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Abstract

Accurate measurements in the Southern Hemisphere were required to test a hypothesis of
the ubiquity of photoheterotrophy in the oligotrophic ocean. We present experimental
results of light-enhanced uptake of methionine, leucine and ATP by bacterioplankton during
two large-scale transects of the South Atlantic. Light increased the uptake of substrates by
both dominant bacterioplankton groups: Prochlorococcus and SAR11, as well as for the bulk
microbial community. Our consistent experimental evidence strongly indicates that
photoheterotrophy is characteristic of dominant bacterioplankton populations in the global
oligotrophic ocean.
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1. Introduction

The widespread ability of marine bacteria to utilize light was first indicated by the
observation of bacteriochlorophyll a-containing microorganisms in the Pacific (Kolber et al.,
2000) and the discovery of the proteorhodopsin gene in samples from Monterey Bay (Beja
et al., 2000). The proteorhodopsin pigment was found to function as a light-driven proton
pump capable of generating chemiosmotic membrane potential that can be directed
towards processes such as ATP synthesis, motility or active transport (Spudich et al., 2000).
Soon after, the cyanobacteria Prochlorococcus, which harvests light using a chlorophyll-
based antenna complex (Chisholm et al., 1988), were found to be able to import organic
substrates (Zubkov et al., 2003). Prokaryotes possessing the means to harvest light, such as
the proteorhodopsin containing SAR11 alphaproteobacteria and Procholorococcus,
dominate oceanic prokaryotic communities (Chisholm et al., 1988; Morris et al., 2002).

At present, a consensus is lacking as to the prevalence of photoheterotrophy in marine
systems. However, it appears to be influenced by ecosystem productivity, since in coastal
waters light can inhibit substrate uptake (Alonso-Saez et al., 2006; Ruiz-Gonzélez et al.,
2012), whereas photoheterotrophy has been consistently reported in studies of oligotrophic
stratified waters (Church et al., 2004; 2006; Michelou et al., 2007; Mary et al., 2008; Gomez-
Pereira et al., 2013). Given that these oligotrophic waters harbour the most extensive
ecosystems on Earth, it is important to establish whether photoheterotrophy is a general
feature of the bacterioplankton which dominate these regions, in order to determine the
full significance of light to biomass accumulation and biogeochemical functioning. To date,
this endeavour is hampered by the scarcity of data available from the Southern hemisphere
(Mary et al., 2008) as the majority of measurements have been made in the north Pacific
and Atlantic (Church et al., 2004; 2006; Michelou et al., 2007; Mary et al., 2008; Gémez-
Pereira et al., 2013) (Figure 1). The northern hemisphere has a larger continental land mass
resulting in greater mineral aerosol deposition which increases the availability of trace
metals, such as Fe and Pb, in the north relative to the south (Duce and Tindale 1991;
Henderson and Maier-Reimer 2002). Hence the nutrient regimes of the oligotrophic waters
of the northern and southern hemispheres are distinct (Moore et al 2013) which could
potentially cause differences in the role and significance of photoheterotrophic nutrient
acquisition between these biogeochemically distinct hemispheres. Photoheterotrophy is
typically assessed by the quantification of light mediated organic nutrient uptake by either
bulk bacterioplankton (Church et al., 2004; 2006) or on flow cytometerically sorted bacterial
groups (Michelou et al., 2007; Mary et al., 2008; Gémez-Pereira et al., 2013). The rate at
which a bacterial cell takes up different organic molecules is
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Figure 1 Overview of the sites for which evidence of photoheterotrophy has been shown or
photoheterotrophy has been recorded in the form of light-enhanced bacterial substrates uptake
(not comprehensive). (O, Beja et al., 2000) detection of bacterial Rhodopsin, (m, Kolber et al., 2000)
bacterial photosynthesis detected, ( ®, Zubkov et al., 2004;0, Zubkov et al., 2006a) amino acid
uptake by photosynthetic bacterioplankton, ( 4 Church et al., 2004; 2006) bulk light-enhanced
leucine uptake, (4, Michelou et al., 2007) bulk and cell-specific light-enhanced leucine uptake, (4,4
, Mary et al., 2008) SAR11 and Prochlorococcus specific light-enhanced amino acid uptake, (- ,a,
GOmez-Pereira et al., 2013; <, ®, this study).

related to its specific metabolic requirements. For instance amino acids are taken at a
greater rate than nucleotides because cells synthesise more protein than nucleic acids
(Gomez-Pereira et al., 2013). Similarly, leucine is taken up at a higher rate than methionine
because of a higher proportion of the former in bacterial protein (Mary et al., 2008). Organic
substrate uptake is also likely driven by nutrient requirements, for example ATP may help
satisfy cellular phosphorus requirements (Alonso-Saez and Gasol, 2007), whereas,
methionine may supply sulphur (Mary et al., 2008). Hence, when assessing
photoheterotrophy by light-mediated substrate uptake a range of different substrates
should be used.

We sought to assess the ubiquity of bacterioplankton photoheterotrophy in the oligotrophic
ocean and identify the organism responsible. This was achieved by redressing the imbalance
between the more extensive measurements in the northern hemisphere and the scarcity of
measurements in the southern hemisphere (Figure 1). To do this, the effect of light on the
uptake of ATP and the amino acids leucine and methionine by the bacterioplankton was
tested during two cruises to the South Atlantic. Here we show that photoheterotrophy was
consistently detected in the bulk bacterioplankton, as well as the two dominant groups
Prochlorococcus and SAR11. These measurements indicate that photoheterotrophy is a



widespread biological process in the south Atlantic subtropical gyre, which when combined
with the existing data, supports the conclusion that photoheterotrophy is ubiquitous in the
oligotrophic ocean.

2. Materials and methods
2.1 Study site and sampling procedure

The study was conducted on board the Royal Research Ships the James Cook (cruise no.
JC53) and the James Clark Ross (cruise no. JR300) from October to November 2010 and
2013, respectively (Figure 1). Seawater samples were collected from 20 m as a
representative depth for the surface mixed layer using a sampling rosette of 20 L Niskin
bottles mounted on a conductivity-temperature-depth (CTD) profiler. A depth of 20 m was
selected as it represented the shallowest depth at which the majority of biologically harmful
higher energy wavelengths of light are attenuated. Stations sampled were located
throughout the Southern Atlantic Gyre (SAG) with three in the Southern Temperate Waters
(STW). During JC53 a preliminary study of the ambient concentration and turnover times of
methionine and ATP, and the influence of light on the uptake of these organic substrates by
total bacterioplankton, was conducted. On JR300 leucine and ATP were used to assess light-
stimulated uptake by specific bacterioplankton groups in addition to the total
bacterioplankton.

2.2 Bacterioplankton

Bacterioplankton were enumerated by flow cytometry (FACSort, Becton Dickinson, UK) from
samples fixed with paraformaldehyde (PFA, 1% final concentration) and stained with the
DNA-specific dye SYBR Green | (ref. Marie et al., 1997). An internal standard of 0.5 and 1.0
um beads (Fluoresbrite microparticles, Polysciences), the concentration of which was
determined by syringe pump flow cytometry (Zubkov and Burkill, 2006b), was added to each
of the samples. Bacterioplankton groups were distinguished according to their DNA content
and scatter properties. SAR11 alphaproteobacteria and Prochlorococcus cyanobacteria were
defined in accordance with previous molecular identification of flow cytometrically sorted
bacterioplankton cells (Mary et al., 2006; Gémez-Pereira et al., 2013).

2.3 Ambient concentration and turnover rates of organic substrates

The ambient concentrations and turnover rates of leucine, methionine and ATP in the
waters were determined using the isotopic dilution time series bioassay (Wright and
Hobbie, 1966; Zubkov et al., 2004). L-[4,5->H]-leucine (specific activity 140 Ci mmol™) was
added into 2 mL polypropylene crystal clear microcentrifuge tubes (Starlab, Milton Keynes)
to achieve final concentrations ranging from 0.1 to 1 nM in the 1.6 mL seawater samples.
Immediately after collection, seawater was mixed with the labelled substrate (marking the
start of the experiment) and a sample from each concentration was fixed with PFA (1% final
concentration) at 10, 20, 30 and 40 min. Particulate matter in the samples was collected by



filtration onto 0.2 um pore-size polycarbonate filters, which were then washed twice with 4
mL of deionised water. To determine the radioactivity of the retained particulate matter the
filters were placed in scintillation vials, which were subsequently filled with scintillation
cocktail. Vials were placed into a liquid scintillation counter (Tri-Carb, 3100TR, Perkin-Elmer,
Beaconsfield, UK) and analysed. Substrate concentration, uptake rate and turnover time
were calculated as previously described (Wright and Hobbie, 1966; Zubkov et al., 2005).
Briefly, leucine uptake rates were calculated from regression analysis of the radioactivity
incorporated into particulate material plotted against incubation time. This was used to
derive a turnover time for each of the concentrations of leucine by dividing the amount of
radioactivity added to the sample by its uptake rate per unit time. The calculated turnover
time was then plotted for each of the leucine concentrations used and extrapolated using
linear regression. Assuming constant rates of removal and regeneration, leucine uptake rate
(V) was estimated from the slope of the linear regression. The y intercept gave an estimate
of amino acid turnover time at ambient concentration (t) which can otherwise be expressed
as the sum of the ambient concentrations (S) plus the transport constant (K;). This can be
expressed according to the equation:

S+Kt=VXt

Where K; is a measure of the uptake system’s affinity for leucine, with a low value indicative
of a high affinity. As bacterioplankton are well-adapted to living at ambient organic
substrate concentrations we assume they are efficient at organic substrate uptake at
ambient concentration and thus have a negligible K; relative to ambient concentration.
Therefore, it should be noted that our calculated ambient concentrations represent upper
estimates.

The L-[**S]-methionine (specific activity >1000 Ci mmol™) bioassay was completed in a
similar manner, except that the labelled substrate was added at a standard concentration of
0.05 nM and diluted with unlabelled (cold) methionine, using a dilution series ranging from
0.05 to 1.0 nM. For the [a **P]-ATP (specific activity 3000 Ci mmol™) bioassay the labelled
substrate was added at a standard concentration of 0.15 nM and also diluted with
unlabelled (cold) ATP, using a dilution series ranging from 0.2 to 1.0 nM. Samples were fixed
at 15, 30, 45, and 60 min.

2.4 Bacterioplankton light and dark uptake

All experimental setup and sample handling was completed under dim green light (<1 pumol
photons m?s?, Gdmez-Pereira et al., 2013). During the first cruise seawater samples were
placed in 2 mL polypropylene crystal clear microcentrifuge tubes to which either 0.5 nM
final concentration L-[>*S]-methionine, or 0.1-0.4 nM final concentration [o **P]-ATP was
added. Each treatment was performed in four tubes which were placed into the light or dark
simultaneously. The tubes were incubated in 6 L water-filled transparent tanks that were
maintained at ambient seawater temperature by continual water recirculation through a



thermostatically controlled bath. For the dark incubations the water tank was sealed in two
layers of black, plastic bags. For the light incubations two separate tanks were used, each of
which was equipped with a warm white light emitting diode array (Photon Systems
Instruments, Drasov, Czech Republic) adjusted to create two discrete light intensities. For
the majority of experiments a setup receiving a standard light intensity of 500 umol photons
m2 s was paired with a setup receiving either a lower light intensity of 100, 110 or 250
umol photons m?2 s, or a higher light intensity of 750 or 1000 pmol photons m™2 s™. The
tubes transmit 72% of the light at 400 nm increasing to 82% at 700 nm (Mary et al., 2008).
Thus, the contents of the tubes would have received 350-410 umol photons m?s™tinthe
reference setups, 72-82 umol photons m™ s in the low-light setups, and 720-820 umol
photons m™ s™ in the high-light setups. At each time point of a time series one of the tubes
was removed and its content fixed with PFA. The fixed sample was filtered and analysed as
described above, and the radioactivity taken up in the light and dark treatments was
compared.

During the second cruise seawater samples were placed in 30 mL borosilicate glass bottles,
to which either 0.4 nM final concentration L—[4,5—3H]—Ieucine or 0.1-0.4 nM final
concentration [a **P]-ATP was added. The bottles were incubated using the same tanks,
except that only one light intensity was used (160 umol photons m™?s™ at stations south to
27°S, and 250-300 pmol photons m™ s thereafter). A lower light intensity was purposefully
selected for the first set of stations based on results obtained during the first cruise, which
indicated that this level should be sufficient to stimulate light-enhanced uptake, whilst at
the same time minimizing the risk of photoinhibition (Church et al., 2004). To examine
isotope uptake experiments were sub-sampled every two hours over a time period of six
hours, starting at either one or two hours post isotope addition. The subsamples were fixed,
filtered and analysed as described above and the difference between radioactivity taken up
in the light and dark treatments was compared. Additional subsamples were also taken from
the incubations at the six hour time point to determine isotope uptake by specific microbial
groups. This was achieved by radioassaying individual flow-sorted bacterioplankton
populations.

After fixing and staining (as described in section 2.2), cells were sorted onto pre-washed 0.2
um polycarbonate filters at a rate of <300 particles s™ in single-cell sort mode for 1, 2, 3, and
4 min for each group, and analysed as described in section 2.3. At stations located within
the SAG the sorted bacterioplankton groups were: average bacterioplankton, SAR11 and
Prochlorococcus cells, whilst in the STW Prochlorococcus declined sharply and could not be
sorted with confidence. For each group isotope uptake per cell was calculated by dividing
the radioactivity taken up by the number of cells sorted, and then deriving an average from
the four sorts conducted per group. For both the light and dark treatments an uptake rate in
nmol cell’* h™ was calculated (Gémez-Pereira et al., 2013). Briefly, the uptake rate per cell
(c.p.m. cell®) for either the light or dark treatment was divided by the total uptake (c.p.m. I
') from that same treatment, and then multiplied by the microbial uptake rate in nmol I'* h™



(as derived from the isotopic dilution assay described in section 2.3). Total uptake was then
calculated from the filtered whole-water subsamples, as described above. To finally
calculate leucine and ATP uptake rates in molecules per cell this rate was multiplied by
Avogadro’s number.

2.5 Statistics

To test whether the differences between light and dark treatments were significant, a
paired t-test was applied to pooled data sets. Prior to this the data was checked for
normality using the Shapiro-Wilk test, and non-normally distributed data was first log
transformed. All statistical analyses were conducted in SigmaPlot 12.3.

3 Results
3.1 Effect of light on bacterioplankton organic nutrient uptake

Light significantly enhanced the microbial uptake of ATP and amino acids in the surface
waters of the South Atlantic Ocean (Figure 2a, b, c and d). In the SAG total microbial 3p_ATP
uptake in 2010 (JC53) was on average 29 + 18% higher in the light than in the dark. Three
years later (JR300) the light-enhanced ATP uptake relative to uptake in the dark the dark
recorded for the same region was approximately a third lower at 19 + 7% in the SAG and 23
+ 2% in the STW. The lower values for the latter cruise are likely attributable to the range of
light intensities employed for incubations (see section 3.2). During both cruises absolute
uptakes rates of ATP in the SAG were comparable at 0.10 + 0.07 nM d* and 0.07 + 0.07 nM
d* for 2010 and 2013 respectively, and in the STW were 0.30 + 0.13 nM d™. Light was found
to enhance the amino acid methionine’s uptake in the SAG by on average 28 + 30 %.
However, levels of light stimulated leucine uptake were lower at 8 + 5% and 6 + 4% in the
SAG and in the STW respectively which was likely due to the on average lower light
intensities employed. Absolute uptake rates in the light recorded for both amino acids in the
SAG covered a similar range and were on average 0.51 + 0.61 nM d™* for methionine and
0.27 +0.23 nM d™* for leucine. As for ATP, leucine uptake rates were higher in the STW at
1.12+£0.37nMd™.
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Figure 2 Scatter plot comparison of the total bacterioplankton uptake of (A, B) ATP and (C, D)
Leucine (Leu) and methionine (Met) in the light and the dark using (A, C) logarithmic and (B, D) linear
scales, note the breaks. The dashed line indicates the unity line and error bars show se.

3.2 Effect of light intensity on bacterioplankton organic nutrient uptake

Incubation at a higher light intensity of 350-410 pmol photons m™ s™* on cruise JC53 resulted
in a greater light-stimulated microbial >*P-ATP uptake of on average 33 + 14% in the waters
of the South Atlantic, when compared to the same measurement at lower light intensity
during cruise JR300 in the same region (20 + 6% average increase at 160 to 300 umol
photons m™ s*) (Figure 2a and b). This relationship between light intensity and the level of
light-stimulated ATP uptake is supported by the results of parallel incubations to determine

the
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Figure 3 Uptake rates by total bacterioplankton of (A) ATP and (B) methionine (Met) in the dark and
under varying light intensity. Light intensities are given in umol per photon per m? pers.

effect of light intensity on substrate uptake (Figure 3a). When compared to uptake in the
dark, the degree of light-stimulated microbial ATP uptake was greatest in the populations
incubated at the highest light intensity for six out of eight experiments (t-test P-value
<0.05). This relationship was also found for light-stimulated uptake of the amino acid
methionine, with all but one of the eight experiments showing proportionally greater light-
enhanced uptake at the higher light intensity (Figure 3b; t-test P-value <0.05). On average
methionine exhibited a much greater light-stimulated uptake (33 + 35%) in the South
Atlantic surface waters when incubated at 350-410 pumol photons m?s? compared to
leucine in the same region (8 £ 5%) incubated at the lower light intensity of 160-300 umol
photons m™ s™* (Figure 2b).



Despite the fact that incubation at higher light intensity generally resulted in greater uptake
of organic nutrients, a direct relationship between light intensity and uptake rate could not
be identified in the data. Specifically, even large increases in light intensity did not always
increase uptake substantially, (for example ATP uptake at stations 21.424 °S and 18.322 °S;
Figure 3a) potentially indicative of an irradiance threshold beyond which substrate uptake is
not greatly increased.

3.3 ATP and leucine uptake by SAR11 and Prochlorococcus

On average, uptake of ATP and amino acids by bulk bacterioplankton was higher in the light
than in the dark (see section 3.1). However, it is unclear as to whether all the cells were
responding in a similar way, or if only one or several groups behaved differently. To address
this issue, individual subgroups of the bacterioplankton were flow-sorted.

The Prochlorococcus populations in the SAG took up similar amounts of both ATP and
leucine at around 2000 and 2400 molecules cell* h™, respectively, in the presence of light
(Figures 4a, b, c and d). Conversely, uptake rates of ATP and leucine by the SAR11
populations in the SAG differed by more than an order of magnitude, at on average 600
molecules cell’* h™ compared to 7500 molecules cell* h™, respectively. SAR11 uptake rates
were on average greater in the STW compared to the SAG, being almost double for leucine,
at on average 13000 molecules cell* h™}, and approximately five times as much for ATP, at
3100 molecules cell* h™.

3.4 The effect of light on SAR11 and Prochlorococcus

For Prochlorococcus, light stimulation increased the uptake of leucine and ATP by a similar
proportion at, on average, 24% and 21% respectively, whereas, for SAR11, light-stimulated
uptake of leucine was (7%) below that of ATP (21%).

To assess whether any other major groups of bacterioplankton, aside from those sorted and
described above, contributed to the light-stimulated uptakes of leucine and ATP, a budget
was calculated. For each group its abundance relative to the total bacterioplankton
abundance was multiplied by its average light-enhanced uptake. In the case of leucine in the
surface water, Prochlorococcus accounted for more of the increase than SAR11 (60% versus
39%, of the total bacterioplankton light-stimulated uptake respectively), and taken together
their contributions closed the budget for light-stimulated uptake by the total
bacterioplankton. In the case of ATP, SAR11 made a greater overall contribution to the light-
enhanced uptake compared with Prochlorococcus (49% versus 28%, of the total
bacterioplankton light-stimulated uptake respectively) accounting for two thirds of light-
stimulated uptake by the total bacterioplankton.
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4. Discussion

The consistently higher rates of substrate uptake by microbes in the light compared with the
dark at stations in the South Atlantic indicate photoheterotrophy is common throughout
this region. These findings overcome the previous barrier to establishing the global

importance of photoheterotrophic photosynthetic processes as we provide the first major
body of evidence from a region in the previously scarcely sampled Southern Hemisphere.

These findings contradict the conclusion made from a recent compilation of the data by
Ruiz-Gonzalez and colleagues that light may have a net inhibitory effect on marine microbial
substrate uptake (Ruiz-Gonzalez et al., 2013). Closer inspection of the compiled data,
combined with the fact that photoheterotrophy is common in the oligotrophic stratified
waters, suggest that this process may be dependent on ecosystem productivity (Gémez-
Pereira et al., 2013). Pioneering studies of the North Pacific Gyre indicated light-stimulated
uptake of the amino acid leucine in Prochlorococcus-dominated waters (Church et al., 2004;
2006). Later, a single-cell approach determined that Prochlorococcus were responsible for
the majority of light-stimulated amino acid uptake in the North Atlantic, and it was
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speculated that the unaccounted for remainder of the uptake could most likely be
attributed to proteorhodopsin-containing bacteria (Michelou et al., 2007). Mary and
colleagues (2007) were the first to provide actual light-stimulated uptake rates for both
SAR11 and Prochlorococcus which they did using near-ambient concentrations of
methionine and leucine in the Atlantic Ocean (Mary et al., 2008). Similar methods were
recently employed in the North Atlantic Subtropical Gyre by Gémez-Pereira and colleagues
(2012), who found that light stimulation increased the uptake rates of methionine and ATP
by a third in these bacterioplankton groups. Here, light-enhanced uptake of organic
substrates in both SAR11 and Prochlorococcus during two cruises traversing the south
Atlantic, give confidence that photoheterotrophy can be confidently extrapolated to all
oligotrophic water masses. Furthermore, reports of light enhanced organic nutrient uptake
in temperate waters (Michelou et al., 2007; Mary et al., 2008; Gédmez-Pereira et al., 2013;
this study) suggests that while photoheterotrophic bacterioplankton groups are a ubiquitous
feature of oligotrophic waters they are not confined to them.

The purpose of a photoheterotrophic nutritional strategy to cell metabolism has been
debated in the literature in the context of contrasting experimental findings. Culture studies
have indicated that light does not promote the growth of proteorhodopsin containing
bacteria but rather may serve to support them during times of energy starvation (Steindler
et al., 2011). However, a modelling approach has determined that whilst the energetic
benefits of proteorhodopsin-based phototrophy may be slight the associated costs are low
enough to ensure proteorhodopsin’s persistence in marine bacterial genomes (Kirchman
and Hanson, 2013). Indeed, the elimination of genes not vital for cell survival (Giovannoni et
al., 2005) suggests that the acquisition of even a small proportion of the required organic
molecules by photoheterotrophy must be energetically more beneficial than de novo
synthesis (Zubkov, 2009). Thus photoheterotrophy supports the nutrition of
bacterioplankton and likely confers an advantage under conditions where an abundance of
sunlight can be harvested to power the acquisition of scarce organic nutrients.

The stratified oligotrophic oceanic regions represent a vast ecosystem intimately linked to
the Earth’s climate and biogeochemistry which are considered to be carbon sinks (del
Giorgio and Duarte, 2002). By far the most biogeochemically active component of these
systems are the abundant bacterioplankton constituents (Kirchman, 1997) which are
dominated by the photoheterotrophs SAR11 and Prochlorococcus (Chisholm et al., 1988;
Morris et al., 2002). The ubiquitous utilization of light, a resource abundant in the open
ocean, in order to help satisfy their nutritional requirements, makes photoheterotrophy a
key process to Earth system functioning. Furthermore, the ability to harvest light energy
could decrease the requirement for respiration thereby reducing the production of carbon
dioxide by bacterioplankton (Koblizek, 2011). Therefore, we recommend the inclusion of
Photoheterotrophy alongside photosynthetic fixation of carbon in future endeavours to
assess the biological significance of light.
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The absolute uptake rates of methionine and leucine reported here are in a similar range to
those reported for amino acids throughout the Atlantic Ocean (Mary et al., 2008; Hill et al.,
2011), whereas uptake rates of ATP in the South Atlantic are lower than those found in the
North Atlantic (Michelou et al., 2011; Gémez-Pereira et al., 2013). This difference likely
results from the stronger phosphate limitation in the north resulting from iron input by
Saharan dust (Moore et al., 2009) and/or ocean circulation (Straub et al., 2013). The
dissolved organic phosphorus (DOP) pool has been identified as a possible alternative P
source in the North Atlantic and its use in the upper water column was found to equal that
of inorganic phosphorus (Bjorkman and Karl, 2003). Three quarters of the natural DOP pool
consists of P-esters such as ATP (Kolowith et al., 2001), and bacteria are able to utilise ATP
to help satisfy their phosphorus requirement (Alonso-Saez and Gasol, 2007). Hence, the
lower absolute uptake rates of ATP reported here are likely due to a lower dependence on
DOP in the South Atlantic compared to the North Atlantic Ocean.

Conclusions

Our consistent detection of light enhanced substrate uptake over two large-scale transects
of a southern hemispheric ocean region combined with reports from the northern
Hemisphere (Church et al., 2004; 2006; Michelou et al., 2007; Mary et al., 2008; Gémez-
Pereira et al., 2013) could be considered as a critical mass of evidence from which we can
confidently extrapolate light stimulated microbial substrate uptake to the global ocean. To
date, the use of light to reduce carbon and generate oxygen has received vastly more
scientific attention than photoheterotrophy. However, here we establish that
photoheterotrophy is prevalent in the oligotrophic, stratified regions of the world’s ocean,
indicating it is widespread and should also be considered when appraising the biological and
biogeochemical significance of light.
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