boundary layer adjacent to the basin wall is wider,

scaling as O
(
(µ/f)1/2

)
, where µ is the bottom friction coefficient, f is the coriolis parameter. Solutions are

presented for a variety of wind stress curl distributions and for a prescribed inflow/outflow representative
of the exchange of water masses between the Arctic and Atlantic basins. Boundary forced solutions are
also derived in a basin with a uniform width step shelf. For this basin geometry the flow is mainly confined
to the shelf, although a parameter regime is identified that supports significant flow in the deep basin.
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1. Introduction

What are the dominant processes that control the ocean circulation of the Arctic? The answer
to this question has acquired new urgency with the well documented retreat of Arctic summer
sea ice during the 21st Century (Wang and Overland 2009) and the concomitant impacts on
Arctic Ocean ecosystems and the socio-economics of the indigenous peoples of the region.
Using a coupled numerical sea ice- barotropic ocean circulation model, Proshutinsky and
Johnson (1997, 2001) have revealed the importance of wind-driving in determining the Arctic
Ocean circulation and its sea ice dynamics. These studies demonstrate that the circulation
switches between an anticyclonic regime, characterised by a well-defined Beaufort Gyre located
in the Canadian basin of the western Arctic, and a cyclonic regime. Each of these regimes
lasts typically 4 to 8 years, leading to an oscillatory mode with period of 8 to 16 years. In
the anticyclonic regime the surface Ekman transport associated with the Beaufort Gyre is
directed towards the gyre interior (Proshutinsky et al. 2009) which acts to trap surface melt
waters within the gyre. This regime is also characterised by a strong transpolar drift that
advects sea ice out of the Arctic.

As the complexity of coupled numerical sea ice-ocean circulation models increases, the in-
terpretation of the model results becomes more challenging. It is well recognised that ocean
process models provide an invaluable independent tool for interpreting the results from com-
plex ocean circulation models. Interestingly, there is a conspicuous lack of ocean process
models developed for Arctic applications due mainly to the fact that on the polar plane (the
high-latitude equivalent of the mid-latitude β-plane) the meridional gradient of the Coriolis
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parameter varies linearly with latitude, which produces an added complexity in the analysis
of the shallow water equations.

Planetary (Rossby) wave dynamics in a circular polar basin were considered by LeBlond
(1964) where the “polar plane approximation” was developed. The polar plane approximation
differs from the mid-latitude β-plane approximation in that the derivative of the Coriolis
parameter is a linear function of the radial distance to the pole. Harlander (2005) extended
the analysis of LeBlond (1964) by studying planetary wave dynamics on the delta plane.
This latter approximation reduces to the polar plane when the origin of the delta plane lies
at the geographical pole. The topic of geostrophic adjustment in a polar basin has been
treated analytically and numerically on the polar plane by Luneva et al. (2012). Steady state
barotropic circulation in a polar circular basin driven by prescribed inflow and outflow is
treated analytically and experimentally by Imawaki and Takano (1974). The authors compare
the solutions on a polar-cap with those in a uniformaly rotating basin. Again, in the spirit of
simplified models, Nøst and Isachsen (2003) develop a diagnostic model for steady large-scale
circulation in the Nordic Seas and the Arctic Ocean that incorporates realistic topography.

The purpose of this study is to present new analytical solutions for wind and boundary
driven steady-state barotropic ocean circulation in a circular Arctic basin located on a polar
plane. Section 2 develops the governing equations; wind-driven solutions in a flat bottom
basin are presented in section 3; boundary forced solutions, associated with inflow/outflow,
are derived in section 4 for a flat bottom basin; section 5 extends the solutions in the previous
section with the inclusion of step shelf of uniform width; the paper concludes with a summary
and discussion of future research in section 6.

2. Governing equations

The starting point for the analysis of wind-driven, frictionally modified barotropic circulation
in a polar basin of uniform depth H are the linearised shallow water equations on a tangent
plane to the Earth at the pole:

∂u

∂t
− fv = − g cos θ

∂η

∂r
− µu +

τ r

ρH
, (1a)

∂v

∂t
+ fu = − g

r

∂η

∂φ
− µv +

τφ

ρH
, (1b)

∂η

∂t
+

cos θ

r

∂

∂r
(Hru) +

1

r

∂

∂φ
(Hv) = 0 . (2)

In (1) and (2) r, φ are polar coordinates on a tangent plane to the Earth at the pole with origin
located on the rotational axis of the Earth; u, v are the velocity components in the radial and
azimuthal direction, respectively; µ is the coefficient of Rayleigh friction; ρ is the constant
density of the ocean; τ r, τφ are the wind stress components in the radial and azimuthal
directions, respectively; η is the free surface displacement; g is the gravitational acceleration;
f = 2Ω cos θ is the Coriolis parameter, where θ is the co-latitude of any point on the tangent
plane. Figure 1 shows a schematic of the polar tangent plane. Following LeBlond (1964) the
radial gradient of f can be readily calculated as follows. Provided the departure of the tangent
plane from the surface of the Earth is not too large

r = R sin θ , (3)

where R is the radius of the Earth. Then on using (3), we obtain

df

dr
= − 2Ω sin θ

dθ

dr
= − 2Ω

sin θ

R cos θ
=

2Ωr

R2 cos θ
.
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Upon neglecting terms O
(
(r/R)2

)
, we arrive at the polar plane approximation

df

dr
= − 2Ωr

R2
, (4)

first discussed by LeBlond (1964).
In sections 3 and 4 we will neglect topography and impose the rigid-lid approximation, in

which case (2) permits a velocity streamfunction Ψ defined as

ru = − ∂Ψ
∂φ

,
v

cos θ
=

∂Ψ

∂r
, (5a,b)

where we note that θ = θ(r). Using (1) and (5) it is then straightforward to obtain the
unsteady vorticity equation in terms of Ψ :

r∇2 ∂Ψ

∂t
+ µr∇2Ψ +

rf

R2

∂Ψ

∂φ
= cos θ

∂

∂r

(
rτφ

ρH

)
− ∂

∂φ

(
τ r

ρH

)
. (6)

On the polar plane we approximate cos θ by unity in (6), in which case the right-hand side of
this equation is clearly

rk ·∇×
(
τ

ρH

)
where the operator

r∇2 ≡ ∂

∂r

(
r
∂

∂r

)
+

1

r

∂2

∂φ2
, and k ·∇× τ =

1

r

(
∂

∂r

(
rτφ
)
− ∂τ r

∂φ

)
.

In a steady-state, (6) reduces to the polar Sverdrup balance for the interior streamfunction

f

R2

∂Ψ

∂φ
= k ·∇×

(
τ

ρH

)
(7)

valid away from rigid boundaries where frictional boundary layers are, in general, required to
satisfy the “no-normal flow” boundary condition.

In the following sections of this paper we obtain solutions of the steady version of (6) in a
circular basin of radius a, centred at the pole, for a variety of idealised wind stress fields. We
will also obtain solutions of this equation which are driven by a prescribed streamfunction
on r = a which represents inflows and outflows across the boundary. Clearly, the wind and
boundary forced solutions can be superposed to obtain forced solutions that are representative
of a prototype barotropic Arctic Ocean circulation.

3. Wind forced solutions

In this section we obtain solutions of

µr∇2Ψ +
rf

R2

∂Ψ

∂φ
= rk ·∇×

(
τ

ρH

)
(8)

subject to

Ψ = 0 on r = a , (9)

together with the requirement that Ψ is 2π-periodic and bounded everywhere in the circular
domain.
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Figure 1. Schematic of the polar plane.



May 8, 2015 Geophysical and Astrophysical Fluid Dynamics paper-edit˙8

Barotropic wind and boundary-driven circulation on a polar plane 5

3.1. Radially symmetric wind stress

Consider the azimuthal wind stress

τ r = 0 , τφ = W (r) . (10a,b)

Clearly, (8) admits radially-symmetric solutions Ψ = Ψ(r), where

µ
d

dr

(
r

dΨ

dr

)
=

d

dr

(
rW

ρH

)
.

Integrating this equation, and demanding that Ψ is bounded in the domain, we obtain

µ
dΨ

dr
=

W

ρh
=⇒ v =

W

ρh
. (11a,b)

The velocity field (11b) is dependent upon the existence of bottom friction. It is therefore
reasonable to enquire whether an “interior” inviscid solution ΨI can be determined. From (8)
we see that

rf

R2

∂ΨI
∂φ

=
d

dr

(
rW

ρH

)
which upon integration with respect to φ yields

ΨI =
φR2

rf

d

dr

(
rW

ρH

)
. (12)

The form of W determines whether the circulation is bounded in the domain. In general (12)
does not satisfy (9) and a frictional boundary layer adjacent to r = a is required to satisfy this
boundary condition. Indeed, the structure of this boundary layer is presented in section 3.2.
It suffices to note at this stage that a 2π-periodic boundary layer solution that matches (12)
is not possible. Thus, the steady frictionally modified solution of (8) for an radially-symmetric
wind stress is itself radially-symmetric.

Typical forms of W relevant to the Arctic include

W = τ0r̂
βe−αr , (13a)

and

W =

{
τ0 0 ≤ r ≤ b ,

τ0(b/r)γ b ≤ r ≤ a ,
(13b)

where τ0 is the magnitude of the wind stress, r̂ = r/a and α, β, γ ≥ 0, are constants. It is
straightforward to calculate Ψ for either forms of (13) and the details are left for the reader.

3.2. Anti-symmetric wind stress curl

We consider a wind stress curl of the form

F(r, φ) = k ·∇×
(
τ

ρH

)
=

1

ρHa
W (r) sinφ ,

where W is given by (13a). More specifically, setting α = 0, β = 1 the wind stress curl becomes

F(r, φ) =
τ0

ρHa2
r sinφ , (14)

whence the interior inviscid Sverdrup balance becomes

f

R2

∂ΨI
∂φ

=
τ0

ρHa2
r sinφ . (15)
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Hereafter, we treat f as constant in (15). By inspection of (14) it is clear that the contours
of the wind stress curl are a family of straight parallel lines of zonal orientation and that F is
positive (negative) for 0 < φ < π (−π < φ < 0). Integrating (15) we find that the bounded
interior solution is given by

ΨI = − τ0R
2

ρfHa2
cosφ . (16)

The streamlines are a family of straight lines all parallel to the y-axis, i.e., oriented merid-
ionally. A frictional boundary layer adjacent to r = a is required to satisfy the boundary
condition (9). We therefore let the total solution in the circular domain take the form

Ψ = ΨI + Ψ̂(s, φ) , (17a)

where Ψ̂ is the boundary layer streamfunction and

s = (a− r)
/

(µ/f)p , (17b)

is the stretched boundary layer radial coordinate, with the constant p > 0 to be determined
and (µ/f)� 1. Substituting (17) into (8) and employing (15) we find that the leading order
boundary layer equation is given by

∂2Ψ̂

∂s2
+

1

R2

∂Ψ̂

∂φ
= 0 , (18)

provided that p = 1/2. The size of the largest terms neglected in deriving the boundary layer
equation (18) are O

(
(µ/f)1/2

)
. In contrast to the width of the mid-latitude frictional western

boundary layer, which scales as µ/f , the boundary layer width in the polar basin is wider,
scaling as (µ/f)1/2. The boundary conditions for (18) are

Ψ̂ = − ΨI(a, φ) on s = 0 , (19a)

Ψ̂ → 0 as s→∞ . (19b)

We seek periodic solutions of (18) of the form

Ψ̂ =

∞∑
n=−∞

einφgn(s) , where
d2gn
ds2

+
in

R2
gn = 0 .

The solution for gn satisfying gn → 0, as s→∞, is given by

gn(s) =

{
an exp

[
− (s/R)

√
n/2 (1− i)

]
, n > 0 ,

an exp
[
− (s/R)

√
|n|/2 (1 + i)

]
, n < 0 .

Using (19b) it is clear that g0(s) ≡ 0. Applying (19a) we obtain

−1∑
n=−∞

aneinφ +
∞∑
n=1

aneinφ =
τ0R

2

2ρfHa

[
eiφ + e−iφ

]
,

whence

a−1 = a1 =
τ0R

2

2ρfHa
,

with an = 0 otherwise. Thus we have

Ψ =
τ0R

2

2ρfHa2

{
− r cosφ + a exp

[
− s√

2R

]
cos

[
φ +

s√
2R

]}
. (20)
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Figure 2. Contour plots of the dimensionless velocity streamfunction (20) for various values of the bottom friction
parameter µ. Contour interval is 0.1. (a) µ = 10−7 s−1; (a) µ = 10−6 s−1; (a) µ = 10−5 s−1.

Parameter Value

R, radius of the Earth 6371 km

a, radius of the basin 1500 km

ρ 1000 kg m−3

τ0 0.1 kg m−1s−2

H 4000 m

φ̂ 10.1◦

Table 1. Parameter values used throughout this paper

Figure 2 shows contours of the non-dimensional form of (20) when µ = 10−7 s−1, 10−6 s−1

and 10−5 s−1 with other parameter values listed in Table 1. The streamfunction is non-
dimensionalised by Ψ0 = τ0R

2/(ρfHa2). Negative values of the streamfunction are contoured
using dashed lines in figure 2 and all contour plots shown hereafter. In figure 2(a) the inviscid
interior solution occupies the majority of the domain and is characterised by meridionally
aligned flow as predicted by (16). As dissipation increases figures 2(b,c) reveal that the two
gyres rotate in a counter clockwise sense and the flow is everywhere influenced by bottom
friction. It is also instructive to compare (20) with the equivalent f -plane solution, the details
of which are given in the Appendix.

For fixed φ, (14) increases monotonically with r. In contrast, consider the azimuthal wind
stress

τ r = 0 , τφ = τ0 r̂
2 e−αr sinφ .
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Figure 3. Contour plot of the wind stress curl (21) when (a) α = 6/a; (b) α = 2/a. Contour interval is 0.05.

which decays to zero for large r. We find that

k ·∇×
(
τ

ρH

)
= F =

1

r

∂

∂r

(
rτφ

ρH

)
=

τ0 sinφ

ρHa2
(3− αr)r e−αr , (21)

and from (5) we observe that the velocity field is bounded at the origin. Figure 3 shows
contours of (21) for two values of the parameter α. In figure 3(a) the wind stress curl vanishes
at r = a/2 and we refer to this type of field as a mode 2 radial structure. In contrast, the curl
in figure 3(b) has a mode 1 radial structure. The interior Sverdrup balance is given by

f

R2

∂ΨI
∂φ

= F ,

which upon integration yields

ΨI = − τ0R
2

ρfHa2
cosφ (3− αr)r e−αr . (22)

Using the boundary layer analysis above we find that the total solution is given by

Ψ = − τ0R
2

ρfHa2
cosφ (3− αr)r e−αr

+
τ0R

2

ρfHa
cosφ (3− αa) e−αa exp

[
− s√

2R

]
cos

[
s√

2R
+ φ

]
. (23)

Figure 4 shows contours of the non-dimensional form of (23) when α = 6/a (in which case
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(a) s-1a (b) s-1a (c) s-1a

(f) s-1a(e) s-1a(d) s-1a

Figure 4. Contour plots of the dimensionless velocity streamfunction (23). Panels (a-c) correspond to µ = 10−7 s−1,
10−6 s−1 and 10−5 s−1, respectively, where α−1, the e-folding radial decay scale of the wind stress curl (21) is given by
α−1 = a/6. Panels (d-f) are analogous to except α−1 = a/2. Contour interval is 0.05.

F = 0 at r = a/2) and when α = 2/a. Equation (23) is non-dimensionalised using Ψ0 as defined
in the dimensionless form of (20). As noted in figure 2, the streamline pattern rotates counter
clockwise with increasing bottom friction. For the radial mode 2 solution shown in figure 4(a-
c) the cells adjacent to the basin wall are all but removed by friction when µ = 10−5 s−1. In
contrast, the two cell flow that is confined to the basin interior in figure 4(d-f) preserves its
structure as bottom friction increases and exhibits only slight counter clockwise rotation.

4. Boundary forced solutions

The Arctic basin is connected to the North Atlantic via the Greenland-Iceland-Norwegian
(GIN) Sea and the Labrador Sea and to the North Pacific via the Bering Strait. Viewing
a prototype model of the Arctic Ocean as a circular basin, the exchange of water masses
between this basin and the North Atlantic and North Pacific is represented by a prescribed
streamfunction at the boundary r = a. This approach is well illustrated by representing the
exchange of water masses through the GIN Sea driving a circulation in the Arctic basin. For
convenience we will neglect wind stress forcing in this section and we consider the solution of
the boundary forced problem

µr∇2Ψ +
rf

R2

∂Ψ

∂φ
= 0 , (24)
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subject to

Ψ = ΨB(φ) on r = a . (25)

Specifically we consider

ΨB(φ) =


T

2H
cos

(
πφ

φ̂

)
, − φ̂ ≤ φ ≤ φ̂ ,

0 , otherwise,

(26)

where T is the volume transport across
[
0, φ̂

]
, H is the depth of the ocean and arc length

2aφ̂ is representative of the width of the GIN Sea at 70N◦, say. Across the open boundary we
see from (26) that

au = − ∂ΨB
∂φ

=
πT

2Hφ̂
sin

(
πφ

φ̂

)
, (27)

and therefore the exchange of water across the open boundary, r = a, 0 ≤ φ ≤ φ̂ is given by

V =

∫ φ̂

0
auH dφ =

πT

2φ̂

∫ φ̂

0
sin

(
πφ

φ̂

)
dφ = T ,

using (27), with an equal and opposite volume transport across −φ̂ ≤ φ ≤ 0.

4.1. Exact solution

We seek a 2π-periodic solution of (24) of the form

Ψ̂ =
∞∑

n=−∞
Gn(r)einφ . (28)

Hereafter, we treat f as constant in (24). Substituting (28) into (24) yields the governing
equation for Gn:

r2 d2Gn
dr2

+ r
dGn
dr

+

(
−n2 +

infr2

µR2

)
Gn = 0 . (29)

The bounded solution of (29) is given by

Gn = an Jn

(
r

R

( inf

µ

)1/2
)
, (30)

where Jn is the Bessel function of the first kind of order n and an is an arbitrary constant.
Applying the boundary condition (26) and using (28) and (30) we obtain

∞∑
n=−∞

an Jn

(
a

R

( inf

µ

)1/2
)

einφ =


T

2H
cos

(
πφ

φ̂

)
, − φ̂ ≤ φ ≤ φ̂ ,

0 , otherwise,

which enables the coefficients an to be determined:

an Jn

(
a

R

( inf

µ

)1/2
)

einφ =
1

2π

∫ φ̂

−φ̂

T

2H
cos

(
πφ

φ̂

)
e−inφ dφ . (31)
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We find that

an =
Tn sin

(
nφ̂
)

2HπDJn
(
a(inf)1/2

/
R
√
µ
) , ∀n , where D ≡ n2 −

(
π

φ̂

)2

. (32a,b)

Finally, after some algebra the exact solution can be written

Ψ =
T

πH
Re

{ ∞∑
n=1

n sin
(
nφ̂
)

D

Jn
(
r(inf)1/2

/
R
√
µ
)

Jn
(
a(inf)1/2

/
R
√
µ
) einφ

}
, (33)

where Re denotes the real part of the complex function. Computationally, evaluation of (33)
requires care due to the complex arguments of the Bessel functions. Therefore, we enquire
whether a more computationally straightforward, albeit approximate solution, can be ob-
tained.

4.2. Approximate solution

Recall that the frictional boundary layer solution takes the form

Ψ̂ =
0∑

n=−∞
an exp

[
−(1 + i)

s

R

√
|n|
2

]
exp(inφ)

+
∞∑
n=1

an exp

[
−(1− i)

s

R

√
n

2

]
exp(inφ) , where s =

a− r√
µ/f

.

On s = 0 (i.e., r = a) we require that

Ψ̂(0, φ) =
∞∑

n=−∞
aneinφ =


T

2H
cos

(
πφ

φ̂

)
, − φ̂ ≤ φ ≤ φ̂ ,

0 , otherwise,

We find that

an =
Tn sin

(
nφ̂
)

2πHD
,

where D is defined by (32b). Finally, the approximate boundary forced solution takes the form

Ψ̂ = − T

πH

∞∑
n=1

sin
(
nφ̂
)

D
exp

[
− s

R

√
n

2

]
cos

(
s

R

√
n

2
+ nφ

)
. (34)

Figures 5 and 6 show contour plots of the non-dimensional forms of (33) and (34), respec-
tively, for a range of values of µ. The scaling factor used in the non-dimensionalisation is
Ψ0 = T/(2H). Other parameter values are listed in Table 1. When bottom friction is small
the recirculating cells are oriented in the direction of the phase velocity of planetary Rossby
waves (clockwise) that would be responsible for establishing the steady flow in a spin-up prob-
lem form rest. As bottom friction increases the cells become less deflected and are becomes
aligned in a radial direction, albeit with decreased magnitude. Figure 6 shows that although
the approximate solution qualitatively reproduces the flow characteristics it overestimates the
radial penetration of the flow into the basin.
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Figure 5. Contour plots of the dimensionless velocity streamfunction (33) driven by inflow and outflow across
[
− φ̂ , φ̂

]
when; (a) µ = 10−7 s−1; (b) µ = 10−6 s−1; (c) µ = 10−5 s−1. Contour values are ±0.01, ±0.02, ±0.05, ±0.1, ±0.2,
· · · , ±0.8.

5. Boundary forced circulation in a basin with a shelf

We extend the boundary forced solutions discussed in section 4 by introducing a step shelf of
uniform depth H1 and uniform width (1−ε)a, where 0 ≤ ε ≤ 1. A schematic of the basin with
the step shelf is shown in figure 7. Region 1 refers to the shelf and Region 2 refers to the deep
inner circular basin of radius εa and depth H2. For a non-uniform depth basin it is convenient
to define a volume transport streamfunction, rather than the velocity streamfunction used
above, because the matching conditions at the shelf edge r = εa are simplified. The volume
transport stream function Ψ is defined as

Hru = −∂Φ
∂φ

,
Hv

cos θ
=

∂Φ

∂r
, (35a,b)

which leads to a minor modification of the prescribed transport inflow/outflow boundary
condition (26), namely

ΦB(φ) =


T

2
cos

(
πφ

φ̂

)
, − φ̂ ≤ φ ≤ φ̂ ,

0 , otherwise.

(36)

The governing equation for Φ is again given by (24) subject to the boundary condition (25),
where ΦB is now given by (36). Following the identical method of solution used in section 4
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Figure 6. As in figure 5, except that the approximate boundary layer solution (34) is contoured.

we find that the solutions for Φj in Region j (j = 1, 2) are given by

Φ1 =
∞∑

n=−∞

[
bnJn

(
r

R

( inf

µ

)1/2
)

+ cnYn

(
r

R

( inf

µ

)1/2
)]

einφ , (37a)

Φ2 =

∞∑
n=−∞

anJn

(
r

R

( inf

µ

)1/2
)

einφ , (37b)

where the coefficients an, bn and cn are to be determined and Yn denotes the Bessel function
of order n of the second kind.

At the shelf edge continuity of the normal volume transport and pressure yield, respectively,
the following matching conditions: [

Φ
]

= 0 , at r = εa , (38a)[
f

rH

∂Φ

∂φ
+

µ

H

∂Φ

∂r

]
= 0 , at r = εa . (38b)

Applying (36) we obtain

bnJn

(
a

R

( inf

µ

)1/2
)

+ cnYn

(
a

R

( inf

µ

)1/2
)

= − T

2π

n sin
(
nφ̂
)

D
, (39)
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Figure 7. Schematic of the polar basin with a step shelf.
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while application of the matching conditions (38) yields

anJn

(
εa

R

( inf

µ

)1/2
)

= bnJn

(
εa

R

( inf

µ

)1/2
)

+ cnYn

(
εa

R

( inf

µ

)1/2
)

(40)

and

(µf)1/2

2H1R

{
bn

[
Jn−1

(
εa

R

( inf

µ

)1/2
)
− Jn+1

(
εa

R

( inf

µ

)1/2
)]

+ cn

[
Yn−1

(
εa

R

( inf

µ

)1/2
)
− Yn+1

(
εa

R

( inf

µ

)1/2
)]}

= an

{
(µf)1/2

2H2R

[
Jn−1

(
εa

R

( inf

µ

)1/2
)
− Jn+1

(
εa

R

( inf

µ

)1/2
)]

− f(∆H)(in)1/2

εaH1H2
Jn

(
εa

R

( inf

µ

)1/2
)}

. (41)

In (41), we have ∆H = H2−H1 > 0. Inspection of (39) to (41) revealed that a0 = b0 = c0 = 0
and that

e−2m = e∗2m , e−(2m−1) = − e∗2m−1 (42a,b)

where em is any one of the family of coefficients am, bm, and cm (m = 1, 2, 3, · · · ), and the
asterisk denotes complex conjugate. Using (42) we can simplify the solutions (37):

Φ1 = 2Re

{ ∞∑
n=1

[
bnJn

(
r

R

( inf

µ

)1/2
)

+ cnYn

(
r

R

( inf

µ

)1/2
)]

einφ

}
, (43a)

Φ2 = 2Re

{ ∞∑
n=1

anJn

(
r

R

( inf

µ

)1/2
)

einφ

}
. (43b)

Contour plots of the solutions (43), non-dimensionalised by T/2, are plotted for a range of
values of bottom friction and shelf width and depth. The step shelf in figure 8 is relatively
shallow compared with the depth of the deep basin with H1 = 500m and H2 = 4000m. In
figures 8(a-c) the bottom friction coefficient µ = 10−6 s−1 and we observe that the flow is
confined to the shelf in all cases, with the axes of the circulation cells oriented in the direction
of the phase velocity of planetary waves. When µ = 10−5 s−1 in figure 8(d-f) the flow is again
confined to the shelf with the axes of the circulation cells oriented zonally. Figure 9 shows
the effect of decreasing the depth of the deep basin to 1000m. In figure 9(a-c) µ = 10−5 s−1

and we observe that significant flow occurs in the deep basin, especially as the shelf width
decreases. Frictional boundary layers centred at the shelf edge are responsible for breaking
the severe constraint that steady geostrophic flow is aligned along isobaths and allow fluid to
cross the shelf break. Indeed, when bottom friction is reduced (µ = 10−6 s−1) in figure 9(d)
compared with figure 9(c) we see that the flow is once again confined to the shelf.

In summary, when bottom friction is of the order of 10−5 s−1 and for small ∆H we find that
significant flow crosses the shelf break.

6. Discussion

It is self-evident that in a closed polar basin, of the type considered in this study, that the
circulation will be characterised by gyres. We observe significant differences in the gyre struc-
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Figure 8. Contour plot of the dimensionless transport streamfunction (43), H1 = 500m, H2 = 4000m. The shelf width
is (1− εa), where ε = 0.5, 0.7 and 0.8 in (a-c), respectively, and µ = 10−6 s−1 is fixed. Contour plots (d-f) as in (a-c),
except that µ = 10−5 s−1. Semi-circular contours designate the locations of shelf. Contour values are ±0.0025, ±0.005,
±0.01, ±0.02, ±0.05, ±0.06, ±0.07, ±0.08.



May 8, 2015 Geophysical and Astrophysical Fluid Dynamics paper-edit˙8

Barotropic wind and boundary-driven circulation on a polar plane 17

0 500 1000 1500
-1500

-1000

-500

0

500

1000

1500
(a)

0 500 1000 1500

(b)

0 500 1000 15000 500 1000 1500
-1500

-1000

-500

0

500

1000

1500
(a) s-1 (b) s-1

(c) s-1 (d) s-1

Figure 9. As in figure 8, except H1 = 500m, H2 = 1000m and ε = 0.5, 0.7 and 0.9 in (a-c) respectively, with
µ = 10−5 s−1 fixed. In plot (d) µ = 10−6 s−1 and ε = 0.9. Contour values are ±0.0025, ±0.005, ±0.01, ±0.02, ±0.05,
±0.08.
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ture in a basin on an f -plane compared with the equivalent basin on a polar plane (e.g.,
comparing figures A1 and 2(a)) despite the fact that the changes in the value of the Coriolis
parameter with distance from the pole are small. In practice, the gyre structure is controlled
by the external forcing (i.e., wind stress, buoyancy forcing and cross-basin pressure gradients
associated with water mass exchange with the marginal seas), stratification, topography and
dissipative processes. Sea ice can also significantly modify the shear stress at the top of the
water column wherever the ice is not in free-drift. Clearly, incorporation of all these factors in
one of the first analytical models of the steady-state circulation in a closed circular basin on a
polar plane would be unrealistic. Instead, the approach adopted in this study is to develop new
solutions for the steady-state wind and boundary driven circulation in closed circular basin
located on a polar plane. Only the simplest topography is considered, namely a step shelf
of uniform width. The effects of stratification, major ridges, and time dependent dynamical
features such as eddies and sea ice are neglected. Nevertheless, the value of this model is that
it provides an independent method of assessing the fidelity of ocean circulation models of the
Arctic Ocean.

Although the simplest models of the Arctic Ocean treat the basin as a closed circular
basin centred at the pole the reality is very different. The Bering Strait allows exchange of
water masses between the Arctic and the Pacific. Similarly the Canadian Archipelago and the
Greenland Iceland-Norwegian Seas allow exchange of water masses between the Arctic and
the Atlantic basins. These water mass exchanges play a key role in the formation of dense
and intermediate water masses (Woodgate et al. 2005, Schauer et al. 2002). In an extension
to the work presented here we suggest that it would be appropriate to study the steady state
circulation in a polar basin driven by sources and sinks of water located on the boundary
of the basin. Additionally, a first attempt at analytically modelling the important effects of
stratification would be to use a 2-layer model to capture the pronounced stratification observed
in the upper 150m of the water column (Woodgate 2005).
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Appendix A: f-plane solutions

Neglecting variations of f with latitude, the vorticity equation (8) reduces to Poisson’s equa-
tion

µ∇2Ψ = rk ·∇×
(
τ

ρH

)
. (A.1)

It is straightforward to obtain the solution of (A.1) for wind stress curl (14):

Ψ =
τ0r
(
r2 − a2

)
sinφ

8ρHa2µ
. (A.2)

A contour plot of (A.2), normalised by the factor aτ0/(8ρHµ), is plotted in figure A1. On the
f -plane the wind driven solution corresponds to a pair of anti-symmetric gyres with the flow
in geostrophic balance.
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Figure A1. Contour plot of the dimensionless velocity streamfunction (A.2) on an f -plane for comparison with the
polar-plane plot in figure 2(a).

The equivalent f -plane solution for wind stress curl (21) is given by

Ψ =
τ0 sinφ

20ρHa2µ
re−ar

[
r2 − 13

r

α
− 13

α2

]
+

τ0 sinφ

20ρHa2µ
re−ar

[
13
a

α
+

13

α2
− α2

]
. (A.3)

Figure A2 shows contour plots of (A.3), normalised by the factor τ0ae−ar/(20ρhµ), for two
values of α. A pair of anti-symmetric gyres in which the flow is geostrophically balanced is
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observed in both plots. The absence of the Sverdrup balance on the f -plane gives rise to the
mode one radial gyre structure.
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Figure A2. Contour plot of the dimensionless velocity streamfunction (A.3) on an f -plane, where; (a) α−1 = a/6; (b)
α−1 = a/2 for comparison with the polar-plane plots in figure 4(a) and (d) respectively. Contour interval is 0.05.


