nerc.ac.uk

North-South asymmetries in the polar thermosphere-ionosphere system: solar cycle and seasonal influences

Cnossen, Ingrid ORCID: https://orcid.org/0000-0001-6469-7861; Forster, Matthias. 2016 North-South asymmetries in the polar thermosphere-ionosphere system: solar cycle and seasonal influences. Journal of Geophysical Research, 121 (1). 612-627. https://doi.org/10.1002/2015JA021750

Before downloading, please read NORA policies.
[img]
Preview
Text
Copyright American Geophysical Union
Cnossen.pdf - Published Version

Download (1MB) | Preview

Abstract/Summary

Previous studies have revealed that ion drift and neutral wind speeds at ~400 km in the polar cap (>80° magnetic latitude) are on average larger in the Northern Hemisphere (NH) than in the Southern Hemisphere, which is at least partly due to asymmetry in the geomagnetic field. Here we investigate for the first time how these asymmetries depend on season and on solar/geomagnetic activity levels. Ion drift measurements from the Cluster mission show little seasonal dependence in their north-south asymmetry when all data (February 2001–December 2013) are used, but the asymmetry disappears around June solstice for high solar activity and around December solstice for low solar activity. Neutral wind speeds in the polar cap obtained from the Challenging Minisatellite Payload spacecraft (January 2002–December 2008) are always larger in the summer hemisphere, regardless of solar activity, but the high-latitude neutral wind vortices at dawn and dusk tend to be stronger in the NH, except around December solstice, in particular, when solar activity is low. Simulations with the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) more or less capture the behavior of the ion drift speeds, which can be explained as a superposition of seasonal and geomagnetic field effects, with the former being stronger for higher solar activity. The behavior of the neutral wind speed and vorticity is not accurately captured by the model. This is probably due to an incorrect seasonal cycle in plasma density around ~400 km in CMIT, which affects the ion drag force. This must be addressed in future work.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1002/2015JA021750
Programmes: BAS Programmes > BAS Programmes 2015 > Space Weather and Atmosphere
ISSN: 0148-0227
Additional Keywords: ionosphere, thermosphere, high latitude, neutral wind, plasma drift, magnetic field
Date made live: 22 Mar 2016 14:28 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/511405

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...