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Abstract 16 

We use ~7,000 km² of high-resolution swath bathymetry data to describe and map the submarine 17 

glacial geomorphology, and reconstruct Late Pleistocene ice sheet flow configurations and retreat 18 

dynamics within the Inner Hebrides, western Scotland. Frequently dominated by outcrops of 19 

structurally complex bedrock, the seabed also comprises numerous assemblages of well-preserved 20 

glacigenic landforms typical of grounded ice sheet flow and punctuated ice-margin retreat. The 21 

occurrence and character of the glacially streamlined landforms is controlled in part by the shallow 22 

geology and topography, however these factors alone cannot account for the location, orientation, 23 

and configuration of the observed landforms. We attribute the distribution of these elongate 24 

streamlined landforms to the onset zone of the former Hebrides Ice Stream (HIS) - part of a major 25 

ice stream system that drained 5-10%  of the last British-Irish Ice Sheet (BIIS). We suggest this 26 

geomorphic signature represents the transition from slow ‘sheet flow’ to ‘streaming flow’ as ice 27 

accelerated out from an environment characterized by numerous bedrock obstacles (e.g. islands, 28 

headlands), towards the smooth, sediment dominated shelf. The majority of streamlined landforms 29 

associated with the HIS indicate ice sheet flow to the southwest, with regional-scale topography 30 

clearly playing a major role in governing the configuration of flow. During maximal glacial conditions 31 

(~27-23 ka) we infer that the HIS merged with the North Channel-Malin Shelf Ice Stream to form a 32 

composite ice stream system that ultimately reached the continental shelf edge at the Barra-33 

Donegal Trough-Mouth Fan. Taken collectively however, the pattern of landforms now preserved at 34 

seabed (e.g. convergent flow indicators, cross-cutting flow sets) is more indicative of a thinning ice 35 

mass, undergoing reorganization during overall ice sheet retreat (during latter stages of Late 36 

Weischselian glaciation). Suites of moraines overprinting the streamlined landforms suggest partial 37 

stabilization of the HIS prior to the ice sheet retreating to more isolated, topographically confined 38 

troughs and basins. Retreat from the shelf towards, and back into the Inner Hebrides may have been 39 

rapid due the prevalence of overdeepened troughs. Within the near-shore fjord-like troughs and 40 

deeps, basin-aligned streamlined landforms indicate the subsequent flow of thinner topographically 41 

partitioned ice masses, and overprinted moraines record further ice margin retreat, potentially along 42 

tide-water margins. This work provides the first geomorphological constraints for this large marine-43 

influenced sector of the former BIIS. We also shed new light on the glacial geomorphic record found 44 

at the transition from terrestrial to marine continental-shelf settings, and examine the interplay 45 

between substrate geology, bed topography/bathymetry, and grounding-line positions - 46 

relationships which are important for characterizing contemporary marine ice sheet margins.  47 



1. Introduction 48 

Empirically derived ice-sheet reconstructions based on the extant glacial landform record are 49 

important for refining and constraining glaciological models which can in turn help to explain ocean-50 

atmosphere-cryosphere interactions over millennial timescales (e.g. Boulton & Hagdorn, 2006; 51 

Hubbard et al., 2009; Pollard & De Conto, 2009). Ice streams are of particular interest within the 52 

glaciological system as they act as high flux corridors facilitating the discharge of the majority of an 53 

ice sheet’s mass via a tributary network (e.g. Bamber et al., 2000; Truffer & Echelmeyer, 2003; 54 

Bennett, 2003).  Contemporary studies in West Antarctica show that these ice stream systems are 55 

undergoing rapid change, partly driven by the migration of grounding-line positions, which may 56 

fundamentally alter the ice sheet’s dynamic behaviour within marine sectors (e.g. Favier et al., 57 

2014).  58 

Several major ice streams have been identified within the former (Pleistocene) British-Irish Ice Sheet 59 

(BIIS) based on a combination of onshore and offshore geomorphological mapping, although 60 

knowledge is still lacking for key marine sectors owing to a paucity of data. One such area is offshore 61 

the central west coast of Scotland discussed in this manuscript, stretching from Skye in the north to 62 

Islay in the south and encompassing the ice divide (or saddle) between the Scottish and Irish ice-63 

mass centres (Figs. 1,2). Research on the glacial history of the west coast of Scotland spans back at 64 

least 150 years (Geikie, 1863), however detailed studies of past glaciation have been until recently, 65 

focused primarily on terrestrial observations and data  (e.g. Gregory, 1927; Dawson, 1982; Sissons, 66 

1983). Not surprisingly, the scarcity of suitable marine data has limited researchers’ ability to 67 

characterize the incursion of ice into the marine realm. And while a detailed description of offshore 68 

Quaternary deposits alongside a seismo- stratigraphic framework was established for the Inner 69 

Hebrides by Binns et al. (1974) and Davies et al. (1984), this analysis pre-dated the more recent 70 

understanding of how ice streams govern ice-sheet drainage (e.g. Stokes and Clark, 2001), and of 71 

their impact on mass balance through dynamic binge/purge cycles (e.g. Hubbard et al., 2009). 72 

It is the application of improved glaciological theory together with the increasing availability of high-73 

resolution marine geophysical data which has enabled researchers to more accurately reconstruct 74 

the extent and dynamics of glaciation on both currently (e.g. Jamieson et al., 2012), and formerly 75 

glaciated continental margins (e.g. Todd et al., 2007; Andreassen et al., 2008; Jakobsson et al., 2014).  76 

Bathymetry data in particular have been instrumental in advancing our understanding of marine-77 

occupying ice sheets, particularly where acquired over extensive geographic areas.  High-resolution 78 

swath bathymetry allows researchers to view the seabed as a continuous resolved surface (~50 cm-79 

20 m horizontal resolution depending on depth) which may be interpreted using well-established 80 

geomorphological techniques (e.g. Clark, 1997; Hubbard and Glasser, 2005).  Bathymetry data also 81 



bring further value to interpreting co-registered or legacy seismic and core data, where seabed 82 

morphology may draw attention to otherwise undescribed or unnoticed sub-seabed glacigenic 83 

features.  As approximately two thirds of the BIIS was probably marine based during the Last Glacial 84 

Maximum (Clark et al., 2012), this approach is of increasing importance for understanding the glacial 85 

history in and around the British Isles. 86 

While a large convergent flow system has been tentatively proposed for this sector of the BIIS 87 

(draining the high ground of NW Ireland, western Scotland and the Inner Hebrides, and terminating 88 

at a large Pleistocene sediment depocentre on the continental shelf – the Barra-Donegal Fan) (Fig. 1) 89 

(Stoker et al., 1994; Bradwell et al., 2008), these conceptual models have only recently been 90 

supported and refined by in situ data. Bathymetry and shallow seismic data have shed important 91 

new light on the ice-flow configuration in the region offshore NW Ireland and on the Malin Shelf 92 

(Dunlop et al., 2010; Ó Cofaigh et al., 2012) and further north in the Sea of the Hebrides (Howe et al., 93 

2012).  94 

This paper addresses a key data gap between Ireland and the Sea of the Hebrides, and in particular 95 

explores the transition zone from terrestrial to marine continental-shelf setting.  By adopting a 96 

systematic geomorphological approach to map the seabed within the Inner Hebrides of western 97 

Scotland, we examine the glacial landform evidence revealed in a large bedrock-dominated area of 98 

seabed (~7,000 km²); reconstruct the pattern of ice flow and deglaciation; and test recently 99 

proposed models of glaciation in this important marine-influenced ice-sheet sector (Fig. 2) (e.g. 100 

Finlayson et al., 2014; Dunlop et al., 2010)  101 

1.1. Setting 102 

Within the marine environment of the Inner Hebrides, the Quaternary stratigraphy has not been 103 

significantly revised since Davies et al. (1984), who utilized the first systematic geophysical and 104 

coring survey data around the Inner Hebrides. They observed several regionally persistent 105 

seismostratigraphic units overlying bedrock, that likely incorporate pre- Weichselian, Weichselian, 106 

and Holocene sediments (Fig. 3). Age control is poorly constrained in the region due to the scarcity 107 

of samples, and contamination by sediment reworking within the samples (from glacial, and more 108 

recent hydrodynamic regimes).  The few existing radiocarbon dates from within glacigenic sediments 109 

come from a single seismostratigraphic unit, Jura Formation), and suggest deposition from Late 110 

Weichselian through to the Holocene (~16 ka-10ka) (Harkness and Wilson, 1974; Peacock et al., 111 

2012). Ages of older stratigraphic units were simply inferred by Davies et al. (1984), extrapolating 112 

down section using stratigraphic principles, and hypothesizing links to regional palaeoceanographic 113 

events.  114 



The acoustically well-layered Jura Formation is interpreted to have formed in dynamic glacimarine 115 

(possibly Younger Dryas) and marine setting, with notably fewer dropstones than the underlying 116 

Barra Formation, which is acoustically distinct. The silty clays of the Barra Formation are interpreted 117 

to have accumulated rapidly following glacial recession, and are in turn underlain by the Hebrides 118 

Formation, a diamict interpreted as glacial till. This till unit was also recognized by Boulton et al. 119 

(1981), and is thin, discontinuous, and commonly preserved within localized structural basins.  Of 120 

particular interest for understanding the glacial history of the region is a laterally extensive erosion 121 

surface which separates the Hebrides Formation from an underlying glacimarine unit termed the 122 

Stanton Formation.  Davies et al. (1984) acknowledged that this erosional surface can be traced far 123 

onto the continental shelf, potentially indicating that Scottish mainland-sourced ice reached the 124 

shelf break during full glacial conditions. Despite also observing several large ~SW-NE oriented 125 

valleys cut further into underlying units, they instead preferred the interpretation that the majority 126 

of the ice flowed south towards the Irish Sea and English Midlands, reverting to results from 127 

terrestrial geomorphological studies (Sissons, 1983). Fyfe et al. (1993) applied this stratigraphic 128 

model as part of a regional mapping effort, but also importantly observed that the topography of the 129 

prominent erosion surface indicates that ice flowed southwest across the Inner Hebrides area.  130 

More recently, Howe et al. (2012) shed new light on the Davies et al. (1984) model by linking the 131 

proposed Quaternary stratigraphy to landform assemblages mapped from high-resolution swath 132 

bathymetry in the Sea of Hebrides, a subset of the data presented here.  Observing an array of 133 

glacigenic landforms and large overdeepened basins, Howe et al. (2012) proposed that an ice stream 134 

drained a large sector of the western BIIS, flowing southwest before turning west around the Outer 135 

Hebridean platform towards the shelf break, and ultimately terminating at the Barra-Donegal Fan 136 

(Fig. 1). Using the geomorphic evidence available at the time, they postulated that the onset zone of 137 

this ‘Hebrides Ice Stream’ was located within the Inner Hebrides. While not analyzing new marine 138 

data, Finlayson et al.’s (2014) synthesis of glacial geomorphological data from SW Scotland and the 139 

North Channel has implications for BIIS dynamics within this important marine-influenced sector. 140 

They propose a sequence of events whereby ice flow switched from southward to westward and 141 

back, during various stages of Mid to Late Weichselian glaciation. Combining existing and new 142 

geomorphic constraints together with all available chronological data, this step-wise reconstruction 143 

utilizes the elevation of geomorphic observations to differentiate between key phases of ice-sheet 144 

flow and retreat within the region.   145 

Farther offshore more distal evidence of glaciation(s) has been identified which impacted the Inner 146 

Hebrides. Whilst there was a glaciologically independent ice cap occupying the Outer Hebrides (e.g. 147 



Stone and Ballantyne, 2006), it has been shown that the BIIS reached the continental shelf edge 148 

during the last glacial period, through a combination of studies employing core-seismic associations 149 

(e.g. Stoker, 1994; Serjup et al., 2005), geomorphology based on medium-resolution ‘Olex’ 150 

bathymetry (Bradwell et al., 2008; Clark et al., 2012), and palaeoceanographic studies investigating 151 

the occurrence of ice-rafted debris (IRD). Analysis of IRD in sediment cores is widely used as a proxy 152 

for the enhanced activity of a marine-terminating ice margin, although debates still surround key 153 

processes (e.g. the glaciodynamic processes that lead to calving events and their exact relationship 154 

with spikes in IRD production).  Analysis of sediment cores adjacent to the former BIIS, from the 155 

Barra-Donegal Fan, used multiple IRD finger-printing techniques to identify which mineral 156 

components relate primarily to BIIS vs. Laurentide Ice Sheet iceberg delivery (e.g. Knutz et al. 2001; 157 

Scourse et al. 2009). These studies indicate that major growth of the BIIS occurred from ~29 ka, 158 

reaching its maximum extent at ~27 ka (Fig. 1). Significant iceberg discharge events from the BIIS are 159 

recorded in IRD from 27 ka onwards, followed by a marked decrease from 23 ka (Knutz et al. 2001; 160 

Peck et al., 2007). 161 

2. Data and Methods 162 

In this study we utilize a large compilation of vessel-based swath bathymetry to map the glacial 163 

geomorphology of the seabed within the Inner Hebrides (Fig. 2). To further inform this mapping we 164 

analyse legacy BGS seismic data revealing the shallow sub-seabed. NEXTMap airborne radar data 165 

provide high-resolution topography data along the adjacent coast for context.  166 

The vast majority of the ~7,000 km² of near-continuous swath bathymetric coverage from Skye in 167 

the north to Mull of Kintyre in the south was acquired for the Maritime & Coastguard Agency’s 168 

(MCA) Civil Hydrography Programme (CHP). This forms part of an ongoing survey programme co-169 

ordinated by the UK Hydrographic Office to update nautical charts, and improve safety at sea in UK 170 

waters (https://www.ukho.gov.uk/AboutUs/Pages/HydrographicNotes.aspx). The study area 171 

incorporates Hydrographic Instruction survey areas: 1257, 1297, 1298, 1299, 1329, 1362, 1354, 172 

1364, and 1371. Bathymetry surveys conducted on behalf of the CHP were acquired to the 173 

International Hydrographic Organisation (IHO) Order 1a from multiple vessels between 2008 and 174 

2013, using several different echosounding transducers (both multibeam and interferometric 175 

systems).  Post-acquisition data processing routines also varied by survey, however many 176 

contractors exploit the Combined Uncertainty and Bathymetry Estimator (CUBE) (Calder and Mayer, 177 

2003) module within Caris HIPS and SIPS along with manual swath editing.  Bathymetry data on the 178 

Canna High were acquired by the British Geological Survey (BGS) with the initial purpose of mapping 179 

https://www.ukho.gov.uk/AboutUs/Pages/HydrographicNotes.aspx


benthic habitats to underpin the designation of Marine Protected Areas 180 

(http://www.snh.gov.uk/docs/A1034852.pdf).   181 

We have compiled these bathymetric survey datasets and nominally gridded the data to 5 m 182 

resolution using QPS Fledermaus software, exporting to floating point geotifs. The bathymetry data 183 

were further stitched together with NEXTmap topographic radar data (also 5 m resolution) in ESRI 184 

ArcGIS to form a near-continuous onshore-offshore digital elevation model (Fig. 2). We use the term 185 

‘near-continuous’ as there remains a narrow band of unsurveyed seabed within near-shore waters, 186 

typically in water less than 5-10 m depth where vessels were unable to access.  187 

Glacigenic landforms at seabed were manually delineated using ESRI ArcGIS software, interpreted 188 

from  the swath bathymetry and derived properties (hillshade, slope, rugosity).  To assist 189 

interpretation the data were also analysed in a 3D visualization environment using Geovisionary 190 

software whereby illumination and other data presentation variables can be rapidly adjusted. 191 

Seabed landforms were mapped as polygons (delineating base of slope) rather than lines where 192 

possible to assist in morphometric analysis and to potentially examine morphometric variation along 193 

hypothesized glacial flow lines. This involved re-mapping some landforms previously presented in 194 

Howe et al. (2012) where many landforms were represented by lines only. Landforms were also 195 

divided into a simple compositional classification scheme (Bedrock and Bedrock dominated, 196 

Sediment and Sediment dominated) to potentially enhance our understanding of formation 197 

processes (Stokes et al., 2011), but also to ensure the wider applicability of the resulting seabed 198 

maps. 199 

Landform composition was interpreted according to two primary criteria:  200 

1- Where available, legacy BGS shallow seismic-profile data were consulted to determine 201 

whether landforms are sediment cored or bedrock cored, or a combination of the two (e.g. 202 

crag and tail).  Examining the sub-bottom data allows for sub-seabed characteristics to be 203 

linked to seabed geomorphic signatures, thereby improving the confidence of our mapping 204 

where there is no shallow seismic data;  205 

2- As closely spaced seismic lines have not been acquired in the region, the majority of 206 

landforms were mapped from the bathymetry data alone by analysing seabed morphology 207 

within the regional geological and hydrodynamic context.  For example, sediment-cored 208 

landforms approximate theoretical forms(smoother, more symmetric), whereas bedrock-209 

cored structures are more irregular and influenced by local bedding and structural trends.  210 

http://www.snh.gov.uk/docs/A1034852.pdf


Mapping was conducted at 1:10,000-1:20,000 scale, and is intended to be presented at 1:50,000 211 

scale such that all significant features (>50 x 50 m) have been captured (Tobler, 1988). Taking into 212 

account that we are presenting a ‘broad-scale’ mapping effort, there remains significant unmapped 213 

complexity at seabed that with further study will yield a more detailed understanding of past 214 

processes.  215 

3. Results 216 

Mapping has revealed an extensive set of well-preserved glacigenic landforms on the seabed in the 217 

Inner Hebrides region of western Scotland (Figs. 4-7). And while the present study focuses on the 218 

glacial history of the region, many other non-glacial geomorphic features are observed on the 219 

bathymetric data including: widespread outcrops of ocean-current swept bedrock (Proterozoic 220 

through Cenozoic in age), (Fyfe et al., 1993); networks of large bedrock faults (Smith, 2012); fluid-221 

escape pockmarks in surficial sediments (Howe et al., 2012); and mobile sediment bedforms (e.g. 222 

sand waves) (Fig. 5).  It is therefore necessary to distinguish between the glacigenic landforms of 223 

interest to this study and other seabed features, some of which may mimic the attributes of glacial 224 

forms, (e.g. mobile sediment waves, or bedrock outcrops with structures roughly parallel to former 225 

ice-flow directions). 226 

3.1. Kilometre-scale features 227 

The submarine sector of the Inner Hebrides exhibits  variable bathymetric relief and several of the 228 

deepest basins inboard of the UK continental shelf break, including the Muck Deep at 320 m depth 229 

(Fig. 2).  The broad-scale relief shows evidence of Palaeozoic-Cenozoic tectonic events acting upon 230 

rocks as old as 2 Ga (e.g. Fyfe et al., 1993; Trewin, 2002; Smith, 2012; Howe et al., in press), while 231 

early Palaeogene volcanism has affected much of the region leaving a series of prominent, flat to 232 

gently westerly-dipping bedrock platforms (Fig. 2) (Emeleus and Bell, 2005; Browne et al., 2009). A 233 

detailed account of the complex bedrock and structural geology of the region is outside the scope of 234 

this paper, but it is worth noting that these basins and structures played a large part in controlling 235 

the flow and retreat dynamics of Quaternary glaciations, partially predetermining the locations of 236 

glacially overdeepened rock basins and troughs. In particular, EW trending joints (e.g. Muck Deep) 237 

and NNE-trending Mesozoic basins predisposed the glacial flow paths in the Sea of Hebrides south 238 

and west of the Great Glen Fault (Fig. 2) (Howe et al., 2012). It is likely that relative differences in 239 

pre-Cambrian Dalradian stratigraphy southeast of the Great Glen Fault governed the location and 240 

orientation of glacial overdeepening in the Firth of Lorn (Howe et al., in press) as well as the Sound 241 

of Jura. 242 



3.2. Streamlined Landforms 243 

While the kilometre-scale erosional landforms (rock basins and troughs) signify the influence of 244 

glaciation in the region, they provide an ambiguous record of past ice-sheet behaviour (e.g. 245 

structurally biased orientation, formation over multiple glacial cycles).  Mesoscale (tens of metres to 246 

kilometres) streamlined features provide a more direct means of reconstructing past glacial flow 247 

directions, and in certain circumstances ice-sheet dynamics.  Across the study area we observe a 248 

wide range of streamlined landforms, smooth and elongate, exhibiting both symmetric and 249 

asymmetric forms (e.g. teardrop) (Figs. 4-7). Up to several kilometres in length, these streamlined 250 

forms are preserved on multiple submarine rock platforms (e.g. Canna High (Fig. 6a)) and within 251 

overdeepened troughs where they are typically oriented parallel, or sub-parallel to dominant basin 252 

axes (e.g. Sound of Jura (Fig. 7)).  From their seabed expression as well as acoustic character based 253 

on seismic data, the features may be formed of unlithified sediment or bedrock, or both. Sediment-254 

only features may reach 20 m in height with elongation ratios ranging from 2:1 to 10:1. Streamlined 255 

forms comprising some bedrock component may be up to 50 m in height, with elongation ratios 256 

commonly exceeding 10:1, though this is biased by structural trends in the underlying bedrock.  257 

Morphologically similar to features observed elsewhere on the UK continental shelf (e.g. Bradwell et 258 

al., 2007) and on other formerly glaciated continental margins (e.g. Ottesen et al., 2005; Graham et 259 

al., 2009), we interpret these streamlined features as subglacial landforms, predominantly crag-and 260 

tails, drumlins, and flutings, elongated parallel to the direction of former ice-sheet flow (Stokes and 261 

Clark, 2001).  Equivalent landforms have also been observed being formed and maintained under 262 

active ice streams (e.g. King et al., 2007). We have mapped over 2,000 streamlined landforms within 263 

the study area, which include sedimentary and bedrock forms. 264 

3.2.1. Interpretation of Landform Record – Streamlined Landforms 265 

The majority of the streamlined landforms within the study area are interpreted to represent ice 266 

flow to the SW, particularly on the western margins of the study area (Fig.8: yellow arrows). Locally, 267 

landforms exhibit a consistent orientation and are organized into clear flow sets.  Where landforms 268 

deviate from the dominant flow direction, further complexity of the ice sheet’s flow history may be 269 

inferred. Farther to the east and within terrestrially confined basins and fjords, landform orientation 270 

is more variable, and more clearly topographically controlled (aligned to local basin axis) (Fig. 7). It is 271 

also important to note that while streamlined sedimentary features explicitly reflect palaeo-ice 272 

sheet flow direction, bedrock dominated features are predisposed by pre-glacial fracture and 273 

bedding-plane orientation, and may represent a composite record of erosion imparted over multiple 274 



glacial cycles (e.g. Lane et al., 2014). For this reason, bedrock, and bedrock-dominated landforms are 275 

less reliable indicators of palaeo-flow direction.  276 

In several places, multiple streamlined landforms are superimposed to form larger composite 277 

streamlined features, demonstrating that different landform types are frequently observed together 278 

within a particular area. This grouping of distinct landform types is frequently associated with 279 

changes in local physiographic and substrate conditions (e.g. relative position within a basin, or 280 

presence of bedrock at seabed). We find this relationship in general agreement with the 281 

observations by Stokes et al. (2011), who provide a systematic analysis of drumlins reported in the 282 

literature. Their resulting hypothesis is that variation in composition and geomorphology of 283 

subglacial drumlins within a particular terrain is more readily explained by a single glaciological 284 

process acting upon a variable substrate rather than multiple, distinct glaciological processes. 285 

Variation in drumlin character therefore often arises where formation mechanisms at the ice-bed 286 

interface interact with, and modify the pre-existing and variable surficial and shallow geology. 287 

Large parts of the survey area are mantled by a variable thickness of glacimarine (Jura and Barra 288 

Formations) and Holocene sediment, particularly in deeper water away from coastlines and 289 

upstanding bedrock platforms (Fig. 3) (Davies et al., 1984; Fyfe et al., 1993; Howe et al., 2012).  It is 290 

likely that many more landforms are buried beneath this post-glacial sediment, and thus not 291 

expressed on the swath bathymetry data. In fact, such features are observed on seismic lines 292 

seaward of the large drumlin field west of Iona (Fig. 4). This evidence leads us to infer that the 293 

streamlined landforms observed at seabed are formed of subglacial sediments (where not eroded 294 

into bedrock) equivalent to the Hebrides Formation within the pre-existing regional seismo-295 

stratigraphic framework.  Underlying the Barra and Jura Formations, the Hebrides Formation 296 

(termed ‘Minch Formation’ by Boulton et al. (1981)) is a discontinuous coarse-grained diamict 297 

interpreted as subglacial till (Davis et al., 1984). Where present at seabed this diamict is likely very 298 

thin across the study area. Because of this, it is understandable how earlier investigations did not 299 

recognize glacigenic landforms in the seismic data, which is now possible due to the  significant 300 

advantage afforded by cross-referencing 2D seismic profiles with the high-resolution bathymetry 301 

data (Howe et al., 2012; this study). 302 

3.2.1.1 Cross-cutting flow-sets 303 

Off the west coast of Iona we observe two distinct flow sets of streamlined landforms, where a 304 

dominant SW directed flow set is superimposed by a later, less extensive SSW directed set (Fig. 4).   305 

This assemblage suggests ice-sheet reorganization over time, with different phases of fast flow at 306 

the ice-sheet bed (e.g. Stokes et al., 2009). The implication here is that the strong flow regime to the 307 



SW was decreased, evolving into a weaker, more localized SSW flow. The apparent diminishing and 308 

re-organization of the overriding ice mass indicates that the record of flow we are characterizing is 309 

probably associated with overall ice-sheet retreat. 310 

3.2.1.2. Convergent flow 311 

In Figure (5) we map a set of southerly directed drumlins converging on a more extensive trunk of 312 

larger streamlined landforms with a SW bearing.  The landforms here indicate that ice over 313 

Coll/Tiree did not flow directly west across the low-relief topography (maximum elevation ~140 m) 314 

of Tiree, but rather was drawn into the larger branch of SW directed flow, which extends to another 315 

large assemblage of landforms off Iona (Fig. 4). A similar phenomena is observed on the Canna High, 316 

where westerly flow over the platform is deflected to the southwest as ice moves off the platform 317 

into a deeper trough within the Sea of Hebrides (Fig. 6a) (Howe et al., 2012). This convergence 318 

provides evidence that ice-sheet drainage was also organized into corridors of flow which acted to 319 

draw in further tributaries of ice.  320 

3.2.1.3. Depth Distribution of Streamlined Landforms 321 

When comparing the depth distribution of all mapped streamlined landforms together with the 322 

frequency distribution of bathymetry data (m) across the survey area an interesting relationship 323 

emerges (Fig. 9). While landforms are found between 5 m and 250 m water depth, the majority lie 324 

between 25 m and 60 m water depth. One possible explanation for this apparent shallow water 325 

affinity is that the depth of landforms is simply a function of the variation in bathymetry across the 326 

area, i.e. most landforms fall between 25 m and 60 m because the majority of the seabed is at this 327 

depth interval. Indeed the frequency distributions (Fig. 9) demonstrate a clear relationship between 328 

the depth-distribution of landforms and the regional bathymetry, but there is a notable increase in 329 

the frequency of landforms (vs. bathymetry) observed between approximately 30 m and 50 m water 330 

depth. Visually we interpret this discrepancy to suggest other environmental variables are 331 

responsible for the depth of landforms, but to affirm this qualitative observation we conducted the 332 

Kolmogorov-Smirnov (K-S) test to examine the equality of the two distributions. The K-S test (Max D 333 

= 0.05 > 0.03 = Critical D) confirms there is a statistical difference between the two. As such we 334 

invoke other mechanisms to explain the concentration of features between 30 m and 50 m and 335 

propose that preservation potential provides the most likely explanation. 336 

As discussed in section 3.2.1, the glacially streamlined surface is very likely buried in deeper waters 337 

by post-glacial sediments, and we are confident that sediment burial is responsible for the relative 338 

dearth of landforms observed at seabed between 50 m and 100 m water depth. There is a near 339 

absence of landforms in water depths less than 20-25 m, which we tentatively attribute to wave 340 



erosion. Several locales within the Inner Hebrides exhibit extreme tidal flow (e.g. Corryvreckan), but 341 

as current strength is highly variable across the region, associated erosion is a geographically 342 

dependent process. We suggest that wave energy is the more dominant mechanism for erosion in 343 

shallow waters (i.e. <25 m). Waves disturb the seabed down to the wave base, the maximum depth 344 

at which surface waves may entrain seabed sediment. Wave base can be approximated as 1/2 the 345 

lateral wave period, and with periods in the Hebrides between 6-8 secs (~50-64 m) (Pantin, 1991; 346 

Sterl and Caires, 2005), this indicates the wave base is regionally around 25-32 m, which is consistent 347 

with our observations. This argument pre-supposes that the study area has been, on the whole, 348 

undergoing isostatic uplift since LGM at a greater rate than eustatic sea level rise (Shennan et al., 349 

2000), and thus relative sea level has fallen, progressively subjecting glacigenic landforms to marine 350 

erosion.  If this sea level model is not correct for the region (relative sea level was lower than 351 

present during some stage(s) since Late Pleistocene deglaciation), then  potential sub- aerial 352 

weathering  and marine transgression  would be prime candidates for causing the observed non-353 

uniform distribution of submarine glacial landforms. 354 

3.3. Ice-marginal Ridges  355 

3.3.1. Moraines 356 

Superimposed on the glacially streamlined seabed are numerous sediment formed, irregular ridges 357 

which are commonly perpendicular or near perpendicular to adjacent or underlying streamlined 358 

landforms (where present) (Figs. 5-7). The ridges are most commonly observed on upstanding 359 

bedrock highs, or found lying transverse to neighbouring coastlines.   The ridges are commonly 1-8 m 360 

high, approximately 50-100 m wide, and spaced between 500 m and 1 km apart. Although there is 361 

variation in size, spacing, and configuration of these landforms, we interpret them to be moraines, 362 

based on their affinity with ice-marginal features mapped on other formerly glaciated margins (Fig. 363 

8) (Benn and Evans, 2014). In the northern part of the study area, several groups of moraines were 364 

previously described by Howe et al. (2012), and indicate ‘pinned’ glacial retreat along the coastlines 365 

of Skye and Rum. Farther south, moraines are found on a bedrock platform between Tiree and Mull 366 

(Fig. 5), off the west coast of Islay (Fig. 6b), and within the Sound of Jura (Fig. 7.). 367 

3.3.1.1. Interpretation of Landform Record - Moraines 368 

Offshore from Tiree, well preserved moraines record ice margin retreat to the northeast (Fig. 5).  The 369 

configuration of these moraines varies according to local physiography, and they clearly overprint 370 

the underlying streamlined landforms as well as exposed bedrock at seabed, indicating a more 371 

recent formation. 372 



Offshore from Islay, ice margin retreat has had a more destructive effect on the pre-existing 373 

landform assemblage, depositing multiple small arcuate moraines that appear to deform the 374 

underlying streamlined landforms (Fig. 6b).  Similar to the moraines off Rum and Skye (oriented 375 

normal to the adjacent coastlines) these moraines suggest ‘pinned’ ice margin retreat, in this case 376 

along the broad bedrock platform between Islay, and Colonsay to the North (Fig.  2). An alternative 377 

interpretation is that these transverse ridges could be ribbed moraines, thereby associated with ice 378 

flow, and potentially inter-related with ice streaming and the surrounding drumlins (e.g. Dunlop and 379 

Clark, 2006).  380 

Along of the Sound of Jura we find a well preserved series of approximately trough-perpendicular, 381 

equally spaced ridges (~1 km) which we interpret as recessional moraines (Fig. 7). Evenly distributed 382 

between these moraines are further sets of smaller, minor transverse ridges which appear similar in 383 

form and spacing (50-100 m) to De Geer moraines, which are indicative of sub-aqueous deposition 384 

(Fig . 7 - inset) (e.g. Todd et al., 2007). This landform assemblage together with the convex ‘up-385 

glacier’ inclination across the trough, and the over-deepened bathymetry of the Sound of Jura leads 386 

us to suggest that ice-sheet retreat occurred here along a tidewater margin, grounded in the 387 

shallows, potentially with small ice shelves extending over deeper water (e.g. Ottensen & 388 

Dowdeswell, 2006).  As elsewhere within the study area, these moraines overprint the glacially 389 

streamlined landscape.  In places the De Geer moraines sit atop the relative high of the drumlinized 390 

forms, but not surrounding areas, thus delineating the streamlined shape. This again raises the 391 

alternative hypothesis that the ridges could instead be ribbed moraines. We would argue however 392 

that this mimicry is a consequence of preservation rather than origin (draping hemi-pelagic 393 

deposition within relative deeps), and that the orientation of the minor transverse ridges, which 394 

mirrors that of the larger recessional moraines, is more compatible with ice margin retreat, than the 395 

preceding ice streaming events.  396 

3.3.2. Sinuous Ridges 397 

At a number of locations (e.g. Figs. 4, 6a), we observe narrow sinuous ridges (3-5 m high, ~100 m 398 

wide) with rounded crests.  The ridges are often bifurcated and found on localized bathymetric 399 

highs, commonly atop eroded streamlined landforms.  Ridge profiles appear smoother, and 400 

morphologically distinct from other moraines in the region, and ridge orientations are incongruent 401 

with expected ice margin retreat patterns (i.e. recession broadly towards hinterland).  Howe et al. 402 

(2012) tentatively interpret the features on the Canna High as moraines, but we alternatively 403 

suggest they may be eskers, deposited by glaciofluvial processes near the retreating ice margin.  404 

While the identification of eskers in a submarine setting is relatively rare (e.g. Todd et al., 2007), the 405 

orientation of the ridges (sub-parallel to underlying streamlined landforms) here is perhaps more 406 



compatible with this hypothesis than a morainic origin. Unfortunately, we have no ground-truthing 407 

data from these features to determine ridge composition, so further work is required to ascribe an 408 

origin to these features. 409 

4. Discussion 410 

On multiple submarine rock platforms and within overdeepened troughs, assemblages of glacially 411 

streamlined landforms and superimposed ice-marginal landforms provide a clear record of flow, and 412 

subsequent ice-sheet retreat across the region (Fig. 8). The occurrence of glacigenic landforms is 413 

controlled in varying degrees by the geology, topography, and water depth (elevation control on 414 

preservation potential), however these factors alone cannot account for the location, orientation, 415 

and pattern of the observed landforms. We consider the geomorphic evidence together with 416 

previous findings to draw inferences about the regional flow and retreat dynamics of the BIIS within 417 

the Inner Hebrides, and extrapolate these interpretations out towards the shelf. 418 

4.1. Hebrides Ice Stream – Onset and ice stream pathways 419 

Apart from the more isolated assemblages observed within topographically confined, fjord-like 420 

basins  in the east of the study area (e.g. Sound of Jura (Fig. 7)), streamlined landforms are found 421 

across the region within a geographically controlled zone: an approximately north-south oriented 422 

belt along the western margin of the Inner Hebrides (Fig. 8). We interpret that this notable 423 

concentration ice-flow indicators is consistent with the hypothesis of Howe et al. (2012) that an ice 424 

stream drained this sector of the BIIS, and that the head of this ice stream system was located within 425 

the Inner Hebrides. It is also consistent with ice-sheet modelling studies that predict multiple phases 426 

of streaming flow originating in the region (e.g. Boulton and Hagdorn, 2006; Hubbard et al., 2009).  427 

With new bathymetry data greatly increasing the archive of mapped ice-flow indicators in the 428 

region, we amend the previously proposed zone(s) of ice stream onset (Howe et al., 2012) as well as 429 

reconstruct the regional flow patterns associated with the Hebrides Ice Stream (Fig. 8). 430 

The observed north-south oriented belt of streamlined landforms frequently corresponds to the 431 

margin between bedrock platforms in the east, and sediment-filled troughs to the west (Figs. 2,8). 432 

We suggest that within the proposed onset zone, convergent ice movement transitioned from ‘sheet 433 

flow’ to  ‘streaming flow’ as ice travelled from the rugged hinterland, accelerating out across the 434 

smooth sediment dominated shelf, establishing a stable flow pattern over time (e.g. King et al., 435 

2007; Bradwell et al., 2007; De Angelis and Kleman, 2008). While many argue that drumlins and 436 

other streamlined landforms result from the relatively fast flow of ice over its bed (e.g. Stokes and 437 

Clark, 2001; Ó Cofaigh et al., 2005), others suggest drumlins may only signify ice travelling 438 



consistently along a continuous flow path, i.e. fast flow is not required (e.g. Winsborrow et al., 439 

2010).  We don’t seek to address this debate with the newly presented data, but rely on the 440 

consensus that streamlined landforms in rock and soft sediment reflect the coherent flow of ice over 441 

its bed. 442 

The eastern margin of the proposed ice stream onset zone is characterized by a sharp decline in 443 

streamlined landforms observed from west to east across the area (Fig. 8). This supports the 444 

glaciodynamic interpretation for the origin of this decline, as this boundary shows no consistent 445 

correlation with substrate geology, water depth, or observable landform erosion/burial. Streamlined 446 

landforms are observed on, and eroded into multiple bedrock types throughout the study area (e.g. 447 

Tertiary Basalt – Canna (Fig. 6a); Dalradian metasedimentary rocks – Sound of Jura (Fig. 7)). Although 448 

some local bedrock types and structural characteristics (e.g. bedding plane strike) appear more 449 

conducive to preserving geomorphic evidence of glaciation (Figs. 4-7), the concentration of 450 

streamlined landforms along the north-south belt appears semi-independent of the variations in 451 

bedrock lithology (Fyfe et al., 1993). For example, east of Coll there is a sharp decline in landforms 452 

from southwest to northeast where there is no corresponding change in bedrock type, and no 453 

change to the extent of bedrock exposed at seabed (i.e. no obscuring sediment cover) (Fig. 8). 454 

Further to this, water depths across this boundary (declining landforms to northeast) are 455 

consistently greater than 25 m, therefore the seabed should not be disproportionately impacted by 456 

the marine erosion which is found to inhibit preservation of shallow landforms elsewhere in the 457 

study area (Section 3.2.1.3) (Figs. 9).  458 

We extend the eastern limit of onset within several broad bathymetric troughs (e.g. SE of the Canna 459 

High) as we expect these seabed deeps would have served as topographic pathways focussing ice-460 

sheet flow (Figs. 2, 8). This interpretation remains tentative though as some troughs are filled with 461 

over 100 m of post-glacial sediment (Fyfe et al., 1993) covering any potential geomorphic evidence. 462 

This same phenomenon makes the western margin of the onset zone more difficult to constrain, as 463 

the streamlined glacial surface generally dips to greater depths towards the west, becoming 464 

progressively obscured by post-glacial sediment (Section 3.2.1) (Figs. 3,9).  Revisiting legacy 2D 465 

seismic data to investigate the sub-surface could improve our understanding, but it may require 3D 466 

seismic to confidently identify characteristic features along (multiple?) buried horizons (e.g. Graham 467 

et al., 2007). 468 

While ice stream onset provides the most satisfactory explanation for the geographic distribution of 469 

streamlined landforms along the western margin of the Inner Hebrides, topography (acting at 470 

different scales) appears to be the primary influence on the orientation of the observed landforms.  471 



Within the proposed Hebrides Ice Stream onset zone, landform orientation appears to be 472 

independent of local-scale topography (i.e. feature orientation largely insensitive to dominant slopes 473 

within ~0-10 km), but significantly influenced by the regional topographic setting (10s -100s kms) 474 

(Figs. 1,8). Looking southwest from the projected glacial flow paths it becomes apparent how 475 

regional-scale topography played a role in governing ice-sheet flow dynamics (e.g. Winsborrow et 476 

al., 2010) (Fig. 8). The Lewisian Skerryvore Bank southwest from Coll and Tiree separates two broad, 477 

structurally-controlled troughs which are further interrupted to the west by the Stanton Banks. 478 

Observed ice flow signatures within the onset zone are directed towards (e.g. west of Mull), or 479 

aligned according (e.g. deflected flow vectors off the Canna High) to the axes of these large troughs 480 

which are carved up to 200 m below the surrounding seabed. This indicates that ice stream 481 

tributaries within the Inner Hebrides were influenced by, and ultimately drawn into these larger 482 

branches of the ice-sheet drainage network out towards the continental shelf, at least for the period 483 

when the observed streamlined features were formed. Further illustrating this influence, the 484 

convergence of a smaller ice stream tributary (southerly bearing flow-set) being drawn into a larger 485 

branch (SW bearing) southeast of Tiree demonstrates that streaming was probably also organized 486 

into conduits of relatively slower and faster flow, or at least tributaries of lesser or greater 487 

dominance (Fig. 5). This flow configuration also suggests that the bedrock platform incorporating 488 

Coll and Tiree likely served as an ice-sheet ‘sticky’ spot (e.g. Stokes et al., 2007), where flow was 489 

retarded by the protruding ‘islands’ relative to the fast-flow regimes established to the north and 490 

south within the troughs. Taking account of the accumulated geomorphic evidence and regional 491 

physiography, we propose that the two large troughs hosted dominant branches of the composite 492 

Hebrides Ice Stream, where streaming initiated along the western margin of the Inner Hebrides 493 

(onset zone), merged along a medial line between Tiree and the Stanton Banks, and directed flow 494 

across the Malin Shelf towards the Barra-Donegal Trough-Mouth Fan (Fig. 8).  495 

4.2. Hebrides Ice Stream – Wider Implications  496 

We have identified and described a well-constrained strongly convergent ice-sheet flow 497 

configuration that accommodated drainage within a significant sector (5-10%) of the BIIS. We are 498 

aware however that the observed landform record likely represents only a limited time interval and 499 

may not be representative of maximal glacial conditions. Empirical observations from other sectors 500 

(e.g. Bradwell et al., 2008; Scourse et al., 2009) as well as ice sheet-wide modelling studies (e.g. 501 

Hubbard et al., 2009) indicate a complex and dynamic evolution of the BIIS during the Late 502 

Pleistocene, with varying spatial flow configurations adopted over multiple growth and decay cycles. 503 

Across the Inner Hebrides region, several recent studies suggest ice-sheet flow (mass flux and 504 

direction) differed dramatically between full glacial conditions when grounded ice reached the 505 



continental shelf break, and more reduced glacial conditions when the ice-sheet was thinner and 506 

more constrained by local topography (Dunlop et al., 2010; Clark et al., 2012, Finlayson et al., 2014). 507 

Future investigations of the sub-surface, and the refinement of the glacial seismic stratigraphy (Fig. 508 

3) are required to place the observed seabed record of glaciation into context with potentially 509 

preceding Late Weichselian ice streaming events, as well as pre-Weichselian glacial periods. 510 

A further consideration for understanding the evolution of the Scottish-based ice mass within the 511 

Inner Hebrides is how it interacted with Irish-based ice, and ice occupying the Irish Sea basin (e.g. 512 

Greenwood and Clark, 2009). The apparent sensitivity to migrating ice divides in the region 513 

influenced flow configurations over time, leading to regional fluctuations that may have been 514 

asynchronous with overall mass-balance changes of the BIIS (e.g. Finlayson et al., 2014; Hughes et 515 

al., 2014). For example, an advancing Irish Sea Ice Stream would draw-down areas of ice that 516 

otherwise may have flowed west towards the Barra-Donegal Trough-Mouth Fan (Fig. 1) (e.g. Clark et 517 

al., 2012; Chiverell et al., 2013).  Indeed Dunlop et al. (2010) observe a series of glacigenic landforms 518 

on the Malin Shelf indicating periods of confluence, and alternating dominance of Scottish vs. Irish-519 

based ice. Like Dunlop et al. (2010), we interpret that during full glacial conditions (~27-23 ka; Peck 520 

et al., 2007; Scourse et al., 2009) the Hebrides Ice Stream would have merged with the North 521 

Channel-Malin Shelf Ice Stream issuing from parts of south-west Scotland, the Irish Sea basin, and 522 

Ireland (e.g. Greenwood and Clark, 2009; Finlayson et al., 2014) to form the composite ‘Barra Fan Ice 523 

Stream’ system which ultimately reached the shelf margin (Fig. 8) (e.g. Stoker et al., 1994; Ó Cofaigh 524 

et al., 2012).  525 

We would argue that a similar flow configuration (as described above) could have existed during 526 

maximal glacial conditions as the large degree of regional-scale topographic control appears 527 

sufficient to accommodate drainage for this sector of the LGM BIIS. Reconstructions and modelling 528 

studies support this hypothesis (e.g. Boulton and Hagdorn, 2006; Hubbard et al., 2009; Hughes et al., 529 

2014), though the exact configuration would be further dependent on factors like the relative 530 

influences of the North Channel-Malin Shelf ice stream, ice thickness over north-eastern Ireland, and 531 

the semi-independent ice mass centred on the Outer Hebrides (Fig. 1) (e.g. Stone and Ballantyne, 532 

2006).  For example, a smaller ice mass on the Outer Hebrides would have allowed a more westerly 533 

component to flow, but the apparent topographic steering of mainland ice to the southwest may 534 

have rendered this ice-buttressing effect insignificant. 535 

Rather than resulting from ice-sheet drainage during a maximal glacial configuration, we interpret 536 

the pattern of landforms preserved at seabed to more specifically relate to flow characteristics 537 

during overall ice-sheet retreat (~23-17 ka, Scourse et al., 2009; Finlayson et al., 2014).  Convergent 538 



flow indicators (Fig. 5), cross-cutting flow sets (Fig. 4), and divergent flow indicators (Fig. 6b), are 539 

signatures more indicative of a thinning ice mass undergoing reorganization as part of an overall, but 540 

punctuated retreat (e.g. Conway et al., 2002; Stokes et al., 2009). Further supporting this 541 

interpretation, ice flow indicators (~SW bearing) offshore Islay show no influence from the North 542 

Channel-Malin Shelf Ice Stream, which is proposed to have been directed to the WNW, and 543 

confluent with the HIS during full glacial conditions (Fig. 8) (Greenwood and Clark, 2009; Dunlop et 544 

al., 2010). Terrestrial observations (including the orientation of glacial landforms, transport 545 

directions of erratics, and glacial striations) from Kintyre, Arran, Islay, and Jura also suggest that 546 

during maximal glacial conditions, these land masses were over-run by ice, with flow directed to the 547 

WNW (Synge and Stephens, 1966; Dawson, 1997; Cousins, 2012; Finlayson et al. 2014).  Thick ice, 548 

coupled with drawdown towards large western troughs, is likely to have diminished the influence of 549 

local topography, enabling the westerly flow direction of ice.   550 

Taken together, the location and orientation of streamlined glacigenic landforms provide evidence 551 

of a large ice stream (HIS) delivering ice from the Inner Hebrides out towards the Malin Shelf, but 552 

nuances in the pattern of these landforms suggest that this streaming probably occurred during a 553 

period of ice-sheet reorganization and overall retreat.  Under this regime, we interpret that the 554 

progressive reconfiguration of the ice sheet would have resulted the abandonment and/or migration 555 

of flow pathways, with flow vectors increasingly constrained by local-scale topography as the ice 556 

mass thinned. As the landforms remain well preserved at seabed, and are frequently overprinted by 557 

normally oriented moraines (Figs. 5, 8), we infer this represents the last activity of the HIS prior to 558 

ice retreating to more isolated, topographically confined fjords. Retreat from the shelf towards and 559 

into the Inner Hebrides may have been rapid due the prevalence of overdeepened troughs which 560 

would have facilitated accelerated retreat, via tide-water margins retreating into deeper water (e.g. 561 

Todd et al., 2007; Jamieson et al., 2012). 562 

4.3. Subsequent Confined flow and retreat. 563 

East, and farther landward of the proposed HIS onset zone we observe other, though fewer 564 

(excluding the Sound of Jura) assemblages of glacially streamlined landforms within isolated, 565 

topographically confined troughs and basins. Primarily aligned with local basin axes, the orientation 566 

of these landforms is more strongly controlled by topography than those attributed to the HIS, and 567 

thus more variable across the region (Fig. 8). We interpret these landforms to have formed following 568 

the collapse of the HIS as ice pulled back into smaller tributaries and fjords where the stable flow of 569 

thinner, topographically partitioned ice masses was temporarily re-established (e.g. Clark and 570 

Meehan, 2001). 571 



We interpret the overprinting of recessional moraines atop the streamlined landforms (both types 572 

well preserved at seabed) to suggest that retreat began after the cessation of ice streaming within 573 

these confined basins. And while we present no new absolute chronological data to constrain this 574 

transition or the rate of retreat, an extensive series of recessional moraines within the Sound of Jura 575 

provides geomorphic evidence on the style of this retreat. The recessional moraines are further 576 

subdivided by evenly spaced minor transverse ridges, which taken together indicate a rhythmic 577 

retreat up the fjord (Fig. 7). As we have interpreted these minor transverse ridges as De Geer 578 

moraines, and recognizing the overdeepened bathymetry of the Sound of Jura, we hypothesize that 579 

retreat likely occurred along tidewater margins (e.g. Todd et al., 2007).  A radiocarbon age from the 580 

Sound of Jura, published by Peacock (2008), indicates that ice retreat was complete by 13.1 14C ka BP 581 

(approximately 15 cal ka BP).  Moraines observed elsewhere in the study area are commonly 582 

oriented normal to adjacent landmasses (e.g. Skye, Rum), indicating punctuated glacial retreat as the 583 

regions complex topography provides multiple ‘pinning points’ to temporarily stabilize ice-sheet 584 

margins during late-stage retreat from the marine environment (e.g. Favier et al., 2012). 585 

There remains a paucity of Pleistocene chronological data from the marine environment around the 586 

Inner Hebrides, and we do not present new age data here. Dating the deglaciation of this ice-sheet 587 

sector forms part of a wider research programme, which is currently underway (Clark et al., 2014). 588 

Instead, we have attempted to place our observations into a relative chronological framework, 589 

making comparisons with other regional observations and utilising existing ice-sheet reconstructions 590 

and ice-sheet modelling experiments. We find that our observations of the streaming phase of the 591 

HIS, and subsequent retreat to confined positions within the fjords where further flow and retreat is 592 

recorded, are broadly consistent with the spatial reconstructions proposed by Finlayson et al. (2014).  593 

Applying their event timescale implies the HIS was active from approximately 32-17 ka, though 594 

probably underwent significant fluctuations in mass-flux and spatial extent during this period (e.g. 595 

peak: ~27-23 ka (Scourse et al., 2009; Finlayson et al., 2014)). With HIS break up around 17-16.5 ka, 596 

the ice-sheet would then have retreated to the confined fjords and basins of the Inner Hebrides 597 

where final marine influenced retreat occurred between approximately 16.5 ka and 16 ka (Fig. 8).  598 

5. Conclusions 599 

We identify and map approximately 2,200 glacigenic landforms relating to spatially variable ice-600 

sheet flow, and ice margin retreat of the last British-Irish Ice Sheet (BIIS) within the submarine 601 

environment of the Inner Hebrides, Scotland. Illustrating the value of extensive, high-resolution 602 

swath bathymetry data for the purposes of palaeoglaciology, the interpreted geomorphic record has 603 



significant implications for understanding the pattern and timing of Late Pleistocene ice-sheet flow, 604 

reorganization, and decay for a large sector (5-10%) of the BIIS.  605 

Streamlined landform assemblages (both bedrock and sediment-dominated) indicate the coherent 606 

flow pattern of a grounded ice-sheet, probably within the upper reaches (onset zone) of the 607 

Hebrides Ice Stream. The spatial distribution of landforms left behind by the Hebrides Ice Stream 608 

demonstrates the significant influence of regional-scale topography in governing the configuration of 609 

ice-sheet flow in this region, an affect which is particularly notable at the terrestrial-to-marine 610 

transition. This work also provides important insight for understanding how the Hebrides Ice Stream 611 

would have interacted with Irish-based, and further Scottish-based ice issuing from the Irish Sea 612 

when the ice masses were confluent. Suites of morainic landforms indicate numerous still-stands or 613 

minor ice-marginal advances during overall ice-sheet thinning and retreat. The retreat of the marine-614 

dominated Hebrides Ice Stream may have been rapid, as has been suggested for neighbouring 615 

marine-influenced sectors of the ice-sheet (such as the Minch ice stream to the north) (Bradwell & 616 

Stoker, 2015). Initial rapid retreat was probably followed by more punctuated ice-front retreat 617 

around the rugged islands and topographically pronounced headlands fjords and basins where stable 618 

flow was temporarily re-established. Further decay, and final ice-sheet retreat from the marine 619 

environment was likely achieved within the glacially overdeepened fjords along tidewater margins. 620 

Empirically derived reconstructions such as this are particularly important for understanding the 621 

retreat history and dynamics of marine-based, or strongly marine-influenced ice sheets like the 622 

former British-Irish Ice Sheet as the terrestrial record alone may provide incomplete, or ambiguous 623 

evidence of deglaciation. This work further highlights the high preservation potential of landforms in 624 

a submarine setting, and the importance of acquiring extensive seismic (sub-surface) data to provide 625 

complimentary three-dimensional perspectives.  We also explore poorly understood aspects of 626 

landform preservation in the marine environment (e.g. post-glacial sedimentation-landform burial 627 

and marine erosion) that may bias our interpretations where aspects like relative sea level change 628 

are not well constrained over time. And although the excellent bathymetric data have enabled a 629 

detailed reconstruction of past ice-sheet dynamics, chronological control is lacking in this region, and 630 

further sampling and dating of glacigenic material is required to test the hypotheses presented here. 631 
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Figure captions: 811 

1) Regional bathymetry with Inner Hebrides study area delineated in red. Palaeoglaciological 812 

reconstruction modified from Howe et al. (2012) where hypothesized ice stream flow paths 813 

and trough mouth fan extents were derived from Stoker  et al. (1995), Sejrup et al. (2005), 814 

Bradwell et al. (2007), Scourse et al. (2009), and Dunlop et al. (2010). Proposed LGM limit 815 

taken from Bradwell et al. (2008).  Ice stream onset zones proposed by Howe et al. (2012) 816 

are shown in blue (observed landforms) and orange (hypothesized) shading. Hebrides Ice 817 

Stream (HIS); Minch Ice Stream (MIS); Barra Donegal Fan (BDF); Sula SgeirFan (SSF). 818 

Bathymetry from GEBCO and BGS DigBath©NERC. 819 

 820 

2) High-resolution swath bathymetry data from the Inner Hebrides study area combined with 821 

NEXTMap digital terrain model. Insets for Figures 3-6 indicated by black boxes. Bathymetry 822 

data provided courtesy of the Maritime & Coastguard Agency's UK Civil Hydrography 823 

Programme © Crown copyright. Terrestrial topography data derived from Intermap 824 

Technologies NEXTMap Britain elevation data. 825 

 826 

3) Quaternary seismic stratigraphy according to Davies et al. (1984) and Fyfe et al. (1993). This 827 

simplified stratigraphic diagram is presented along an arbitrary E-W profile, and is modified 828 

from British Geological Survey (1987). Interpreted formation ages remain tentative due to 829 

sparse chronological control in the region. 830 

 831 

4) A) Bathymetry data from offshore Iona reveal assemblage of glacially streamlined landforms 832 

and several superimposed sinuous ridges of ambiguous origin (possible moraines or eskers).  833 

Inferred glacial flow paths indicated by white arrows. B) Inset box reveals cross-cutting flow 834 

sets of streamlined landforms where the dominant SW directed flow set (white arrows) is 835 

superimposed by a later, less extensive SSW directed set (black arrows). C) Interpreted 836 

glacigenic landforms from panel (A) area, with slightly thickened landform outlines drawn for 837 

clarity.  See Fig. 2 for location.  838 

 839 

5) A) Bathymetry data from offshore Tiree reveal assemblage of glacially streamlined landforms 840 

and recessional moraines overlying broad bedrock platform with bedding planes and 841 

deformational fabric apparent at seabed.  Convergence of streamlined landforms in the west 842 

suggests ice streaming was organized into corridors of slower and faster flowing ice (white 843 

arrows). Moraines indicate regular retreat to the northeast. B) Interpreted glacigenic 844 

landforms from panel (A) area, with slightly thickened landform outlines drawn for clarity.  845 

See Fig. 2 for location. 846 



  847 

6) A)  Bathymetry from broad bedrock platform southwest of Canna reveal assemblage of 848 

glacially streamlined landforms and several superimposed sinuous ridges of ambiguous 849 

origin (possible moraines or eskers) (Howe et al., 2012).  Inferred glacial flow paths indicated 850 

by white arrows. Note that the orientation of streamlined landforms changes towards the 851 

west, suggesting flow was deflected by a larger ice stream flowing SSW.  B) Bathymetry data 852 

from offshore Islay reveal assemblage of streamlined landforms and recessional moraines. 853 

Streamlined landforms appear to have been deformed by the retreating ice margin. 854 

Interpreted glacigenic landforms shown in insets for both panel areas A) and B) , with slightly 855 

thickened landform outlines drawn for clarity.  See Fig. 2 for location. 856 

 857 

7) A) Bathymetry data from the Sound of Jura reveal assemblage of glacially streamlined 858 

landforms and moraines overlying commonly exposed bedrock strata. Inferred glacial flow 859 

paths indicated by white arrows. Inset panel B) shows series of smaller transverse ridges 860 

distributed between larger recessional moraines. These are interpreted as De Geer 861 

moraines. C) Interpreted glacigenic landforms from panel (A) area, with slightly thickened 862 

landform outlines drawn for clarity.  See Fig. 2 for location. 863 

 864 

8) Interpreted geomorphological map and regional glaciological reconstruction illustrating key 865 

phases of ice flow and ice-margin retreat based on glacigenic landforms observed at seabed. 866 

Observed features and interpreted characteristics are described in the legend, and overlie 867 

the high-resolution study-area bathymetry presented in gray-scale and the regional 868 

bathymetry in blue-scale.  869 

 870 

9) Depth distribution of streamlined landforms. The depth (m) of all mapped landforms (black 871 

columns) compared with bathymetry (gray) (sub-sampled to 50 m cells) across the entire 872 

study area. To enable comparison between the two, frequencies were normalized to 873 

percentage (number of samples within given depth interval (5 m) / total number of samples 874 

(mapped landforms ≈ 1700 samples; bathymetric cells ≈75,000 samples)). Note the increase 875 

in mapped landforms (vs. bathymetry) between 30m and 50m. Tentative explanations to 876 

explain this difference are given for deeper (50-100 m) and shallower (<30 m) waters. 877 
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