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Abstract

The natural resonances of the Earth-ionosphere cavity at frequencies between 5 and
100 Hz have been studied since the fundamental paper by Schumann. While the gross
features of the phenomena are now well understood, considerable work remains to be
done on their detailed behaviour. In the present study a high resolution, data adaptive
spectral technique is applied to digital electromagnetic data obtained at moderate
latitude. A particular feature of the method employed is that spectral properties
become available on the same time scale as many ELF events, thus both time local and
time averaged resonance features can be readily established. The technique can thus
be applied to both dynamic and steady-state descriptions of the cavity's properties.

For the data set considered, the technique adequately resolves the first six resonance
modes on a time scale of 0.75 s. The presence of higher order modes is also indicated.
The time averaged frequencies obtained are in accord with those of previous
experimental determinations. When the time local properties of individual transient
waveforms are examined, however, we observe a number of detailed effects which are
predicted by theory. The precise spectral structure of the resonance modes appears
influenced by the differing locations of the sources of transient excitation. In the case
of the first order resonance mode, the properties of the cavity consistently support
both singlet and doublet resonance behaviour.
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1.INTRODUCTION

ELF waves in the Earth-ionosphere waveguide, generated by the global sum of
thunderstorm activity, are able to propagate over large distances with very little
attenuation (GALEJS, 1964). The waveguide becomes a cavity resonator at such
frequencies and for a perfectly reflecting ionosphere the first five resonance modes
would be established at frequencies of 10.6, 18.4, 26.0, 35.5 and 41.1 Hz (MADDEN
and THOMSON, 1965).

In reality, due to energy losses, the first five modes have typical lower frequencies
observed at 7.8, 14.1,20.3, 26.3 and 32.5 Hz (MADDEN and THOMSON, 1965). These
are termed the Schumann Resonances. As pointed out by GALEJS (1961) and by POLK
(1969), the relative amplitudes of the resonance peaks in the Schumann power
spectrum depend primarily on the source-receiver separation (6), while the precise
values of the resonance frequencies depend not only on 6, but also on the electrical
conductivity of the ionosphere. Thus it is anticipated that the analysis of the Schumann
spectrum will permit a description of the world-wide average conductivity profile of
the lower ionosphere (TRAN and POLK, 1979a).

The resonant eigenfrequencies established from theory are a function of the
complexity of the model considered. In models which treat the ionosphere as
spherically symmetric, the eigenvalues of the wave equation are degenerate, giving
rise to single, precise eigenfrequencies for the resonant modes. Such degeneracy may
be partially or completely removed when azimuthal asymmetries in the waveguide
(e.g. the day-night ionospheric inhomogeneity) are taken into account. Under such
circumstances, frequency splitting of the fundamental resonant modes may occur
(MADDEN and THOMSON, 1965). An additional complication is introduced when the
Earth's magnetic field is taken into account. The presence of the magnetic field
necessitates the inclusion of gyrotropic waveguide properties and results in different
phase velocities for waves travelling in opposite directions around the Earth (BLIOKH et
al., 1980). This again has the resultant effect of producing frequency splitting of the
resonant modes. In the mathematical development of the field expressions, the
Legendre polynomials of degree n are replaced by the associated Legendre
polynomials of degree (2n+ 1), causing a (2n + 1) splitting of the resonant
frequency.
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BLIOKH et al. (1980) demonstrate such effects of the first (n = 1) resonant mode by
considering three models. Model (a) consists of a perfect Earth resonator, model (b)
consists of an Earth resonator with polar inhomogeneity and model (c) consists of an
Earth resonator with a dipole magnetic field. For model (a) the first mode has the
degenerate frequency of f = 10.6 Hz. In model (b) the waveguide can support
oscillations at two frequencies f (1) =8 Hz(m =0) and f(2) = 7.8 Hz (m = 1), where m is
the azimuthal wave velocity of the wave assumed to possess an exp (imQ) azimuthal
dependence. In model (c) the ( 2n+ 1) triplet split is observed with the frequencies
established at f (1) = 7.5 Hz (m = -1, west to east equatorial propagation), f(2) =8 Hz
(m=0) andf(3)=8.16 Hz (m=+1). The model parameters were chosen to
produce a normalized frequency of 8 Hz for the m = 0 mode.

The above models constitute 'steady-state' descriptions of the waveguide properties in
which the ionospheric conductivity profile is essentially fixed. Since the ionosphere has
dynamic properties, a number of papers detail how the electrical conductivity profile
of the lower ionosphere (C-, D- and E-regions) affects the characteristics of the
Schumann resonance spectra (MADDEN and THOMSON, 1965;TRAN and POLK, 1979b;
SENTMAN, 1983). TRAN and POLK (1976) have shown that the region which
determines the resonance frequencies is between 40 and 100 km. Different ionisation
mechanisms are responsible for maintaining the electrical conductivity at different
altitudes through this interval. lonisation sources include galactic cosmic rays (lower D-
or C-region), solar Lyman-a (D-region) and solar X-rays (E-region). Changes in the
intensity or availability of such sources therefore modulate the ionospheric
conductivity at the corresponding altitude. These variations in turn influence the
characteristics of the Schumann resonances. Typically, an increase of conductivity
below 63 km (lower D-region acting as a dielectric) would lower the resonance
frequencies, while an increase of conductivity within the upper D-region (acting as an
imperfect conductor) would lead to an increase in the resonance frequencies. In the
model ionosphere studied by TRAN and POLK (1979a), changes in the conductivity of
the D- and lower E-regions led to frequency shifts of 10% or more in the first three
resonance frequencies. TRAN and POLK (1979b) provide a method for evaluating
conductivity profiles based on three sets of observational parameters : (a) the exact
values of the resonance frequencies ;(b) the ratios of the spectral amplitudes at
successive resonance peaks ; (c) the bandwidths of the resonance peaks at the 90%
amplitude level.

SENTMAN (1983) has studied the effects on the Schumann resonance frequencies of
perturbations in a 'steady-state' exponential ionospheric profile as an aid in
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interpreting observations in terms of the sources of ionisation. The models used
provide overall frequency variations of £ 1.0, £ 1.5 and + 2.5 Hz forthen=1,2 and 3
Schumann resonance modes. In addition, fluctuations in the resonance frequencies
from observational data have been studied in relation to the occurrence of sudden
ionospheric disturbances, having onset times of the order of minutes (CANNON and
RYCROFT, 1982). In all cases it is necessary to establish precise values of the resonance
frequencies from experimental data sets over appropriate time windows.

The ELF waves propagate as a 0'th order TM mode in which the electric field is largely
radial. As a consequence, vertical antennas are often used as appropriate
omnidirectional receivers of the ELF noise in the audio and subaudio bands. Equally,
sensitive magnetometers, such as induction coils, measuring the horizontal
components of the magnetic field may also be used to provide equivalent data. Such
data sets have been used to estimate resonance frequencies with a temporal
resolution (integration time) of 13.6 min (CANNON and RYCROFT, 1982) and 17and 34
min (TRAN and POLK, 1979b). Such a long time base appears to be required due to the
Fourier techniques used to analyse the data sets. Using such data and integration
times, the typical frequency resolution is quoted as being 0.156 Hz (CANNON and
RYCROFT, 1982) and 0.125 Hz (TRAN and POLK, 1979b).

Clearly, any improvement in time and/or frequency resolution would assist in the
comparison of models and observations. The purpose of the present paper is to point
out the growing availability of digital audio frequency data sets and to demonstrate a
high time/frequency resolution spectral technique that can be applied in the analysis
of such data. The technique permits adequate frequency resolution over time windows
of several seconds for the n = 1 mode and less than one second for the higher modes.
Since such time windows are of the same order as the duration of many transient ELF
'‘events' (JONES and KEMP, 1971; BLIOK et al., 1980), the dynamic components of the
resonance phenomena are highly resolved and the average, or integrated, properties
can be established across relatively short time periods.

2. AUDIOMAGNETOTELLURIC DATA

Audiomagnetotelluric (AMT) geophysical investigations provide a means of studying
the Earth's electrical conductivity structure at shallow crustal depths. Methodologies
are described by KELLER (1971), STRANGWAY et al. (1973) and FISCHER (1982). The
basic data set collected at a given location consists of two (usually orthogonal)
horizontal telluric channels, measuring time changes in the induced electric field, and
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two components of the horizontal magnetic field. The bandwidth available is governed
by the magnetic sensors employed in the field instrumentation. AMT instrumentation
nominally covers the frequency range 1-100 Hz. However, the high frequency limit may
extend from 10 to 100 KHz.

Table 1. Frequency characteristics of the three decade data
scheme used in the present study

I Ju Af
Decade 1 10 100 400
Decade 2 1 10 40
Decade 3 0.1 1 4

f, low frequency — 3 dB point; fy, high frequency —3 dB
point ; Af, data sampling frequency. All frequencies in Hz.

The data described in the present study were acquired with a minicomputer based
AMT field system covering the bandwidth 0.01-100 Hz. Band-pass and notch filters are
applied to condition the analogue signals prior to 12-bit digitisation. The conditioning
scheme provides the 3 decades and sampling rates shown in Table 1. In relation to the
Schumann resonances, decade 2 provides data for studies of the n = 1 (8 Hz) mode,
while decade 1 provides data for studies of the higher order modes. The two decades
are collected across a window of 300 data points. The time interval for the collection of
each data window is thus 0.75s for decadel and 7.5sfor decade 2. Data collection
between successive data windows is at present discontinuous due to in-field
processing and data storage on a slow digital cartridge. Such discontinuities are not a
limitation to the subsequent spectral analysis, since the 300 data points sampled at
twice the Nyquist frequency provide sufficient degrees of freedom across the
bandwidth of each decade. Such temporal resolution is advantageous only if spectral
characteristics can be adequately resolved from the number of data points made
available in each data window. This question is considered in the following section.

When examining the data on these time scales it is possible that either the resonance
waveforms are totally absent, for certain data windows, or that the waveforms exhibit
large amplitude variance over successive data windows. Such amplitude variance is
common. An example is provided in Fig. 1, which displays decade 1 data (10-100 Hz)
for five successive data windows in two orthogonal telluric (induced electric) and two
orthogonal magnetic channels.
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For a single radial source filament, the horizontal magnetic field (H<I>.) generated is
proportional to the angular source-receiver separation (GALEJS, 1972) as:

0
H,, « 0 P, (cos 0),

where the subscript n is the resonance mode number and P. (cos 8) is the Legendre
function of order n. In spectral analysis of any given data window only power
magnitudes are required, since the cavity resonance may be excited simultaneously by
a multiplicity of incoherent sources. For each thunderstorm centre considered, the
lightning spectrum may be represented by the relation (GALEJS, 1961):

glw) = cxexp(—=9.1x 1073 w)

with c a constant and w angular frequency. The received power spectrum, G.(w), will
be (POLK, 1969):

P2 (02
G w) = J J. g(@)|H > sin 6 dO d¢
¢1 J 8

for a uniform distribution of g(w) between the limits 81, 82 and </J 1, </J 2 . For
multiple and distributed thunderstorm centres, the power spectrum received is thus
the sum of individual contributions of the form given above. The length of the data
windows used in the present study are of the same order as the time scales of the
models of lightning discharge (e.g. JONES and KEMP, 1971) and we therefore anticipate
large variations in signal/noise ratios.

The data examined in the present study were collected in western Anatolia (Turkey),
geographic coordinates 40.5°N, 30°E. The data were selected purely on the grounds of
good signal/noise ratios. The decade 1 and decade 2 data were collected on days 209
and 159, 1984, respectively.

3. DATA ANALYSIS

Figure 2 shows typical data recorded in orthogonal electric (E) and magnetic (H)
channels and the associated raw (unsmoothed) power spectra for decade 1 data.
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The relatively flat power spectra observed indicates a white noise process. In
calculating the power spectrum, and associated confidence limits, using the discrete
Fourier transform, it is necessary to smooth adjacent power estimates to reduce
variance. If it is assumed that the data consist of a white noise series (n(i)) of length N
.At, the fractional error € (the ratio of RMS deviation to mean) in the smoothed
spectral estimates is given by:

when the raw estimates are averaged over 2 m + 1 data points (JENKINS and WATTS,
1968). For a given fractional error, the raw spectral estimates must be smoothed over
the frequency interval Af given by:

1
Af =
2:N-At-¢?
Thus for a stable estimate of the power spectrum, € must clearly be small and the
estimate must be smoothed over a wide frequency range. The reliability of the
estimate is improved at the expense of frequency resolution unless N is made large.

If the time series is of autoregressive form, i.e.

M
n;+ z Amli—m = X;,

m=1

where x; is a white noise series, it is possible to improve the resolution beyond the
above limits for a given N. The property of the filter (a(m),m = 1,M) that generates the
autoregressive time series is determined by a small number of filter coefficients. The
filter coefficients can be determined using a finite portion of the autocorrelation
function R, = < n(i) n(i + m) > for m =0, M -1 and where the brackets denote ensemble
averages. The power spectrum can then be determined from the filter coefficients
obtained. This is the basis of the maximum entropy method of spectral analysis (e.g.
ULRYCH and BISHOP, 1975).

A number of methods exist for estimating the autoregressive (AR) filter coefficients.
Among these the algorithm due to BURG (1968) is both data adaptive and
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computationally efficient. The highest order filter coefficient (reflection coefficient) is
determined by minimizing the error power output from the filter fitted to the data in
both time directions. The remaining coefficients are calculated using the LEVINSON
(1947) recursive algorithm, which involves previously determined lower order filters.
The procedure is iterative and fits successively higher order autoregressive operators
to the data until a specified order is reached or a cut-off criterion is satisfied. This
procedure ensures that the filter is minimum delay, and therefore stable. When
referring to ME spectra we henceforth implicitly refer to Burg's algorithm.

Once the AR coefficients are determined, the power spectrum can be obtained
through the inverse of the z-transform of the filter scaled by the minimum residual
power of the input time series. The advantage of the power spectrum so derived is the
inherent frequency resolution, which is superior to any of the standard spectral
analysis techniques. It is worth noting that in the case of ME spectra, it is the area
under a given spectral peak that determines the power level, rather than the actual
peak height.

A major problem that arises in the use of the ME method is the determination of the
order of the AR process, i.e. the number of filter coefficients (M) that are sufficient to
describe the process. If M is too small, the data are underfitted, a smooth spectrum
will result and the high resolution capability of the method is lost. If M is too large and
the data are overfitted, undesired effects may occur. This problem has led to a number
of criteria to establish the correct order of the AR process. The most widely used
theoretical criteria are Akaike's final prediction error (FPE) criterion, (AKAIKE, 1969,
1970), Akaike's theoretical information criterion (AIC) (AKAIKE, 1974, 1976) and
Parzen's criterion for autoregressive transfer functions (CAT) (PARZEN, 1976). Other
empirical criteria have been proposed where the above fail or seem to be
inconclusive. The empirical criteria suggest limiting the order of the filter length (M) to
a given fraction of the data length (N). ULRYCH and CLAYTON (1976) propose a filter
length of between N/2 and N/3, while BERRYMAN (1978) proposes a length of
2N/In(2N).

For the present study, use was made of Akaike's FPE and AIC criteria. The behaviour of
the AR filter as monitored by the performance of these criteria shows a high degree of
variability between data windows. Figure 3a shows the results from six typical data
windows displaying the variation of FPE and AIC, normalized to unity, against the order
of the AR process, i.e. the number of filter coefficients M, where M ranges from 1 to
100. The data length in each case is N = 150. It can be seen that the normalized FPE
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and AIC parameters display a series of local minima, rather than the expected
monotonically decreasing character, while the absolute minimum displays large
variability in terms of the order of the AR model between the six data windows.

Because of the poor performance of the theoretical criteria, the selection of the order
of the AR model was necessarily carried out semi-empirically. Clearly, the order of filter
that will adequately resolve at least all the spectral peaks predicted by theory and that
will not overfit the data with the associated undesired effects on the majority of the
data windows can be defined to be optimum for our present purposes. Given the large
number of data runs available, it is possible to examine the probability distribution of
the position of the absolute minimum of the FPE as a function of M, the order of the
AR model. Figure 3b displays the frequency of occurrence of the absolute minimum as
a function of M, using 150 data windows of decade 1 and decade 2 data. The
distributions obtained display different characteristics for the two decades. For decade
2 data the position of the absolute minimum occurs for the majority of data windows
in the interval M = 10-25. For decade 1data the equivalent interval is M = 25-35.

Filter lengths of M = 12, 18, 25 and 35 have been implemented with all data lengths set
at N = 150.The maximum filter length used is in fact less than any of the empirical
criteria quoted above. The spectral resolution available using such filter lengths is
illustrated in Fig. 4. The average spectrum normalized to unity, has been obtained from
25 successive data windows using M = 12, 18 and 25 for decade 2 (Fig. 4a) and decade
1 (Fig.4b). We retain a spectral resolution of 1.0 Hz (decade 1) and 0.1 Hz (decade 2),
throughout. It can be seen in Fig. 4a that the 7-8 Hz peak obtained for M = 12
decompose to two stable peaks for higher order lengths. In Fig. 4b it is observed that a
full complement of the higher order Schumann resonance modes is only established
using a filter of length M = 25. In view of these results and those presented in Fig. 3b,
filter lengths of M > 40 (i.e. >26% of the data length) do not appear warranted for the
present data. Specifically, for the examination of time averaged properties we consider
optimum filter lengths to be M = 18 for decade 2 data and M = 25 for decade 1 data.
For the examination of time local properties (e.g. sonograms) higher order filter
lengths of M = 25 (decade 2) and M = 35 (decade 1) are required and have been
implemented.

The term 'undesired effects' in the ME literature is understood to mean non-physical
line splitting and frequency shifting of spectral peaks. Such phenomena have been the
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subject of rigorous investigation by several authors, as they limit the performance of
the ME method for certain types of data. JAYNES (1982) has shown that such effects
occur during the analysis of 'circular' time series, in which the independence of
consecutive data windows is reduced by the circularity of the process. This is simulated
as phase jumps that occur at regular time intervals, and is manifested by the
appearance of multiple spectral lines close to the nominal frequency. Furthermore, as
FOUGERE (1977) points out, such effects occur in the low noise case and are unique to
the ME method. It is therefore anticipated that such problems arise during the analysis
of slowly varying phenomena of low order processes with moderate to large signal-
to-noise ratios, such as, for instance, artificial time series of sinusoids in noise, with
variable initial phases. Our data, in general, possess none of the above qualities.
However, rigorous comparisons have been carried out of the peak frequencies
resolved by the ME and FFT methods, with the assistance of theory for control, and we
are satisfied that the ME method used in the present analysis produces no substantial
undesired effects for the filter lengths implemented.

4. RESULTS

Each ME spectrum is obtained from individual data windows of 150 points. The time
intervals are 0.75 s for decade 1(10-100 Hz) and 7.5 s for decade 2 (1-10 Hz) data.
Successive data windows are separated by approximately 3 s. As shown in Fig. 5, the H
(N-S) magnetic component displays the largest resonance power level of the 4
component data and this component is therefore used to display the Schumann
resonance characteristics.

The results are first considered as a series of evolutionary spectra from successive data
windows. Each spectrum is plotted on a linear frequency scale and has been
normalized to a peak value of unity to allow for the variance in waveform amplitudes.
In addition, as successive data windows are accumulated, the integrated average
spectrum is displayed after each accumulation of 25 spectra. Since we have not, at this
point, introduced error statistics in the computation of the individual ME spectra, the
accumulated average spectrum is used as a more accurate guide to the stable
resonance peaks. We retain a spectral resolution of 0.1 Hz for decade 2 and 1.0 Hz for
decade 1, throughout. The aim of the method is to simultaneously display time local
and time averaged determinations of the resonance frequencies determined by the
technique. Figure 6 shows this form of display for decade 1data for six successive
accumulations of 25 data windows. For each set of 25 data windows (Fig. 6a-f), the 25
individual spectra are overlaid on the left and the accumulated average spectrum is
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shown on the right. Thus the accumulated average spectrum of Fig. 6f has been
obtained using 150 successive data windows. Each of the six sets of 25 data windows
shown in Fig. 6 correspond to a real time interval of 94 s. A filter length M = 25 was
used throughout. The spectra shown in Fig. 6 define the n = 2-6 order Schumann
resonance peaks. The first order peak below 10 Hz, although present, is not
guantitatively resolved due to the high pass filter stage applied to data from this
decade. Stable peaks are resolved at 14.0, 21.0, 27.0, 33.5 and 39.5 Hz. The peak
frequency and normalized power levels for the six accumulated average spectra are
given in Table 2. The n = 2-5 stable peak frequencies compare well with other typical
frequencies, such as 14.1, 20.3, 26.3 and 32.5 Hz (MADDEN and THOMSON, 1965).

Table 2. Resonance peak frequencies [ f(Hz)] and the relative power levels (P)of the n = 2-6 Schumann resonance modes
displayed in Fig. 6a-f

I P, I P, Ja Py Is Py Je Pg
(a) 14.0 1.00 220 0.68 270 0.58 335 0.38 40.0 0.21
(b) 14.0 1.00 21.0 0.66 270 0.49 33.0 031 39.5 0.15
() 14.0 1.00 210 0.68 270 0.53 335 0.33 39.0 0.20
{d) 14.0 1.00 21.0 0.67 27.0 048 330 0.34 39.5 0.19
(e) 14.0 1.00 21.0 0.70 270 0.50 335 0.33 39.0 0.20
n 14.0 1.00 21.0 0.58 270 0.44 33.0 0.29 39.0 0.17

When considering spectral details from decade 1 data some care should be exercised
at frequencies of 50 Hz and above. Electromagnetic noise at such frequencies arises
from the power distribution grid. The power-line voltage waveform is usually stable at
50 Hz, however, the current waveform is often complicated and highly variable due to
variable loads. Generally, power-line noise consists of steady spectral lines at the mains
frequency and its odd harmonics, together with weaker spectral lines at sub-harmonic
frequencies (e.g. 100 Hz). In addition, the switching of current loads can produce
broad-band transients and further high frequency harmonics. The 50 Hz notch filter
mentioned previously has a centre frequency of 47.5 Hz and the attenuation achieved
about this frequency is reflected in the spectra displayed in Fig. 6. A high frequency
peak appears intermittently at around 97 Hz and is believed to be a power-line
subharmonic. Other isolated large amplitude spectral components are occasionally
detected at frequencies above 50 Hz, as shown in Figs. 6e and 6f. These are believed to
be due to power-line transients.

There is an indication in the averaged spectral accumulations on the right of Fig. 6 that
three higher order Schumann resonance modes (n =9, 10 and 11) are detected at
frequencies around 53, 62 and 69 Hz. The latter two modes were in fact the original
experimental signatures of the Schumann resonances detected by BALSER and
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WAGNER (1960) and which were considered 'not statistically significant' at the time.
The time local properties of the resonance frequencies are displayed as the overlaid
plots on the left of Fig. 6. These plots provide some indication of the spectral variability
encountered when individual waveforms are considered. The detailed nature of these
spectra is considered later, following a discussion of the sources of cavity excitation.

A similar exercise was conducted for decade 2 data in order to establish the
characteristics of the first order Schumann resonance peak. Spectral plots, equivalent
to those of Fig. 6, are shown in Fig. 7 for a lower order (M = 12) filter length. This
relatively low order of filter length was chosen to provide resolution of a single first
order resonance peak for comparison with previous experimental determinations.
Each of the six sets of 25 data windows corresponds to a real time interval of 262.5 s.
Despite the variability displayed in the over-laid plots of individual spectra, a stable
resonance peak is obtained from the average spectra that vary in location between
7.50 and 7.65 Hz, over the six accumulated sets of data windows. These figures for the
first order mode appear slightly lower than typical published values of about 7.8 Hz
(MADDEN and THOMSON, 1965; RYCROFT, 1965). However, as we have already noted
in Fig. 4a, the single peak resolved for M = 12 actually consists of two stable
resonance peaks which can be distinguished by using higher order filter lengths. An
equivalent plot for the first three sets of 25 data windows, obtained using M = 18, is
shown in Fig. 8. The two peaks are established at frequencies of (a) 7.3 and 8.0, (b)
7.25 and 8.1,(c) 7.25 and 8.1 Hz. However, as can be seen in the overlaid data window
plots, on the left of Fig. 8, individual spectra contain examples of both single and
doublet Schumann resonance peaks. Such individual behaviour produces the varying
contributions to the two resonance peaks defined in the average spectra of Figs. 8a, b
and c. Such dynamic properties are better displayed using other methods of
presentation, as discussed below.

The above results confirm that for the data set considered, the ME technique provides
reliable time averaged estimates of the low order (n = 1-6) Schumann resonance
modes. There is also an indication in Fig. 6 that the higher order Schumann resonance
modes are detectable at this moderate latitude (i.e. 40°N). In our opinion, however,
the main advantage of the technique lies in the spectral resolution of individual
waveforms which, according to the results presented, display complex frequency
characteristics as a function of time. Many of these frequency characteristics are
predicted by theory, as discussed below.

5. DISCUSSION
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The digital AMT data considered in this study provide a bandwidth appropriate to
studies of the Schumann resonance phenomena. The individual time windows are of
the same order as the duration of many ELF events (e.g. Fig. 2).The study has
demonstrated the possibilities that exist in the application of ME spectral techniques
to such data. Using such techniques it appears that the spectral characteristics of
individual Schumann resonance waveforms can be adequately resolved.

In the case of steady-state descriptions of the Earth-ionosphere waveguide properties,
time-averaged characteristics may be required. The average spectra accumulated over
time intervals of 94 s (decade 1) and 262.5 s (decade 2) shown in this study are
examples of such properties. Although it is not our purpose here to investigate
ionospheric parameters, the time averaged spectra of Figs. 6-8 would provide a basis
for the evaluation of conductivity profiles according to the theory of TRAN and POLK
(1979b). Within such accumulations time local variability is apparent, particularly in the
case of the first order (n = 1) Schumann resonance mode. It has been demonstrated
that the data for this mode contain time local frequency splitting. The waveguide
appears to support the doublet frequencies of 7.3 and 8.1 Hz. A sonogram displaying
the largest resonance peaks for the first mode across approximately 6 min is shown in
Fig. 9a. Because of the highly resolved nature of the spectra, a non-linear contour
interval is required. The resolution inherent in Fig. 9a reveals the dynamic nature of the
first order Schumann resonance mode. The largest resonance peak detected is indeed
a doublet, however, well defined singlet peaks occur (e.g. RUN 42) and a possible
triplet resonance is observed around RUN 29. The dynamic nature of the
characteristics observed in Fig. 9a indicates that the time averaged properties of this
mode must be treated with caution.

An equivalent sonogram displaying the largest resonance peaks for then=2, 3,4 and 5
and 6 Schumann resonance modes is shown in Fig. 9b. The time interval is restricted to
approximately 3 min and again a non-linear contour interval has been used. The largest
resonance peak occurs for the n = 2 mode and significant deviations from the average
frequency of 14.0 Hz are observed. The same behaviour can be observed in the higher
(n =3, 6) modes as well. There is also an indication (e.g. RUN 27) that the n = 3 mode
may comprise a doublet.

In order to understand the results presented, it is first necessary to consider the nature
of the waveforms observed (e.g. Fig. 1), which are responsible for the spectra displayed
in Fig. 9. From Fig. 1 we can distinguish two of the three possible sighal components
considered by BLIOKH et al. (1980, p. 121) to com- prise distinct sources of cavity
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excitation. The first component is the Schumann background, which is always present
and which is the response of the cavity to continuous global lightning activity. The
second category of signal component is referred to as an ELF transient event and
typically exceeds the background by a factor of 2-10. According to JONES and KEMP
(1971), the forms of such transient events may vary between a prolonged burst of
complex field variations (e.g. Fig. 1, RUN 4) to a simple damped quasi- sinusoidal
oscillation (e.g. Fig. 2). The two consecutive waveforms displayed in Fig. 2 possess the
characteristic commencement of typical transient events noted by JONES and KEMP
(1971, fig. 5). JONES and KEMP (1970, 1971) undertook both theoretical and
experimental studies on such ELF events. In conclusion the authors suggest that such
events are due to the transient excitation of cavity resonances by unusually large
lightning discharges, the majority of which are cloud discharges.

The sonograms of Fig. 9 display the spectra associated with individual data runs.
Obviously the resonances possessing the largest power densities arise from data runs
containing larger than average transient events superimposed on the background. The
lowest power densities arise from the continuum of back- ground sources. The
sonograms of Fig. 9 necessarily emphasise the large amplitude transient events. We
first consider the resonance characteristics for the n = 2, 3,4, 5 and 6 modes displayed
in Fig. 9b. According to JONES and KEMP (1970), the most important characteristic of
the Schumann resonance spectrum is that, for a given source and fixed ionosphere, the
spectral structure is a unique function of propagation distance. The theoretical
computations on spectral behaviour as a function of distance from the source (JONES
and KEMP, 1970, 1971) indicate an overall spectral structure that is strongly dependent
on distance. We attribute much of the variability in resonance behaviour displayed in
Fig. 9b to such an effect. The main reason for this conclusion stems from the variety of
horizontal magnetic field polarisation vectors displayed by the transient events. It is
hoped to report on this work at a later date.

Turning now to the fine structure displayed by the first order mode in Fig. 9a. It is
apparent that over relatively short periods of time (i.e. tens of seconds), the first order
resonance mode is characterised by the presence of singlet, doublet and possibly
triplet resonance peaks. We suggest that, since such characteristics are a pervasive
feature of our data, they constitute both the split and non-split first order resonance
modes predicted by theory and discussed in the introduction. We therefore attribute
the observed fine structure to properties inherent in the cavity system, rather than to
source-dependent characteristics. Such a conclusion requires that the mechanisms
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responsible for degeneracy within the cavity are highly dynamic over time scales of

the order of minutes.

This initial empirical study is not exhaustive with regard to the available data. A small
portion of the data set has been used to illustrate the use of a data adaptive spectral
technique on electromagnetic data obtained at audio frequencies. The spectra
resolution afforded by the technique is revealing and further work on the spectral and
polarization properties of the waveforms is in progress.
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FPE, solid line, is Akaike's final prediction error. AIC, dotted line, is Akaike's theoretical information criterion. Values are
normalized to a maximum value of unity.
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