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Abstract Most conceptual models of ocean circulation during past glacial periods invoke a
shallowed North Atlantic‐sourced water mass overlying an expanded, poorly ventilated Southern Ocean
(SO)‐sourced deep water mass (Southern Component Water or SCW), rich in remineralized carbon, within
the Atlantic basin. However, the ventilation state, carbon inventory, and circulation pathway of SCW
sourced in the Pacific sector of the SO (Pacific SO) during glacial periods are less well understood. Here we
present multiproxy data—including δ18O and δ13C measured on the benthic and planktic foraminifera
Cibicidoides wuellerstorfi, and Neogloboquadrina pachyderma, and productivity proxies including percent
CaCO3, total organic carbon, and Ba/Ti—from a sediment core located in the high‐latitude (71°S) Pacific
SO spanning the last 800 kyr. Typical glacial δ13C values of SCW at this core site are ~0‰. We find no
evidence for SCW with extremely low δ13C values during glacials in the high‐latitude Pacific SO. This leads
to a spatial gradient in the stable carbon isotope composition of SCW from the high‐latitude SO, suggesting
that there are different processes of deep‐ and bottom‐water formation around Antarctica. A reduced
imprint of air‐sea gas exchange is evident in the SCW formed in the Atlantic SO compared with the Pacific
SO. A spatial δ13C gradient in SCW is apparent throughout much of the last 800,000 years, including
interglacials. A SO‐wide depletion in benthic δ13C is observed in early MIS 16, coinciding with the lowest
atmospheric pCO2 recorded in Antarctic ice cores.

1. Introduction

Reconstructed seawater carbonate ion concentrations and δ13C recorded in tests of the benthic forami-
nifera Cibicidoides spp. (δ13Ccib) demonstrate that a sharp chemical boundary existed between North‐
Atlantic source waters (Northern Component Water, NCW) and Southern Ocean (SO)‐sourced waters
(Antarctic Bottom Water [AABW]/Lower Circumpolar Deep Water [LCDW]; collectively, these ancient
water masses are hereafter referred to as Southern Component Water, SCW) in the glacial Atlantic
Ocean (Curry & Oppo, 2005; Peterson et al., 2014; Yu et al., 2016). This vertical chemical gradient
has been identified during multiple glacials (Hodell et al., 2003; Oliver et al., 2010) and is thought to
reflect increased physical stratification within the Atlantic Ocean, with well‐ventilated NCW overlying
poorly ventilated SCW rich in remineralized carbon (Ferrari et al., 2014; Freeman et al., 2016;
Gebbie, 2014; Lund et al., 2011; Lynch‐Stieglitz et al., 2007). Temperature and salinity reconstructions
suggest that this stratification was established and maintained via an increase in the salinity of SCW
below this chemical divide (Adkins et al., 2002; Roberts et al., 2016). The shoaling of the NCW‐SCW
boundary to depths above rough bathymetry is also hypothesized to have reduced turbulent mixing
between these water masses (Ferrari et al., 2014). During glacials, this reduced mixing between SCW
and NCW, coupled with a more vigorous sequestration of carbon via the biological pump, is thought
to have driven down pCO2

atm (Adkins et al., 2002; Archer et al., 2003; Curry & Oppo, 2005;
Hoogakker et al., 2015; Jaccard et al., 2016; Yu et al., 2008, 2016). The subsequent breakdown of this
stratification during glacial terminations led to the release of large amounts of this stored carbon back
into the atmosphere, helping to drive a rapid transition from glacial to interglacial states (Anderson
et al., 2009; Schmitt et al., 2012).
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Reconstructed seawater dissolved inorganic carbon (DIC) δ13C values in the abyssal South Atlantic and
Atlantic sector of the SO (hereafter Atlantic SO: >30°S, 70°W to 50°E) reached <‐1‰ during the last glacial
period, the lowest in the global ocean. A northward gradient toward higher δ13Ccib values within the deep
Atlantic basin (Curry & Oppo, 2005; Gebbie et al., 2015) points to SCW formation in the Atlantic SO as
the source of these poorly ventilated, low δ13C deep waters. Paleocirculation pathways and past distribution
of seawater δ13C values outside of the Atlantic and Atlantic SO are currently less well constrained, however.
A compilation of global δ13Ccib values from the Last Glacial Maximum (LGM; approximately 18–24 ka)
shows no evidence for extremely low (<‐1‰) δ13C values in the Pacific basin during the LGM (Peterson
et al., 2014); however, data coverage is sparse compared with the Atlantic. While lower than modern values,
LGM δ13Ccib in the Southern Pacific and Pacific sector of the SO (hereafter Pacific SO: >30°S, 165°E to 70°W)
were not as low as the Atlantic SO (Bostock et al., 2013). Studies of LGM δ13Cib depth profiles from core sites
located within the SW Pacific have demonstrated a middepth ‘bulge’ of 13C depleted waters (McCave et al.,
2008; Sikes et al., 2017), with a δ13Ccib minimum of ~ ‐0.5‰ centered around approximately 2,500‐ to 3,000‐
m water depth, and elevated values above and below this depth. The depth of this δ13Ccib minimum in the
SW Pacific coincides with maxima in oxygen isotope values of benthic foraminifera shells (δ18Ocib) andmax-
imum radiocarbon ventilation ages within the Pacific SO, perhaps reflecting reduced entrainment of NCW
within the SO at this time (Bostock et al., 2013; McCave et al., 2008; Ronge et al., 2016; Sikes et al., 2016;
Skinner et al., 2017). In places, abyssal waters within the glacial Pacific SO appear to have remained better
ventilated than within both the middepth Pacific SO and the abyssal Atlantic SO suggesting admixture of a
better ventilated bottom water mass between the Atlantic and the Pacific (Sikes et al., 2017), presumably
sourced in the high‐latitude Pacific SO. However, δ13Ccib records from the high‐latitude Pacific SO spanning
the last glacial period with which to test this hypothesis are currently unavailable. There is also a paucity of
δ13Ccib records spanningmultiple glacial cycles with which to further examine glacial‐interglacial variability
in high‐latitude SO paleocirculation. In this study, we use δ13Ccib alongside other proxies from marine sedi-
ment core PC493, located at 71°S within the Pacific SO, to better constrain temporal variations in δ13C of
SCW within the Pacific SO, and examine SO paleocirculation pathways and methods of deep water forma-
tion across the late Quaternary.

2. Materials and Methods
2.1. Hydrographic and Sedimentological Setting

Piston core PC493 (71°07′50″S, 119°54′49″W, 2,077‐m water depth, 10.4‐m recovery of which 2.87 m is
presented here) was retrieved from the West Antarctic continental slope in the Pacific SO during cruise
JR179 aboard RRS James Clark Ross in 2008 (Figure 1). This core site is located on an isolated plateau atop
a seamount belonging to the Marie Byrd Seamounts in the Amundsen Sea, a location previously reported to
contain abundant calcareous foraminifera (cf. core PS2547 from the same site; see Hillenbrand et al., 2002).
The position of site PC493 atop a seamount means the sediments of PC493 have remained undisturbed from
the effects of turbidites (which have affected portions of nearby sediment cores; for example, Hillenbrand
et al., 2002), and the core is free of major hiatuses. The sediments comprise a condensed but continuous
sequence of olive brown, foraminiferal oozes, muds, and foraminifera‐bearing muds (Figure 2). The pre-
sence of muds suggests a lack of current winnowing at this site, and the amount of biogenic versus lithogenic
clasts broadly follows glacial‐interglacial cyclicity with reduced biogenic clasts during glacial periods
(Figure 2). Situated close to the modern maximum summer (February) sea‐ice limit (Jacka, 1997), site
PC493 is today bathed in LCDW as it upwells along the Antarctic continental margin, south of the southern
boundary of the clockwise flowing Antarctic Circumpolar Current (ACC; Orsi et al., 1995; Figure 1b). In the
modern SO, LCDW is predominantly a mixture of circumpolar waters with components of North Atlantic
DeepWater (NADW) and AABW. The presence of NADW is reflected by a salinity maximum in LCDWmost
prominent in the Atlantic SO and Indian SO (defined here as 50°E to 165°E). Intensive mixing within the
ACC leads to LCDW with more uniform physical properties within the Pacific SO compared with the
Atlantic SO and Indian SO (Figure 1c). Reconstructions of near‐surface water oxygen concentrations show
that upwelling of deep water has continued at site PC493 throughout at least the last 250 kyr (Lu et al., 2016).
As its location lies ‘upstream’ of the main inflow of Pacific Deep Water (PDW; poorly oxygenated waters in
Figure 1b) into the SO, which mixes with Circumpolar Deep Water (CDW) within the ACC in the central
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and eastern Pacific SO (Talley, 2013), core PC493 is well situated to monitor the carbon isotope composition
of SCW in the high‐latitude Pacific SO.

2.2. Stable Carbon and Oxygen Isotope Analyses

Stable carbon and oxygen isotope analyses were performed on the planktic foraminifer species
Neogloboquadrina pachyderma sinistral (12–24 tests) and the epibenthic foraminifer Cibicidoides wueller-
storfi (5–20 tests). Tests were picked from the wet sieved 63‐ to 2,000‐μm sediment size fraction at every
centimeter of the upper 2.87 m of core PC493 and analyzed at the Godwin Laboratory for Palaeoclimate
Research at the Department of Earth Sciences, University of Cambridge (UK), using a Micromass
Multicarb sample preparation system attached to a VG SIRA Mass Spectrometer. Results are reported with
reference to the international standard Vienna Pee Dee Belemnite, and analytical precision is better than +/‐
0.06‰ for δ13C and +/‐0.08‰ for δ18O.

Multiple studies have demonstrated that of all benthic foraminifer taxa, C. wuellerstorfi forms its tests closest
to equilibrium with δ13C of seawater DIC and is therefore the preferred benthic species for δ13C reconstruc-
tions (Belanger et al., 1981; Duplessy et al., 1984; Graham et al., 1981; Mix et al., 1991; Schmittner et al., 2017;
Woodruff et al., 1980). In contrast, the δ13C values of N. pachyderma sin. (δ13Cp) in the high‐latitude SO
display an offset from the equilibrium with δ13C DIC values of surface water. The offset between core‐top

Figure 1. Location of sediment core PC493 together with Southern Ocean (SO) hydrographic data. (a) Schematic deep and bottom water circulation in the Pacific
SO. The thick lines denotemajor interbasin circulation pathways, and the thin arrows denote intrabasin circulation pathways (Morozov et al., 2010; Orsi et al., 1999).
(b) Hydrographic section across site PC493 showing oxygen content and lines of neutral density, demonstrating the upwelling of deep‐ and bottom‐water
masses in the Pacific SO. The location of this section is shown in panel (a). (c) Potential temperature and salinity of waters bathing site PC493 in relation to watermasses
of >500‐m water depth in the SO, including Ross Sea Bottom Water (RSBW), Adélie Land BottomWater (ADLBW), Weddell Sea BottomWater (WSBW), Lower and
Upper Circumpolar Deep Water (LCDW/UCDW), and North Atlantic Deep Water (NADW) as it enters the SO (Martinson et al., 2008; Pardo et al., 2012). Data
from the Atlantic (70°W to 50°E), Indian (50°E to 165°E), and Pacific (165°E to 70°W) SO are differentiated. All plots created using Ocean Data View (Schlitzer, 2015),
using data from the Hydrographic Atlas of the Southern Ocean (panel b; Olbers et al., 1992) and the World Ocean Atlas 2013 (panel c; Garcia et al., 2014).
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N. pachyderma sin. and modeled preindustrial equilibrium seawater δ13C values has been shown to increase
from approximately 1‰ at 70°S to approximately1 2.8‰ at 43°S in the Atlantic SO (Charles & Fairbanks,
1990; Kohfeld et al., 2000). The variable offset is the result of changes in (i) dietary δ13C, (ii) seawater
carbonate ion concentrations, and (iii) seawater temperature. Based on the modeled preindustrial offset
from equilibrium surface waters at 70°S (Kohfeld et al., 2000), a correction of +1.0‰ is applied to all
δ13Cp data presented here.

δ18O measured on C. wuellerstorfi tests (δ18Ocib) does not match equilibrium seawater δ18O, and an offset of
0.64‰ has been suggested to correct for vital effects (Shackleton, 1974), although this may be an over esti-
mate and may not be uniform in all ocean basins (Keigwin, 1998; Marchitto et al., 2014). The vital offset
for N. pachyderma sin. δ18O (δ18Op) is not well constrained, with estimates ranging from 0.5 to 1.5‰
(Hendry et al., 2009; Pados et al., 2015). The range in these estimates may reflect variable calcification depths
within the upper approximately 20–200 m of the water column (Kohfeld et al., 1996), where fluctuations in
temperature and salinity could result in variable δ18O values of calcite within the life cycle of a single fora-
minifer. On the other hand, there is evidence that N. pachyderma sin. migrates vertically within the water
column to maintain constant temperature and salinity conditions (Simstich et al., 2003). Neither benthic
nor planktic δ18O data of core PC493 presented here have been corrected for these offsets.

2.3. Barium/Titanium (Ba/Ti) Ratios, Total Organic Carbon (TOC), and CaCO3 Contents

The barium/titanium (Ba/Ti) ratio of sediments reflects the content of biogenic barium, which is the most
reliable productivity proxy in sediments from the Antarctic continental margin (Bonn et al., 1998;
Hillenbrand et al., 2002, 2009) and south of the Antarctic Polar Front (APF; Jaccard et al., 2013; Nürnberg
et al., 1997). Ba/Ti ratios were measured to gauge the potential for past biological productivity changes to

Figure 2. Lithology, inclination of the Characteristic Remanent Magnetization (ChRM) with magnetic polarity, paleoproductivity proxies (total organic carbon
[TOC], CaCO3 content, and Barium/Titanium [Ba/Ti] ratio), and δ13C and δ18O isotope data measured on planktic (Neogloboquadrina pachyderma sinistral)
and benthic (Cibicidoides wuellerstorfi) foraminifera from core PC493. The LR04 benthic δ18O stack (Lisiecki & Raymo, 2005) with numbers giving interglacial
Marine Isotope Stages and age‐depth tie points (indicated by dotted lines) is also shown. Note that the analysis made on core PC493 is on a depth scale (left axis),
while the LR04 stack and global geomagnetic polarity are plotted versus age (right axis).
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affect δ13Ccib at site PC493 (Mackensen et al., 1993). X‐ray fluorescence (XRF) scanning of sediment core
PC493 was undertaken to obtain semiquantative Ba and Ti concentrations. The split archive halves of core
PC493 were analyzed using an Avaatech XRF core scanner at the Department of Earth Sciences, University
of Cambridge (UK), to obtain elemental data at 2.5‐mm spatial resolution. The length and width of the
irradiated surface was 10 and 12 mm. The detector consisted of the Canberra X‐PIPS Silicon Drift Model
SXD 15C‐150‐500 with 150eV X‐ray resolution and the Canberra Digital Spectrum Analyzer 1000. Spectra
was fit with WinAxil software.

The calcium carbonate (CaCO3) content of marine sediments is controlled by productivity of calcareous
(mainly planktic) microfossils, carbonate dissolution, and dilution by noncalcareous sediment components.
Dissolution has been shown to cause an offset between δ13C recorded in foraminiferal calcite and that of
seawater DIC (McCorkle et al., 1995). The CaCO3 content of core PC493 was also measured in order to (a)
assess changes in productivity and (b) monitor for potential dissolution of CaCO3. Total carbon (TC) content
was first determined on ground bulk sediment samples using a Vario EL III Elementar analyzer at the
Institute for Geophysics and Geology, University of Leipzig (Germany). TOC was measured with an Eltra
METALYST‐CS‐1000‐S after removal of the inorganic carbon with HCl, and CaCO3 contents were calculated
from the TC and TOC data.

3. Results
3.1. Stable Oxygen Isotopes, Age Model, and Sedimentation Rates

Both δ18Op and δ18Ocib demonstrate cyclical variations, which reflect changes in temperature and the δ18O
of seawater, which on the timescales discussed here is predominantly influenced by global ice volume. The
age model for core PC493 is also constrained by the presence of the Bruhnes‐Matuyama boundary (780 ka),
inferred from the ChRM Inclination reversal at 277‐ to 284‐cm core depth (Figure 2), which occurs inMarine
Isotope Stage (MIS) 19. The age model was refined via tuning of both δ18Op and δ18Ocib data to the LR04
global δ18Ocib stack (Lisiecki & Raymo, 2005). δ18Ocib age‐depth tie points for core PC493 were mainly taken
as the transition between glacial and interglacial MIS as defined by the LR04 stack (Lisiecki & Raymo, 2005).
Other tie points, such as the interglacial MIS 5e δ18O minimum at 123 ka (Lisiecki & Raymo, 2005) and the
glacial MIS 8 δ18O peak at 294 ka (cf. substage 8.6 of Imbrie et al., 1984), were also used (Figure 2). A full list
of tie points is provided in Table S1 in the supporting information. Sedimentation rates at site PC493 were
generally low throughout the last 800 kyr, averaging 0.36 cm/kyr (Figure 3), providing an average sampling
resolution of ~3 kyr for stable isotopic analyses.

δ18Ocib values do not match the maxima/minima of the LR04 stack for every glacial/interglacial of the last
800 kyr, suggesting some smoothing of the δ18Ocib record, probably due to the low sedimentation rates.
Between ~65 and 90% of the expected glacial‐interglacial δ18Ocib variability found in the LR04 stack is
observed at site PC493 (Figures 3 and S1 in the supporting information). Bioturbation is likely to have been
minimal at this site given the low TOC contents of the sediments (section 3.3. and Figure 2), which probably
inhibited the establishment of a significant benthic community at this location, as exemplified by the lack of
infaunal foraminifera species such asUvigerina. Nevertheless, it has to be taken into account that our isotope
data were derived from a 1‐cm‐thick sediment slice representing a few kiloyears, that is, our data are likely to
present an integrated, and thus somewhat smoothed, isotope signal. Termination 1 (TI) appears to be diffuse
in the δ18Ob record of PC493, which may reflect either bioturbation or coring disturbance of the upper few
centimeter of the core. Stable oxygen isotope data from trigger core TC493 retrieved alongside piston core
PC493 do not show the same ‘smearing’ through TI (Lu et al., 2016), and δ18O and δ13C data from the
LGM and deglacial sections of TC493 are therefore presented here alongside the record of PC493 (hereafter
TPC493 when referring to both records).

3.2. Stable Carbon Isotopes

The δ13Ccib values of core PC493 typically range from 0.5 to 0.7‰ during peak interglacials and from ‐0.2 to
0.2‰ during glacial maxima (Figure 3). The amplitude of δ13Ccib changes at glacial terminations varies
between 0.7‰ and 0.2‰, with an average amplitude of 0.39±0.16‰ across all terminations. The δ13Ccib

record of TC493 shows an increase of approximately 0.42‰ between the LGM (18–24 ka average δ13Ccib=
0.29‰, σ=0.16‰) and the early Holocene (9.5‐8 ka average δ13Ccib= 0.71‰, σ=0.21‰), close to the
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0.38±0.08‰ whole ocean (0.5–5 km water depth) δ13C shift across the last deglaciation estimated by
Peterson et al. (2014). The LGM δ13Ccib minimum in core TC493 was 0.11‰.

δ13Cp values in core PC493 range from 1.3 to 1.7‰ during peak interglacials and from 0.8 to 1.2‰ during
glacial maxima, while the amplitude across terminations varies from 0.2 to 0.6‰. The average amplitude
in δ13Cp values across all terminations is 0.43±0.11‰. The δ13Cp values in core PC493 are higher in the
Holocene than at any other point during the last 800 kyr, with peaks of 2.33‰ (0.5 cm) and 2.11‰ (4.5
cm) being particularly high.

Despite the low sedimentation rates at site PC493, there is no consistent relationship between lower (glacial)
or higher (interglacial) δ13Ccib values and higher sedimentation rates (Figure 3), as might be expected if the
δ13Ccib record had been significantly smoothed by either integrating isotopic signals from a time interval
spanning several kiloyears, or bioturbation. δ13Ccib minima during glaciations which experienced relatively
low sedimentation rates, such as MIS 10, MIS 12, andMIS 14, are comparable to minima observed in glacial‐
time sediments deposited at higher sedimentation rates, for example, MIS 2 and MIS 6 (Figure 3). As such,
the amplitude of δ13Ccib shifts on orbital timescales (i.e., multiple kiloyears) at site PC493 do not appear to
have been considerably attenuated by low sedimentation rates.

Figure 3. Proxy records at site PC493. Stable isotope records of piston core PC493 and associated trigger core TC493 (dots)
measured on benthic Cibicidoides wuellerstorfi and planktic Neogloboquadrina pachyderma (s) tests, alongside the LR04
δ18Ob stack (grey curve; Lisiecki & Raymo, 2005) and palaeoproductivity indicators CaCO3 content and Ba/Ti ratio.
Also shown are linear sedimentation rates (LSRs) for core PC493. At no point during the last 800 kyr did δ13Ccib values in
core PC493 (or core its trigger core, TC493) reach the extreme values (<‐1.0‰) found in sediment cores from the deep
South Atlantic and Atlantic Southern Ocean during past glacial periods. Glacial Marine Isotope Stages are shaded and
numbered according to Lisiecki and Raymo (2005).
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3.3. Paleoproductivity Proxies

The TOC content in core PC493 is 0.4–0.9 wt. % at the core top and <0.1–0.2 wt. % down‐core (Figure 2).
CaCO3 contents are highest during interglacials, typically reaching values of 35–45%, and much lower
during glacials, at times reaching values as low as 2–6%. Ba/Ti values are also lower during glacials, often
reaching values of <0.05 compared with interglacial highs of >0.2. Percent CaCO3 and Ba/Ti within the
sediments of PC493 show a strikingly similar pattern throughout the last 800 kyr (Figure 3), suggesting that
percent CaCO3 is primarily a function of past productivity at this core site.

4. Discussion
4.1. Paleoproductivity and Carbonate Preservation at Site PC493

Down‐core TOC values at site PC493 are generally low (<0.1–0.2 wt %) when compared to typical values of
0.1–0.4 wt. % at other sites from the Amundsen Sea (Hillenbrand et al., 2002) and the western Antarctic
Peninsulamargin (Pudsey & Camerlenghi, 1998). This likely reflects a low flux of organic material to the sea-
floor combined with its poor preservation in the sediments (DeMaster & Ragueneau, 1996), consistent with
the low sedimentation rates at this site. Organic particulate fluxes in the seasonal sea ice zone of the
Amundsen Sea are greatly reduced during periods of persistent sea ice cover compared with open water con-
ditions, owing to reduced primary biological productivity in surface waters (Kim et al., 2015). Given the
proximity of site PC493 to the modern summer sea ice limit (Jacka, 1997), it can be assumed that the site
experienced prolonged periods of persistent sea‐ice cover in the past, and thus reduced supply of organic
matter to the sea floor. Low organic matter content likely inhibited the establishment of an abundant
benthic community and, along with the absence of infaunal foraminifera species such asUvigerina, probably
prevented deep bioturbation of the sediments in core PC493.

There is a positive correlation between CaCO3 contents and Ba/Ti (Pearson's R2 of 0.78; Figure S2) in the
sediments of core PC493, indicating that the percent CaCO3 reflects primarily biological productivity and
that this productivity signal has not been substantially overprinted by carbonate dissolution. The lack of car-
bonate dissolution overprinting demonstrates that site PC493 remained above the lysocline throughout the
last 800 kyr. The poor correlation (Pearson's R2 = 0.28; Figure S2) between the CaCO3 content and δ13Ccib

furthermore indicates that the δ13Ccib signal records changes in water mass chemistry rather than local pro-
ductivity effects (Mackensen et al., 1993) and demonstrates that carbonate dissolution has not affected the
δ13Ccib record.

4.2. Late Quaternary δ13C at Site TPC493

Averaged LGM δ13Ccib values are 0.29 ±0.16‰ for TC493 and 0.35 ±0.14‰ for PC493 and did not fall below ‐

0.01‰ in either core at any point during the last glacial period. This is also the case for most previous glacial
periods within core PC493: only during MIS 16 and at Termination 9 (TIX) did δ13Ccib values fall below ‐

0.2‰. At no point did they reach the very low values recorded in sediment cores from the deep Atlantic
SO, where glacial δ13Ccib values repeatedly reached <‐1.0‰. There is a long‐term trend towardmore positive
δ13Ccib values recorded at PC493 during glacials, which may be part of a longer term 400‐kyr cyclicity
observed in global carbon isotope records (Wang et al., 2010). Interglacial maxima in δ13Ccib do not show
the same trend, but this may be obscured by the high δ13Ccib values observed in the Holocene (as recorded
in TC493) and MIS 11 (Figure 3), both of which are particularly strong interglacials globally (Lang & Wolf,
2011). Interglacial δ13Ccib values do not show a marked increase following the Mid‐Bruhnes Event (approxi-
mately 430 ka). This contrasts with the δ18Ocib record of PC493, which demonstrates increased interglacial
intensity after 430 ka. (Figure 3).

The most prominent δ13Ccib minimum recorded at site PC493 occurs during early MIS 16, at the time of cool
substage MIS 16c (Bereiter et al., 2015), which corresponds to substage 16.4 in other substage assignments
(Railsback et al., 2015), when values as low as ‐0.6‰ are recorded. Coeval δ13Ccib minima are also observed
in other δ13Ccib records from the SO and Pacific but are much less pronounced in records of NCW (Lisiecki,
2010; Figure 4c). This δ13Ccib minima coincided with the lowest pCO2

atm recorded in Antarctic ice cores
throughout the last 800 kyr, 174–180 ppmv between 665 and 668 ka (Lüthi et al., 2008; using the
AICC2012 chronology of Bazin et al., 2013; Figure 4b). δD measurements suggest that air temperatures at
the EPICA Dome C ice core site during MIS 16c were as low as those during the peak glacial conditions
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of MIS 16a, and comparable to other glacial minima (Jouzel et al., 2007; Figure 4b). The low CaCO3 content
and Ba/Ti ratios in sediments at site PC493 during the onset of MIS 16c (Figure 4d) reflect a drop in
biological productivity, probably due to the summer sea ice limit being located north of the core site. This
suggests the low air temperatures recorded in the EPICA Dome C ice core may have been part of a wider

Figure 4. Paleoclimate proxy records spanning MIS 16. (a) δ18Ob and δ
18Oseawater are characterized by gradual increases

throughout MIS 16 (676–621 ka) followed by sharp decreases, reflecting the slow buildup and relatively rapid decay of
northern hemisphere ice sheets (Elderfield et al., 2012; Ford et al., 2016; Lisiecki & Raymo, 2005; Sosdian & Rosenthal,
2009). (b) Peak pCO2

atm values are reached relatively early, during MIS 16c, and coincide with minima in δ13Ccib
(c) recorded in the intermediate (red curve; Hodell et al., 2003) and deep (black and blue curves; this study; Hodell et al.,
2003) Southern Ocean and a decrease in productivity (d: lower green and orange curves)—due to a seaward location of the
summer sea ice limit—at site PC493. A stack of NCW δ13Ccib records (c: magenta curve; Lisiecki, 2010) does not show
the same extreme δ13Ccib minimum during MIS 16c.
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early onset in extreme glacial conditions in the Antarctic region during MIS 16c. Seawater δ18O reconstruc-
tions show no evidence for an expansion of northern hemisphere ice sheet during MIS 16c (Elderfield et al.,
2012; Ford et al., 2016; Sosdian & Rosenthal, 2009; Figure 4a), suggesting that this climatic phenomenon was
restricted to the southern hemisphere. The onset of the deposition of Heinrich Layers within the North
Atlantic occurred later in MIS 16, suggesting that northern hemisphere intensification did occur later during
MIS 16a (Hodell et al., 2008).

A δ13Ccib minimum duringMIS 16c is also evident in the cores of Ocean Drilling Program (ODP) Leg 177 Site
1088 (2,082‐m water depth) and Site 1090 (3,699‐m water depth) in the intermediate and deep Atlantic SO
(Hodell et al., 2003), suggesting a SO‐wide event. This 13C depletion cannot be explained by a reduction in
the end‐member carbon isotope composition of NCW, which was similar to the onset of other glacials
(Lisiecki, 2010; purple curve in Figure 4c). These δ13Ccib data suggest a reduced supply of well‐ventilated
NCW to the SO, and thus a reduction in AMOC, and an expansion in SO‐sourced deep waters depleted in
13C. The perturbation in SO carbon chemistry during MIS 16c may reflect an increased storage of reminer-
alized carbon within the deep ocean. If this were the case, a transfer of carbon from the atmosphere to the
ocean interior would provide a mechanism to explain the pCO2

atm minimum during MIS 16c.

4.3. δ13C Values of SCW During the LGM

The persistent presence of SCW enriched in 13C during the LGM and during previous glacial periods at site
PC493 is at odds with previous studies of SO deep and bottom water masses, which largely describe hetero-
geneous, 13C‐depleted deep and bottom water masses within the glacial SO (e.g., Hodell et al., 2003;
Mackensen et al., 2001; Ullermann et al., 2016; Venz & Hodell, 2002). To date, studies compiling global
LGM δ13Ccib data have largely either treated the intermediate to abyssal SO as one distinct water mass or
failed to assess longitudinal differences in SO δ13Ccib (compilations of Curry & Oppo, 2005; Oliver et al.,
2010; Peterson et al., 2014). In light of our new δ13Ccib data, we build upon previously published compila-
tions to re‐investigate the distribution of δ13Ccib data measured on Cibicidoides from core sites located south
of 30°S.

The compiled LGM δ13Ccib data are plotted as a function of water depth in supplementary Figure S3, how-
ever, due to the tilting of isopycnals within the SO as deep waters upwell around the Antarctic continent,
water masses within the SO cannot always be defined by water depth alone. The LGM compilation of
δ13Ccib data is therefore also plotted as a function of the physical properties of waters bathing the core sites
today in Figure 5. Although the physical properties of these waters varied in the past and were likely very
different during the LGM, this is a useful visual aid to assess the potential sources and distribution of sea-
water DIC δ13C of SO water masses. The compilation illustrates the difference in δ13Ccib between core sites
bathed today in LCDW/AABW (i.e., LGM SCW) from the Atlantic SO (Figure 5c) and the Pacific SO
(Figure 5e). The lowest LGM δ13Ccib values (dark blue/purple points in Figure 5) were all obtained from
cores bathed in SCW within the Atlantic and Indian SO. One exception to this is core MD97‐2121 (2,314‐
m water depth; average LGM δ13Ccib = ‐1.09‰; McCave et al., 2008), which is located off the eastern coast
of New Zealand in the SW Pacific and was apparently bathed in PDW during the LGM (McCave et al., 2008;
Skinner et al., 2015). The LGM δ13Ccib distribution in Figure 5 suggests that deep and bottom waters formed
in the Atlantic SO south of the APF (i.e., the region where bottom waters are formed today) were the source
of SCW with extremely low δ13C values. In contrast to the Atlantic, there is a trend in the LGM Pacific SO
data toward elevated δ13C values within bottom water masses, with the lowest δ13Ccib values found within
cores bathed in CDW. This suggests the presence of bottom waters relatively better ventilated in the Pacific
versus Atlantic SO.

Cores within the Atlantic SO that are today bathed in a mixture of CDW and NADW do not show the same
level of 13C depletion at the LGM as those bathed in deep and bottom waters (Figure 5c), suggesting a
continued inflow of NCW (relatively well ventilated and low in remineralized nutrients, therefore relatively
elevated in 13C) to the SO. The pattern in the Indian SO is similar to that of the Atlantic SO, with SCW being
depleted in 13C, while cores that are bathed in UCDW or lie on a mixing line between UCDW and LCDW
today were relatively enriched in 13C (Figure 5d). This suggests the entrainment and advection of NCW into
the intermediate‐depth Indian SO continued during the LGM (Hu et al., 2016).
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4.4. δ13C of SCW During the Late Quaternary

In combination with other δ13Ccib records from the SO, the δ13Ccib record of PC493 allows us to infer spatial
variations in deep water DIC δ13C across the glacial‐interglacial cycles of the past 800,000 years. The deep
Pacific SO core sites E11‐2 (3,109 m), PS75/059‐2 (,3613 m), and PS75/056‐1 (3,581 m) are all located far
north of site PC493 on the East Pacific Rise in the central Pacific SO, north of the Subantarctic Front.

Figure 5. Average Last Glacial Maximum (LGM) δ13Ccib values from Cibicidoides specimens as a function of the physical
properties of modern deep and bottomwater masses bathing the core sites. The δ13Ccib compilation is after Peterson et al.,
2014, with some additional data from the Pacific Southern Ocean (SO) and Pacific Ocean (Matsumoto et al., 2001;
Molina‐Kescher et al., 2016a; Ronge et al., 2015; Ullermann et al., 2016). See Table S2 for full list of data and references.
(a) Core locations are shown and divided into (b) all core sites south of 30°S, (c) core sites in the Atlantic SO, (d) core
sites in the Indian SO, and (e) core sites in the Pacific SO. Physical properties of water masses at core locations were
compiled using the Hydrographic Atlas of the Southern Ocean (Olbers et al., 1992). Plots produced using OceanData View
(Schlitzer, 2015). Cumulatively, Weddell Sea Bottom Water (WSBW; physical properties off the Y‐axis in this figure),
Adelie Land Bottom Water (ADLBW), Ross Sea Bottom Water (RSBW), and LCDW make up SCW at the LGM.
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These cores all record lower δ13Ccib values than PC493 during past glacial periods (Figure 6; Ninnemann &
Charles, 2002; Ullermann et al., 2016). These cores are today bathed in CDW and were located above the
depth of AABW during at least the last glacial period (Basak et al., 2018). To explore the long‐term trends
in SO paleocirculation, we have smoothed these East Pacific Rise records to 2‐kyr resolution and averaged
them to form a ‘stack’ of central Pacific SO CDW of δ13C (Figure 6). Ullermann et al. (2016) suggest that
these East Pacific Rise core sites are bathed in CDW with a similar δ13C composition as core sites located
in the northern Cape Basin in the Atlantic SO, citing as evidence the near‐identical evolution of δ13C
values between these locations (Ullermann et al., 2016). However, there exists a gradient between δ13C
values measured at these central Pacific SO sites and the deep southern Cape Basin, where δ13C values

Figure 6. Comparison of the δ13Ccib records of core PC493, Ocean Drilling Program (ODP) Leg 177 Site 1089, and a com-
posite δ13Ccib ‘stack’ of Circumpolar Deep Water (CDW) from the Pacific Southern Ocean produced by averaging and
smoothing individual records at 2‐kyr resolution (see text for references for records used for the stack). The red shading
denotes 1σ error in this stack. The location of individual records is shown in the upper panel. The δ13Ccib record from
site PC493 and ODP 1089—bathed in SCW sourced in the high‐latitude Atlantic Southern Ocean—were then both
smoothed at 4‐kyr resolution and the difference between them (δ13CSCW) plotted. Increased spatial gradients in δ13CSCW
coincide with periods of decreased pCO2

atm and cooling of Antarctic air temperatures (EPICA Community Members,
2004; Jouzel et al., 2007).
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are consistently lower (e.g., ODP Leg 177 Site 1089 at 4,621‐m water depth; Figure 6). This gradient is
especially pronounced during past glacial periods and is attributed to the presence of AABW—sourced in
the high‐latitude Atlantic SO—within the southern Cape Basin, which was extremely 13C‐depleted during
past glacials (Ullermann et al., 2016). This is consistent with the picture from the LGM, when deep core sites
in the Atlantic SOwere bathed in SCWwith extremely negative δ13C values. There exists throughout most of
the last 614 kyr an even larger gradient in δ13C between SCW bathing Site 1089 and SCW bathing site PC493.
To investigate this gradient in high‐latitude SCW δ13C, we have smoothed the δ13C record of Site 1089 to 4‐
kyr resolution, to allow for direct comparison with the lower resolution δ13Ccib record of core PC493. The
record of PC493 has also been smoothed to a 4‐kyr resolution, and the difference between these two
smoothed records calculated. This allows us to directly gauge the spatial gradient in δ13C of SCW sourced
in the high‐latitude Atlantic and Pacific SO (δ13CSCW in Figure 6).

Today, the SO is well mixed due to a combination of strong meridional and longitudinal circulation and
intense diapycnal mixing, particularly in areas of rough bathymetry, such as the Scotia Sea in the Atlantic
SO (Heywood et al., 2002). This mixing leads to the condensed temperature/salinity field observed in
Figure 1c, and a homogenization of δ13C DIC in the SO, which today averages 0.4±0.1‰ within CDW
(Kroopnick, 1985). Conversely, a negative spatial gradient in δ13CSCW between the southern Cape Basin
and high‐latitude Pacific SO is apparent throughout much of the last 614 kyr (Figure 6), with the only
exceptions being late MIS 15, late MIS 13, MIS 11, and the current interglacial. This suggests that the well
mixed nature of the SO we observe today may not be the norm for the Late Quaternary, even during
interglacial periods.

The largest gradient in δ13CSCW occurred during glacial periods, reflecting the 13C depletion of SCW in the
high‐latitude Atlantic SO at these times. There is a close match between pCO2

atm and δ13CSCW, suggesting
that δ13CSCW played a crucial role in regulating past pCO2

atm concentrations (Figure 6), most likely through
reduced ventilation and increased storage of respired carbon within SCW sourced within the Atlantic SO. It
is also plausible, however, that changes in pCO2

atm drove changes in bottom water formation, perhaps
through cooling and expansion of grounded and floating ice in the formation regions, which in turn led to
changes in physical properties of SCW and to reduced mixing between water masses, and hence a gradient
in δ13CSCW.

The presence of a gradient in δ13CSCW suggests that the water masses within the deep basins south of the
APF in the Atlantic and Pacific SO were in the past more isolated from one another than in the modern
ocean, especially during glacial periods (see Figure S4 for a schematic depiction of LGM water mass distri-
butions). This increased isolation is in many ways unsurprising. In the modern SO, very little AABW formed
in the Atlantic SO—if any—makes its way into the Pacific SO, rather it is mixed through the water column
into overlying circumpolar deep water masses, which are then circulated throughout the SO via the ACC
(Pardo et al., 2012). Where AABW (or modified AABW) does make its way between SO basins, it tends to
do so via fracture zones, where strong diapycnal mixing between dense bottom waters and overlying water
masses occurs (e.g., McCartney & Donohue, 2007). Temperature and salinity reconstructions suggest that
LGM deep waters in the Atlantic SO were the densest waters in the global ocean (Adkins et al., 2002;
Roberts et al., 2016). This high density was primarily driven by increased salinity, presumably acquired
during SCW formation within the Atlantic SO, and led to a reduction in the mixing of this Atlantic SO
sourced SCW into overlying circumpolar waters, which appears to have been a feature of past glaciations
for at least the previous 500 kyr (Ullermann et al., 2016).

4.5. Implications for Deep Water Formation

The negative δ13Ccibs values measured in the Atlantic SO and at core sites on the East Pacific Rise within the
Pacific SO (Figure 6) suggest that some of the extremely 13C‐depleted AABW formed in the Atlantic SO
during past glacial periods must have mixed with overlying CDW, and subsequently circulated though the
SO and north in to the Atlantic, Indian, and Pacific oceanic basins (e.g., Figure S4). However, we argue based
on measurements of SCW at site PC493 that deep waters forming within the high‐latitude Pacific SO were
not similarly 13C‐depleted. The development of the spatial gradient in δ13CSCW observed in Figure 6,
especially pronounced during glacial periods, suggests differing mechanisms of deep‐ and bottom‐water
formation in the Atlantic and Pacific SO. While some of the glacial δ13Ccib minima observed in the deep
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Atlantic basin may have been related to PDW inflow to the SO (Ullermann et al., 2016), our new δ13Ccib data
excludes the region south of the APF in the Pacific SO as the source of an extremely 13C‐depleted, high‐CO2

water mass.

Some of the lowering of glacial seawater δ13C values in the Subantarctic Zones of the Atlantic and Pacific SO
may have been due to increases in biologically productivity driven by increased dust deposition during past
glacial periods (Bradtmiller et al., 2009; Lamy et al., 2014; Martínez‐Garcia et al., 2009, 2011), leading to
increased remineralization of 12C‐rich organic matter at depth. However, the gradient in SCW δ13C between
the Atlantic and Pacific SO cannot be explained solely via productivity changes, as productivity increased in
both the Pacific and Atlantic SO (Bradtmiller et al., 2009). Moreover, surface productivity in the region south
of the APF actually decreased during past glacial periods (Bonn et al., 1998; Hillenbrand & Cortese, 2006;
Jaccard et al., 2013; Nürnberg et al., 1997). As such, processes operating south of the APF within the
Atlantic SO must have acted to reduce ventilation and maintain lowered δ13C values. These processes
probably include glacial changes in the production modes of deep and bottom waters, air‐sea gas exchange
(possibly linked to sea ice expansion), and vertical advection and/or mixing between SO water masses.

Today, most AABW within the Atlantic SO forms within the Weddell Sea. There, AABW precursor water
masses are produced via two mechanisms: (i) brine rejection in regions of sea‐ice formation and polynyas
and (ii) supercooling of waters beneath floating ice shelves (Figure 7). The first mechanism leaves a high
themodynamic imprint on AABW, leading to elevated δ13C values (Mackensen, 2012), while the second
mechanism minimizes this effect. Thus, increasing the relative proportion of bottom water production via
supercooling beneath ice shelves in the past would act to decrease bottom water δ13C compared to modern
values. Hillenbrand et al. (2014) and Arndt et al. (2017) showed that due to widespread ice‐sheet grounding
the extent of floating ice shelves on the Weddell Sea embayment shelf at the LGM was smaller than at pre-
sent, limiting or even preventing subice shelf formation of precursor water masses for SCW (Figure 17). If
anything, this would lead to elevated bottom water δ13C values compared with the modern, and therefore
cannot explain the observed glacial depletion in 13C of Atlantic SO SCW. Deep and bottom water formation
via the process of brine rejection in polynyas north of regions of grounded ice could still have occurred
during glacials (Mackensen et al., 1996; Smith et al., 2010). Brine rejection would also have provided the
increased salinity required to drive an increased deep‐shallow density contrast within the glacial SO
(Ferrari et al., 2014). However, increasing the proportion of AABWprecursor water mass formation via brine
rejection in ice‐free polynyas at the expense of production in subice shelf cavities would not have lessened
the thermodynamic fractionation imprint on bottom water δ13C compared to the modern and thereby
cannot explain newly formed deep waters with very low δ13C values (Mackensen, 2012; Mackensen et al.,
1996, 2001). The answer to this paradox may lie in the glacial formation of AABW precursor water masses
in the Atlantic SO by brine rejection under permanent sea‐ice cover, thereby reducing the ability of thermo-
dynamic fractionation during air‐sea exchange to ventilate, or ‘reset’, the δ13C of deep waters (Figure 7).
Stephens and Keeling (2000) and Keeling and Stephens (2001) hypothesized that during past glacial periods,
upwelling waters in the SO froze at the sea surface leading to increased winter and, at least locally, summer
sea ice cover (Gersonde et al., 2005) and reduced air‐sea gas exchange. A reduction in the transferal of deep
water to the surface ocean, concurrent with the freshening of surface waters leading to the development of a
stronger halocline across theMPT, has also been proposed as amechanism for reducing ventilation of within
the Antarctic Zone of the Atlantic SO during the Late Quaternary (Hasenfratz et al., 2019). This may not only
have reduced surface ocean ventilation in the permanent sea‐ice zone but also the seasonal sea‐ice zone,
where a fresh water lid prevented air‐sea exchange (Hasenfratz et al., 2019; Mackensen, 2012). Lowering
of CDW DIC δ13C values due to increased remineralization of organic carbon north of the APF, as well as
a decrease in the proportion of NADW with elevated δ13C values entering the deep Atlantic SO, could not
then be offset by air‐sea gas exchange south of the APF during bottom water formation (Figure 7). As newly
formed AABW circulated north of the APF, δ13C may have been lowered by the further addition of reminer-
alization of organic carbon, leading to the extremely low δ13Ccib values recorded in the deep southern Cape
Basin. In the modern Weddell Sea, mixing between CDW and newly formed bottom water ‘dilutes’ the δ13C
signature of bottom water masses, lessoning the gradient in δ13C between CDW and AABW (Mackensen,
2012). The increased density of AABW during glacial periods compared with the modern would hinder this
mixing, allowing the buildup of organic carbon within AABW and the lowering of seawater DIC δ13C values
beyond that of overlying CDW.
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In contrast with the Atlantic SO, deep water formation mechanisms south of the APF in the Pacific SO
maintained a relatively well‐ventilated SCW, with elevated δ13C values, even during glacial periods. In
contrast to bottom water formation in the Weddell Sea, only a minor proportion of modern day Ross Sea
Bottom Water production is attributed to the supercooling of waters beneath floating ice shelves, with the
majority of AABWprecursor water mass production occurring in the western Ross Sea Embayment via brine
rejection during sea ice formation (Orsi &Wiederwohl, 2009). Reconstructed ice grounding limits within the

Figure 7. Schematic depiction of modern versus proposed glacial bottom water production mechanisms in the Weddell Sea. Modern Antarctic Bottom Water
(AABW) δ13C values ultimately reflect those of upwelling Circumpolar Deep Water (CDW) and recirculated Warm Deep Water (WDW), and Antarctic Surface
Water (AASW), which undergoes buoyancy loss and sinks to form High Salinity Shelf Water (HSSW). Permanent or near‐permanent sea ice conditions during
glacials reduced or eliminated air‐sea gas exchange during HSSW formation, restricting the ability of HSSW to ‘reset’ δ13C of CDW/WDW toward higher values
(Mackensen, 2012). Increased remineralization of organic carbon, coupled with decreased NADW (relatively high δ13C) contributions to CDWwithin the Atlantic
Southern Ocean (SO), were thereby compounded by reduced bottom water ventilation, leading to extremely low δ13C values of AABW within the Atlantic SO.
In the Pacific SO, permanent sea ice may not have been as extensive (Benz et al., 2016) which, coupled with the presence of polynyas north of the Ross Sea shelf
(Bonaccorsi et al., 2007; Smith et al., 2010), allowed for continued ventilation during bottom water production. Modern seawater δ13C values in upper panel from
Mackensen 2001, 2012, glacial seawater δ13C estimates in lower panel from compilation in supplementary Table S2.
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Ross Sea Embayment suggest that grounded ice expanded further north on the Ross Sea shelf at the LGM
(Anderson et al., 2014), potentially further reducing the amount of deep water formation beneath floating
ice shelves. The presence of polynyas over the north western Ross Sea continental slope has been inferred
from the deposition of planktic foraminifera‐bearing sediments (Bonaccorsi et al., 2007; Smith et al.,
2010). LGM sea‐ice reconstructions from the Pacific SO (Benz et al., 2016) show that in contrast to the
Atlantic SO (Gersonde et al., 2005), the winter sea‐ice limit there was only located slightly further north than
today, making it less likely that AABW precursor water mass formation in the Ross Sea sector was main-
tained largely by brine rejection under permanent sea‐ice cover, as may have been the case in the Weddell
Sea (Mackensen, 2012). Thus, the surface waters, which went on to form AABW in the high‐latitude
Pacific SO, may have remained better ventilated than the Atlantic, with continued air‐sea gas exchange
and elevated δ13C values, even during past glacial periods, ultimately leading to better ventilated bottom
waters within the high‐latitude Pacific SO, as observed at site PC493.

5. Conclusions

Today, the SO is relatively well mixed, leading to a small range of δ13C DIC values between different SO
water masses, with a SO average of ~0.4‰ (Kroopnick, 1985). During the LGM, a large difference in
δ13Ccib is observed between core sites bathed in SCW sourced from the Atlantic SO and site PC493 in the
high‐latitude Pacific SO. This difference is driven by a decrease in the δ13C values of SCW forming in the
Atlantic SO, where δ13Ccib values of <‐1.0‰ were repeatedly recorded during the last glacial period. In
contrast, δ13Ccib values in the high‐latitude Pacific SO never fell below ‐0.01‰ during the last glacial period,
reflecting the continued ventilation of SCW within this region.

A gradient in SCW δ13Ccib values between the deep southern Cape Basin core site ODP 1089 and PC493 in
the high‐latitude Pacific SO is apparent throughout much of the last 614 kyr; however, it is most pronounced
during glacial periods, when differences in δ13Ccib of up to ~1.5‰ are observed. This suggests an increased
isolation of bottomwater masses within both the Atlantic and the Pacific (cf. McCave et al., 2008), consistent
with increased bottomwater densities (Adkins et al., 2002; Roberts et al., 2016) and decreased turbulent mix-
ing (Ferrari et al., 2014) in the glacial Atlantic SO. This spatial gradient in SCW δ13C values suggests differing
modes of deep‐ and bottom‐water formation in the Weddell Sea in the Atlantic SO versus the Pacific SO,
especially during glacial periods. Changes in bottom‐water formation in the Atlantic SO may have included
a reduction in the formation of precursor water masses on the Antarctic continental shelf, or differences in
the relative proportion of dense shelf waters formed under ice shelves versus those formed in polynyas.
Evidence for increased salinity and an expansion of the seasonal sea ice zone in the Atlantic SO is consistent
with increased deep‐water formation via brine rejection during sea ice formation. This, however, would lead
to an increase in the thermodynamic fractionation of carbon isotopes during air‐sea gas exchange, increasing
the δ13C values of deep waters. This is the opposite of what is observed in the δ13Ccib records from the
Atlantic SO. It has been hypothesized that the formation of bottom waters via brine rejection under perma-
nent sea‐ice conditions, or in the seasonal sea‐ice zone alongside the presence of a strongly stratified surface
ocean covered by a freshwater ‘lid’, reduced this thermodynamic imprint on AABW forming in the Atlantic
SO (Mackensen, 2012; Stephens & Keeling, 2000). In contrast, deep waters formed within the Pacific SO
maintained elevated δ13C values, most likely via continuous air‐sea exchange.

The lowest δ13Ccib values recorded in core PC493 occur during MIS 16c and coincide with minima in δ13Ccib

values in the intermediate and deep Atlantic SO, suggesting a SO‐wide 13C depletion at this time. This SO
δ13C minimum may have been driven by a prolonged expansion of poorly ventilated SCW combined with
a reduced advection of NCW into the SO, and hence a reduction in the AMOC. This δ13Cminimum coincides
with the lowest pCO2

atm values observed in Antarctic ice cores, suggesting that a reduction in AMOC and/or
ventilation of SCW within the SO may have played a role in the draw‐down of pCO2

atm at this time.
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