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Abstract: Since the pioneering work of Bagnold in the 1940s, aeolian research has grown to
become an integral part of eadistem science. Many indiduals have contributed to this
development, and Dr. Michael R. Raupach (192015) has played a pivotal role. Raupach
worked intensively on wind erosion problems for about a decade (188%5), during which

time he applied his deep knowledge of tuemee to aeolian research problems and made
profound contributions with fareaching impact. The beauty of Raupach's work lies in his clear
conceptual thinking and his ability to reduce complex problems to their bare essentials. The
results of his work arfundamentally important and have many practical applications. In this
review we reflect on Raupach's contribution to a number of important aspects of aeolian
research, summarize developments since his inspirational work and place Raupach's efforts in
thecontext of aeolian science. We also demonstrate how Raupach's work provided a foundation
for new developments in aeolian research. In this tribute, we concentrate on five areas of
research: (1) drag partition theory; (2) saltation roughness length; t@)aabombardment;

(4) threshold friction velocity and (5) the carbon cycle.
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1. Introduction

Aeolian research is muldisciplinary, but its core lies arguably in the fluid dynamic
interactions between soil particlgee atmospherendthe soilsurface Since theearly work
of Bagnold(1941) it hasadvancedo become aintegral part of eartlsystem studies\eolian
processes arkighly relevanttopics inthe earth sciencdsecause of tha@eedto: (1) better
guantify the dust cycléor climate projectins (2) assess the anthropogenic impact on natural
and humarnvironmers; (3) prevent soil loss from wind erosionland-conservatiompractice

and 4) understand aeolian processes and landform development on other planets in particular,

Mars and Venusas well as moons such as TitAmany individuals havecontributed to this
developmentand Dr. Michael R Raupach(1950 7 2015)was one of thenost outstanding
(Steffen, 2015)

For colleagues ieeolian researctandin climateresearch at largdlichaelR. Raupach is Mike,
but he used to abbreviate his naM&?, a format thatwve shall a@opt in this paper.This
abbreviationwasrelated tohis university traning in Applied MathematicsMR? received his
BSc degree, with honors in mathematical physics, tfr@rUniversity of Adelaide in 1971, and
a PhD in micrometeorologfunder the supervision of Prof. Peter Schwerdtfefrery the
Flinders University of South Australia 1976. After a postdoctoral position at the University
of Edinburgh, he joinethe Cente for Environmental Mechanic&EM, alsoreferred taas the
Pye Lab)of the CSIRO (Commonwealth Scientific and Industrial Research Organisation)
Canberran 1979 where hevorkedfor much of his 35/ear career. From 2000 to 2Q0@ was
inaugural cechair of the Global Carbon Project, an international progradghry theresearch
effort betweenthe naturalandhuman dimensions dhe carbon cycle. In Febary 2014, he
took up therole of Director at the Climate Change Instituie the Australian Natiosl
Universityand remained an Honorary Fellow witie CSIRQ Based orhis researclfoci, his
career can be divided into two stagbsthefirst he workedon atmospheric boundatsgtyer
turbulence and atmosphdend-surface exchangesncluding aeolian mcessesand in the
second on climate change, in particular the carbon cycle

R a u p ascidntifficdrive originated fromhis passion foiprotecting theenvironmentandhis
interest inaeolian pre@essesollowing from his concerns withand conservatio. The period of
19777 1988sawthree successivel Nifio eventsincludingtheintense phase df9827 1983
which brought record drought to eastern Australia, turnhregfarmlandsin the wheatsheep
belt intoa hot spot of wind erosioi®n 8 February 183, aficool change (a dry cold front
preceded by ha43.2C) gusty northerly wind®lew large quantities ofed-brown dustover
Melbourne This event inspired MRo write one of his first essays on wind erosion (Raupach
et al., 1994), which was pionésg in its attention to three fundamengalak of dustresearch
identification of dust sources; estimating dust loads; and quantityarqutrient lossof topsoil

by wind erosionTheirestimate of the dust load) (2 +1 Mt)in the1983 Melbourne dust@am

was one of the earliest attempts to quantify evasied dust loadg. This valuewas based
upon a few baclof-the-envelope calculations; reducing a complex problem to its fundamental
components, for which MRbecamdamous.R a u p aestimétes of topsil nutrient loss was
highly innovative, and 20 years lateiind-erosion related soil nutrient and soil carbon transport
has become one of the most fundamental aspects of studiesdust cycle.
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In 1985, John Leys, then with the New South W&esConservation Servi¢gdadjust started
his PhDat Griffith University in Brisbaneunder the supervision #frofessoiGrant McTainsh
andwas developing a portable wind tunnel f@ind-erosionfield experimerg. At the time,
MR? was among a group aforld-class micro-meteorologistsgatheredin the Pye Lab,
conductingwind-tunnel experiments on flow over complex terraM®? and Leyswenton to
modify the design oMarsh and Cartefl 9 8 3) and d e vaediaorpseafcwmd r al | a
tunnel (Leys and Raupach990).The excellent fluid dynamic features of this tunmehde it

a valuable research toobt onlyfor land-conservatiorstudiegMcTainsh and Leys, 1993)ut
also for thestudies of basiwind-erosion process€Shao and Raupach, 1992; Shao eflab3).

In 1991,a group ofAustralianwind-erosionresearchergathered at the Murdoch University in
Perth and staged tHeé' Australian workshop on wind erosidfigure 1) In this workshop,
William Nickling gave a keynot@resentationiShear Stress: Whddrives Wind Erosion
Processeas Following the meeting, with a cool sea breeze and bright stars in the skyirthe
of Freemantle MR? treated everyonwith beer. h 1993, the groupnet againin the Mallee
country town of Milduraand formedthe Wind Ercsion Research Community of Australia
(WERCA, a name that MRand Grant McTainsh conceived over drinks at the meetibage
Gillette gave ghilosophicatalk onthe paradigmsof wind erosionlt is unfortunate that MR
will not be with us for the ninth ternational Conference on Aeolian Resedl@AR IX) to
be held in Mildurain 2016 However the influences of his work will be evident at the
conference and will provide a legacy toconsiderable time

[Insert Figure 1 here]

Figure 1. Michael R. Raupch (back, &' left) amongthe participants of thelst AustralianWorkshop onwind
Erosion, 1991, Murdoch University, PertBeveral contributors to this paper were among the participarasit
McTainsh (front, ¥ left), Paul Findlater (front,"® left), Yaping Shaolfack, F left), William Nickling (back,5™"
left), John Leys (back,™eft). The workshop convener wiléilliam Scott (front, 3' left).

MR? workedfor about a decadgl985i 1995)intensively on wind erosioproblems but he
did so briliantly by relatingaeolian poblemsto his deep knowledge of turbulence, and made
profound contributioato the fieldwith far-reaching influenceand dasting legacyThe beauty
of Ra u p awork & srystal clear conceptual thinking, reducing problemthéir essentials
and expresag thatessence witkelegance yetimplicity. The results of his work are robust and
practically applicableln this review wereflect onR a u p acoriribution to a number of
importantaeolianresearclthemes summarize thelevelopmerd sincehis inspiratioral work
and placeR a u p adffértdrs the context ofaeolian scienceWe also demonstratehow

R a u p awork @ravidedmany foundations or platforms for tdevelopment of his work and
theinvestigation of new researchRor brevity, we will concentrate oR a u p awork id Bve
areas (1) drag partitiontheory; (2) altationroughness length(3) saltation bombardment4)
threshold friction velocity; and (5acbon cycle

2: Drag Partition Theory and Applications to Wind Erosion Studies

2.1The Raupach Drag Partition Theory
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In the atmospheric surface lay#re profile of the mean winds approximatelylogarithmicin
form andthe shear strest also referred to as drag,vertically approximatelyconstantThus,
the flowin the surface layas characterized bthe aerodynamic roughness lengih,and the

shear stresthatis often expressed in terms of friction velocity,=./f / r , with } being air
density.

At the secondnternational Conference on Aeolian Resedi&@AR II) in Denmark(1990,
MR?, Gillette and Leysliscussedhe difficulties ofsand fluxmodelling in the shrubkandsof
Texas and Australia as opposed to thedgdneaches of Denmark. Theponrealized thain
manywind-erosion applicationghe knowledge oblalone is insufficientas in shrutandsthe

shear stress on the intervening erodible surface, which drives the sand movement, is subject to

the influence®f the shrubs MR? generalizd this discussiorto the fluid dynamic problem of

drag partitionover rough surfaces.e., the partition of the total drag into a pressure drag on

roughness elements and a friction drag on the surf@eepach (1992pid the foundation of
the drag partition theory arRhupach et al. (1998gmonstrated hothis theorycan be applied

to estimaing sediment transpothresholdovervariousroughaeoliansurfacesR a u p anork 6 s

led the way to numerous studies that followedging from windtunnel and field experiments,
numerical modelling, remote sensing anctlyeWe know today that is desirablen general
to treatUin wind erosionapplicatiors as a stochastic variable andstatisticallyquantify its
spatial and tempal variations. Agliscussedater in thisreview, thespatial variabilityof shear
stress isa critical part of heterogeneoasolian processs while its temporalvariability is
important forintermittentsaltation and dust emission.

Shear stresgaridion in naturecan bevery complicated, and simplificati@arenecessary for
theoretical analysi@_ettau, 1969Arya, 1975) Following Shlichting (1936) Raupach (1992)
suggested that rough surface can be considered to be composed of roughness £ (@ntleat
spirit of R a u p aaodysiss it seems appropriate to inventwledi r ought ons 0)
on a smooth substrate surface. The total drégus expressed as

t=t, +t, (1)

wheret, is the drag otheroughtons or pressure dragnd ¢ .the dragon the substrate surface

or surface dragThe task of drag partition is to determine the ratihs/¢ and¢./¢, and to

estimate how these ratios depend @artughnesgharacteristicsAn immediate questiothat
arises is howhe surface roughness can be quantifi¢gt? aimedto find an analytical solution
for the simplest case possilaled thusassumed that the surface corsatrandomly distributed
cylindersuniform in size each haing a frontal area o#. It follows that if the number density
of the roughtons ia (number per unit area), then the frontal area index of the roughtons is

! =nQ@ 2)

which is the only input paramete for the Raupach (1992)scheme This conceptual
simplificationwas influenced by the woMdR? was very familiar withjn particularthe wind
tunnel experiments darshall (1971) and Woodingf al. (1973), alfrom thePye Lab.
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Raupach (1992introducel the concept of effective shelter aréaand volume), associated
with an individual rougton (Figure 2) and made two hypotheses

Hypothesid: for an isolated rougtess elemenaf breadthb and height in a deep turbulent
boundary layer with fricin velocityu- and mean velocityh at heighth the effective shelter
areaA and volumeV scale as

A~DbhU, /u, (33)
V ~bhU, /u, (3b)

Hypothesis tlwhen roughess elementwre distributed uniformly or randomly acrossuaface,

the combined effective shelter area or volume can be calculated by randomly superposing

individual shelter areas or volumes.

With thesehypothesesRaupach (1992) found that

t 1
_S = 4a
t 1+b/ (43
t b
_r = 4b
t 1+b/ (40)

with b =C, /C_, whereCsis the frictional drag coefficient ar@ the pressure drag coefficient

Eq. (4) is a simpleyet robust model supported hiye wind-tunnelmeasurements of Marshall
(1971)as well as theaumerical simulations dfi and Shao (208).

[Insert Figure 2 here]

Figure 2. R a u p aconkeptsal model for drag partitioning. Augh surface is considereddonsist of roughness
elements and a substrate surface. A roughness element produces an effective sheltering areaearitheolum
integrative effect of the roughness elements can be estimated by random supefiesitiavn from Rupach
(1992))

The results oRaupach (1992have two immediate applications, first to estirdhreshold
friction velocity for wind erosiony«, andsecondo estimateaerodynamic roughness length,
2. Suppose for gurfacell i s t h e tondasal areadoffrontabareg, then the exposed
fraction ofthe suiface subject to wind erosion(s- s /), and the shear stress on the exposed

surface is

t_ 1 1
t [-s)@+b6)

()

Here, t | is the spatially averaged stress on the exposed sulfage assumehe largest stress
acting on the surface igjand j(/) equalst i(/,)with /, =m/ and m<1, thenwe have:
tj 1 1

t ([-ms)@rmo ) ©

R
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Reis theratio of u. /u., , with uxs beingthe threshold friction velocity for theurfacefree of
roughtonsandus« for the rough surfacdt follows that

Uy =Ugy/(L- ms HL+mb } (7)

Equaton (7) provides asimpleway for the correction ofu« for rough surfacesand itsvalidity
is confirmed through comparison with the existing data of Gillette and 8to¢k989), Musik
and Gillette(1990), Lyles and Allison (1976lversen et al. (1991)Crawley and Nickling
(2003) Li and Shao (2003and Sutton and McKenrAdeuman (2008).

Raupach (1992and Raupach et al. (1993)rovided for the first time astrongtheoretical
underpinning foexplainng theimpacts ofoughnesglements omeolianthresholds anfluxes
and a deep insight ta the aeolian fluid dynamics. The methadgsed inRaupach (1992)s
unique in thatoy introducing the sheltering area and volulR?t ook a fAquantu
approach, in that hdiscretely quantified the effect of amdividual roughness element and then
estimaté the total effect of all roughness elements through random superpoBitiothis
reason, iis appropriate to call roughness elements roughtons.

2.2Wind-tunnel and Field Experiments on Drag Partition

To test the theory oRaupach (1992and Raupach et al. (1993William Nickling andJack
Gillies thought it criticalto: (1) bridgetheory to field measurements at the full sca(@)
examine howR: behavesf roughnesslements areeal plantsand(3) investgate the impact
of roughness elements on saltation transport, in addition to sre@heycariied out field and
wind-tunnel studies to evaluaf asafunction oftheReynold number Re, for different plants
(Gillies et al, 200Q 2002).At the USDA &rnada Experimental Rand6&illies et al, 2006
2007),they placed staggered arrays of large cylindrical roughness elementbane apen
surface and instrumentetween thento measure the totalrag, surface drag, pressure drag
andsand fluxes. Itwasfound thatC; for plants is botiplantform andR. dependentThisimplies
thatdrag partition for surfaces with plants is not necessarily fixed, but changes as the plants
reconfigure themselves in response to wiltdle more flexible the plant, the greatie
proportion of shear stress acting on shbstratesurface andC; declines withRe. Thisfinding
implies thatsteppe landscapes (Shinoda et al., 2011), which are typically composed of grass
type speciesare likely more erodible than the shvdbminded landscapeofthe southwestern
US desertsGillette and Pitchford, 2004; Gillette €lt,a2006; King et al., 2005). lwasalso
found that while sand flugcales withe it is alsodependent on the height of tteightons For
the sames- dementswith h2 0.3 m are more effectivein redudng sand fluxthan shorter
elements, e.gh ¢ 0.1m (Gillies et al., 2006Gillies andLancaster2013;Gillies et al, 2015).
Theseexperiment show that th&®aupach et al. (1993nodel performs well in general, but
additionalconsideratioa should begiven toroughness configuration to fully account for the
observed saltation flux variations over roughfaces.While Eq. (7) has hree parameters),

G andb, it appears sufficient to choose appropriatealues (between 100 and 400) to fully
describe the observé&dfor a wide range of surfaces, but to keeandl constanfe.g. 0.5 and

1, respectively, as setaRBpach et al1993)), as Figure 3 shosv

[Insert Figure 3 here]

Figure 3. A compilation of R versus/ data from winegtunnel and field experimentsymbols).RGL93 1,
RGL93_2 and RGL93_3 are tlestimates using theaRpach et al. (1993cheme withm= 0.5,0 =1, andb =
100, 200 and 400espectively.
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The simplicity ofEq. (7) is a strengtHor its applicationin thatit requires only a few measurable
parametergWolfe and Nickling, 1996; Lancaster and Baas, 1998; King et al.,)200&
approach is widely used todaywind erosion mdels. In somestudiese.g, Marticorena and
Bergametti (1995)thedragpartition schemef Arya (1975)based on roughnekngth is used.
However, because roughness length is closely related to roughness configuratifrorieag.
area indexp), the schemes of Arya (1975) aRdupach (1992and Raupach et al. (1993re

in essence equivale(dee also, Raupach, 1994)

2.3 Extension of Drag Partition Theory

Real aeolian surfaces are much more complexithassumed ifRaupach (1992and Raupach

et al. (1993)For practical applications, theaRpach (1992heory requires several extensions:
(2) the validity of Eq(4) is limited toabout/ ¢ 0.1, but natual surfaceoften have muclarger
roughness densitip€) for surface with largeray it is not clear how shelter areas and volumes
can be evaluated and how they superpose due totdractionsamong theurbulent wakes
associated with th@ughness element&) there are largencertainties in thparameterd and

m, as both ardependenton the roughnesslementproperties (e.g., porosity and elasticity) and
configuration (arrangement aagpect ratip

It is possible to derive the resultsRhupach (1992)ith simpler assumption&or instanceti
is sufficient to assume lineauerposition ofshelter aremand volums instead ofrandom
superpogion asapplied inRaupach (1992Shao and Yang, 2008Ylore generally, we can
write

t.=rfCU,’ (8a)
t,=rfC/U,} (8b)
wheref; andfs are modificaion functionsof the respective drag coefficierdasising from the

interacting flows shed bypughtonsEquation(8) leads toEg. (4), subject only tds = f;, which
is exp(- ¢/U, /u.)in Raupach (1992)

Equation(1) is appropriate for small robgess density, but @asncreases fte total drag on the
rough surfacel) is betterwritten as

{:[I' +[S+{C (9)

where{ is thefriction drag on the surfaces obughneselemens. As / - © , we expect
t. It - 0 butEq.(4) states thatt, /¢ - 1 due to the neglect &. In general, the total drag can
be partitioned into three components followkg. (9) and the individual terms expressesl

t.=rf.C./U,1- h) (10a)
t.=rfCU,’ - h) (10b)
t.=rCuU,’h (10c)

whered is fraction of cover anfl andfs are functions ob-andd representhe modifications to
Cr andCs arising from thenteractions of the turbulent wakesroughness element!/ith this
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formulation, the drag partittoproblem is now reduced to determinandfs. It is also found
in Shao and Yang (2008) that

u2

U_*z = f,/ @- h)C, +[f,(A- h) +H]C, (11)

h
thatshows thatr?/Ur? is a weighted average tife pressure and surface drag coefficielnts.
: ah-dg .
neutral atmospheric boundaryéas,we haveU, :%Ingug andEq. (11) canbe written
¢ H =

as

,ah

K*In"2g——§= 1,/ (1- A)C, +[f,(L- h)+A]C, (12)
¢

-|-COO

h-d
z,
Equation {2) showsthat the roughness lengtl,, can be determinedh terms of drag
coefficientsfor agiven zeredisplacement heighd, Thus, in adragpartition theory, we actually
make two interrelated statements. The first is about the behavior of drag partition functions;
and the second about the behaviou-d), or equivalently a statement on the drag coefficients
or on the roughness length. Theaboveformulation of Shao and Yang (280as an extension
of Raupach (1992yeduces the drag partition problem to the determination of the drag

coefficientsmodification functionsThe Shao and Yang scheme requires both frontal area index
and fraction bcover as input parameters.

Another extension of &ipach (1992)vasmadeby Okin (2008) The Okinschemeébuildson
the basicinsight that i in the lee of aroughtonincreases with distance downwind/hile
Raupach (1992gxpressed the wake effeoy means of shelter area and voluméet Okin
scheme takes a probabilistic approach that envisions the surface to be made up of points that
are some distance downwind of@ughton.The shear stress experienced at each point is an
increasing function of this disnce, scaled by the height of teeighton,multiplied byU With

this approachthefrontal area indeis no longer the best varialfier charactering vegetation

cover, butis replaced byhe separationlistancebetween the rougbns In Okin (2008), the

shear stress on the soil surface is variable acrosknlscape, as originally envisioned
Raupach (1992)This approach allows some areas of the surface to experience transport while
the more protected areas do not. This approach differs from thatupiaBh et al. (1993h

which the threshold shear stses seen to be a property of the bulk surface. As a result, the
Okin schemas able to predict transpagtenat relatively high vegetation cover, in accordance
with field observations. Several studies published since have supported this ayfebllet

al., 2014; Walter et al.2012a;2012h Li et al., 2013)

2.4 Saltation Heterogeneity

At ICAR-V (Lubbock USA, 20®), MR? incisively exposed the challenges of large scale
aeolian modelling. Raupach and Lu (2004) subsequently publishedew ref landsurface
processesrpaeolian transport modelling during the previous two decades and identified four
challenges: (1) the fidelity of process representatidnupscaling poinscale process models

in the presence of unresolved heterogeneity in spacaragd(8) availability of spatial data

for specifyingmodel inputs and boundary conditipasd (4) largescale parameter estimation.
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To date, these challenges remain largely unresolved but the explicit and clear articirations
Raupach and Lu (2004yovide essentiaguidance fowhat needs to be done.

Raupach and Lu (2004¥uggested that improvements should be made in -poaié
parameterigtionsi ncl udi ng fAéthe effects of crusts an
limited saltation and dust upliff e posi ti on to sparse vegetatio
developments in this area in particular with investigations of soil moistuye\{iggs et al.

2004),the use of laser scanning technology to describe swalé roughness dynamiesd,

Nield & al,, 2013) angular reflectance measurement anditactional reflectance modelling

to characterize changes in soil condition in space and time (Chappell et al., 2005; 2006; 2007)
and retrieval of roughness changes in space and time using satellite semsing (Wu et al.,

2009).

Raupach and Lu (2004¢haractegedpoint-scale transport models,ds: f (v), wheref is a flux
andv is a vector otontrolvariablesPart of the challenge with aeolian transport models is that
they require flux and drivig variables averaged space and tim&kaupach and Lu (2004iyst
defined

f(v)= NAf (V) p(v)dv (13)

wherep(v) is the probability density functiofPDF) of v. If f(v)is linear, thenf (V) has the
same form af{v). Raupach and Lu (2004)pnsidered the cases whifv) is highly nonlinear

(e.g., involving threshold responsesyhich originates from the interaction between the
nonlinearity inf (v) and statistical variability in that causes the upscaling problem to be

mathematically nontrivial and dependent on-gub-scale variability throughhe PDFp(v).

Raupach and Lu (2004)sed an example of heterogeneous vegetation to show profoundly that
Aémaj or err or s garoceduresvhich reghectdhe mteraction metween model
nonlinearity and statistical variability in
first approximation to the sufrid-scale variability can lead to substantial improvement in flux
estimates

The effect oburface heterogenejty i . e. , t he deli berat alpgchnegl e
et al. (1993has been subject to intensive studies in more recent yeareaadieen identified

as asignificant source of uncertaintn its application Yang and Shao (2005) demonstrated

thatin case of vergmallroughness density, the shassressvariability due tothe presence of

roughons actually enhancesather than supresses wind erosi®aupach and Lu (2004)
recognisedhat whileno sediment transport is predicted at laggéhis may happen in reality
dependhg on roughness configuratiq@kin, 2008) and that ecounting for thé°?DF of axcan

improve the model estimates although this can be practically difficuValter et al., 2012

Dupont et al.2013;2014.

Brown et al.(2008 conducted windunnel experiments to determine ABF of U andR; for
a range ofe; roughness configurations, and fiteeam wind velocitiesUn. The authors
demonstrated that tiRaupach et al. (1993rhemecaptursthe general behaviour &, butto
accurately reprodudg, bothb andm must betuned foreachcase Furthermore, th&®aupach
et al. (1993)scheme desnot accurately reprodud® unlessb is made variablgo suit the
roughness configutians (Walter et al., 2012aThis variability isillustratedasthe scatterseen
in Figure3.
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Webb et al. (2014) explored the effect of roughness configuration on sedimen®floy,
comparingQ predicted using thRaupach et al. (1993cheme using the PDFs derived by
Brown et al. (2008)Webb et al. (2014) found that roughness configuration can have a
significant effect on aeolian sediment transport. Surface heterogeneity moderates how much
u-is in excess ofi (Figure 4) and therefore both whereson occurs within a landscape and

the magnitude of the total flux from an eroding area. Sediment flux may vary by an order of
magnitude for surfaces with the samslut different roughness configurations (Figure 5). For
very smalla; Q is found to increse witha; as predicted by Yang and Shao (206%)s found

to be sensitive to roughness configuratiand thissensitivity needs to be accounted for in
practical applications. The challenges identified by Webb et al. (2014) for implementing the
Raupachet al. (1993)scheme for heterogeneous surfaces draw attention to alternative
approaches to conceptualising the drag partition that explicitly represent the effect of
heterogeneoumughness distributions on wind erosion.

[Insert Figure 4 here]

Figure 4: Hi stograms illustrating the effect of the 6rand

velocity (u+) calculated from measured surface shear sttdsiigtributions at a roughness density 0.1 and four
free stream wind velocitiedJ)f). Inset graphs show the proportionldgreater than a threshold shear velooity
= 0.25 m ¢ for the random (Ra) and street (Str) configurations. These propewi® indicative of the relative
sediment fluxes produced for the two roughness configurations.

[Insert Figure 5 here]

Figure 5: Graphs showing roughness configuration effects on horizontal sediment ma€} #upressed as the

ratioofQf or utumMpedd] O6randomd and O6s@Pfrerrttbhe omdti yggearnteé dd sc

at a range oé-and freestream wind velocitiedJs.
3: Random Momentum Sinks from Vegetation toSaltation
3.1 Owen Effect

During saltation, and graingnteract with the airflow antransfer momentum to theurface.
The particle momentum flukeads to an increase roughnesgength of the aeoliansurface
similar to theroughnessncrease induakby waves orthe ocean surfagg€harnock, 195bor
by the waving canopy of a vegetated surfades is known ashe Owen effect in theeolian
community.

Although theOwen effectvas knowr(Bagnold, 1941), its explanation laka solid theoretical
underpinninguntil the work of Raupach (1991hlaving workedyears on flow over complex
terrains, MR wasnaturallyvery familiar with the studies on vegetationaasiomentum &k
and immediately recognized thsdltating particles behave lilstochastianobile momentum
sinks in the saltation layer. For the flow in the saltation layer, saltation etheeertical
gradient of theflow velocity, and for theflow outside the s#édtion layer, it increass the
capacity of the surface absorbing momentuitiherebyincreasng zo.

By usingearlieravailableobservationsDwen (1964found thatthe saltation roughness length,
Zos, can be expressed:as

(14)
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with A beingapproximately0.02 which isidentical to the Charnock (1955) roughness length
scheme fobwavybsurfacesEquation(14) is empirical and has two limitation&) zos does not
naturally recover in the caseof no saltation;and (b) the observations of Rasmussen et al.
(1985) and Gillette et al. (1998) have shown thain the natural environment is much larger

than the euation predictsRaupach (1991)yeveloped an analytical expression fog by
analyZng four interrelated quanties, namely, the mean wisgeedparticleborne momentum
flux, air-borne momentum flux and saltation roughness lergghin, to simplify the analysis
MR? made several assumptionsRaupach (1991)

1 The total momentum flux is constant in the saltatayet and is composed of a particle

borne momentum flux,;, and an alborne momentum fluxt,, i.e., ¢ =t.(2 +tp(z)

f ¢, decreasesvhile ¢, increases monotonically withelght and it is required that
t,(2- 0 for z- =m

t.(2- ru? for z- o
I The characteristic heigluf # ; profile, Hs, is on the order of the particigimp height

such that

2
H,=h -
29
with br being a coefficient
2

1 Owen's seHimiting hypothesidor equilibrium saltation applies, i,&.,(0) - ru

One functional form fof,(z) , which satisfies these constraiigs

(.0
u3§

Qo

(15)

(@a]e]

=1- (1- r)exp% Z
¢ Hs

R

with:

é u,/u  u?u, saltationcase
r=i :
il u. <u, nhosaltationcase

Thewind profile in the saltation layeshould obey
ty _ . dY,

r ™ dz
with the eddy diffusivity K, defined as:

i
,

Further manipulation gives the wind profile within and above the saltation yen the wind
profile above the saltation layer, MRbtaned the Rupach (1991scheme forsaltation
roughness$ength

(16)

1-r)

z, (17)

u*2

Zos =
g=

- QDO

WO Hﬁmo
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Raupach (19913uggested thatlékely valuefor A, based on theoretical consideratidss,
0.22.

Equation(17) shows thatosis a weighted geometric meal z, the roughness lertgof the
underlying surface andlu’*/2g. The latteris proportional to the characteristic height of the

saltation layerHs. In Eq. (17), zos has two limiting valueswhen1l) there is no saltatiom,= 1
andzs= 2, and wherR) there is strongaltation,r - 0 andzs= A Hs.

At the timewhenRaupach (1991yas publishedittle observational data were available to test
theschemeTheexperimentdy Gillette et al(1997 1998)at Owens LakeCdifornia provided
one of the firstess of the Raupach (19913chemeA comparison of the observed and modelled
Zosis given in Figures, which shows that the measurementzefan bewell-described b¥q.
(17) usingA = 0.38, a value remarkably closethe predicted value of 0.22his example is
illustrative of many oR a u p acentrildusons that are built and sustainedisplid theoretical
bass buteasyto use for the interpretation of observationsh@parametrization.

[Insert Figure 6 hex
Figure 6: Modelled saltation roughness lengthusingEq.(17) versus field measurements of Gillette et al. (1998).

Equation (15) is thekey assumptiorof the Raupach (1991jmodel. This assumption is not
concerned withhow particles move in thealation layerand has negtted the possible
dependence of ; on the size of saltatnh particles.The fact thafA is a function ofsaltation

particle sizas the likely reasoR a u p dirstragpsoximatiorof 0.22was less than th&value
of 0.38 observed by Gillette et al. (1998).

In fact,an infinite number oprofilesof ¢, satisfy the requirementgoposedy MR?, but we
do not really know how , changes with height in the saltation layerthat there are very few

available direct measurementd of Themeasurements of Li and McKenna Neumann (2012)

show that shear strepsofile in the saltation layer is strongly conveg&creasing as theurface

of the mobile bed is apprdaed Another unsolved issue is tHRaupach (1991did not account
for the effect of turbulence on saltation trajectoriége can for example speculate that
increased turbulencehould increase the randomness of particle trajectories, and thereby
intensfy the Owen effect and increase the saltation roughness I&sgthaci(1991)may have

assumed that the randomness of saltation only causes a secondary effect in particle momentum

transfer but this assumptioreed testing.

It is not difficult to seehat the issues dealt with inaRpach (1991, 1992)nd Raupach et al.

(1993) are related. In essence, due to the pressure drag on surface roughness elements,

roughness length becomes a function of roughness configuratitre 8implest case, frontal
areai n d e x ,the eape. of viegetation, roughness elementspiets and inthe case of
saltation, roughness elements are randomly moving particles.

3.2Roughness length, issue of scalend thealbedo analogy
As an extension of &upach (1992)Raupach(1994) proposed a scheme for conipgit

roughness length for climate modeWith the simplification of Rupach (1992)Eq. (12)
becomes
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Equation(18) is the starting point of thedRipach (19943cheme, which gained greadpularity
in the remote sensing commun{§chaudt and Dickinson, 2000; Nakai ef 2D08; Tian et aJ.
2011).R a u p awork inspiredAdrian Chappell to makéhe analogy betweeaerodynamic
sheltering and shadote retrieve aerodynamyroperties oveareas to provide a measuhat
scales linearly from the ground to remote sensing platforms (airborne or satk#itehy
tackling the four challenges ofaRpach and Lu (2004)escribed irBection 2.4

As discussed in Sectid) themomentum extractebly roughonsis controlled primarily by,

i.e., a projection of roughness density in the direction of witwhen the projection is
represented as a zenith angletan(J) can be seen as a multiplication factor which when
restricted to 45° has a value of 1 and results in the projection of the entire frontal area of the
roughness elemest= at a n Tolimplify the problemRaupach (1992ntroduced the ideas

of sheltering area and sheltering voluthatvary with u</Un asshown in Fig 2 andEquation

3.

However, it is unlikely that #itwo dimensional measuexan adequately charactazithe three
dimensional nature of aerodynamic roughn&sgure 7) If geometry projected to the surface

is made a function awith U= tari'(u-/Uy) it should represent thehear stressi/Un) and the
aerodynamic roughness lengtl/lf). Consequently,R a u p a effactive shelter area is
changed from a wedge. The new pfarm projection of shadow therefore assumes uhat,
andzo/h of wind from a particular direction is dependent on the zenith and azimuth illumination
angles.This single scattering albedo was estimated to aaoig dependency on illumination
and viewing onditions and to approximate the data available from remote sensing.

[Insert Figure 7 here]

Figure 7: Roughtons protect a portion of the substrate surface (a) that may include all or part of other roughness
elements in a heterogeneous surface and faligMR2 may be considered dependentet, . A change in wind
direction (b) redefines the sheltering effect demonstrating the anisotropic nature of the sheltering.

Chappell et al. (2010) then showed that the single scattering albedo is relatezhio fioen

wind velocity profiles of a range of surface roughness conditions in a wind tunnel (Dong et al.,
2002). The albedo of the wind tunnel surface roughness was obtained retrospectively by
reconstructing a digital elevation model (DEM) of the surfacetlag raycasting.

Recent work, with several of the contributors to this paper, has further developed this approach
using Marshallds (1971) seminal dat a. It
albedo and many of the essential aerodynanopgties for wind erosion and dust emission
modelling(e.g.,u-/Un). Thus,it appears that this reduced complesipproach inspired by MR
enables consistentepeatable and scalaléeeal estimates of aerodynamic propertiéor
example, theglobal MODIS MCD43A3 albedo produaan be used to provide estimates of
aerodynamic propertiesvery 500 m and every 8 dapstween 2000 and presefigure8

showsu-/Un and lateral covefl) for Australia on January 1, 2013.

[Insert Figure 8 here]

S
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Figure 8: Exampes of aerodynamic properties (a}Un and (b) lateral cover estimated from the MODIS
MCD43A3 albedo product (500 m resolution) for Australia 1 Jan 2013.

There appears to be considerable potential for this approach to provide consistent and repeatable
estmates of aerodynamic properties and aeolian trangpbential This potential stems from

the analogy that albedo and shaduounic the sheltering effect abughtonsandalbedo can be
retrieved fromgroundbased (promixal) or remote sensioglarge aras, making it a valuable
proxy to aerodynamic roughness length. This analogy is probably well justified if roughness
elements are sufficiently small compared to boundiaygr depth to exert significant influence

on the flow structure, as assumed iauRat (1992) However, because momentum transfer
(governed bythe NavierStokes equation) and radiation transfer (governethbyadiation
transfer equation) have fundamentally different dynamic behawiopdrticular nodinear
interactions), itemains tdoe demonstrated whethgrch an analogy exists arwide spectrum

of scalesNevertheless, it is a prime exampleRoh u p aircspirdétien tostrive for apractical
compromise between parsimony and fidelity in the representation of wind erosion and dust
emission modellingof Raupach and Lu (2004)escribed above ineBtion 2.4

4: Dust Emission andSaltation Bombardment

It is alreadyevident inGillette (1981)that themechanism#$or the entrainment of sand and dust
particles differ because the relativienportance of the forces acting on them changes with
particle sizeThelift-off of sand particles is determined primarily by the balance between the
aerodynamic and gravity forces. For smaller particles, the dominance of the gravity force
diminishes andhe interparticle cohesion becomes importdhts now known thathe gravity

force is proportional taP, the aerodynamic force is proportionald and although large
uncertainties exist in the estimates of cohesive forces, the total cohesivesfpropartional

to d. For particles withd < 20 em, the cohesive force begins to dominate and hence particles
cannot be easily lifted from the surface by aerodynamic forces. Dust particles under natural
conditions exist as dust caags attached to sand grains in sandy soils or as aggregates in clay
soils. During weak winekrosion events, sand particles coated with dust and clay aggregates
behave as individuals atige adheringarticles may not be released, while during strong wind
erosion events, dust coas and soil aggregates may disintegrasdting in stronger dust
emission.Three dusemission mechanisnae recognize(Figure9):

1 Aerodynamic LiftDust particles can be lifted from the surface directly by aerodynamic
forces. As the importance of gravity and aerodynamic forces diminishesnter
particles and the intgrarticle cohesion becomes more important, dust emission arising
from direct aerodynamic lift is probably small in general;

i Saltation Bombalment: Dust emission is generated by salta#ansaltating particles
(sand grains maggregates) strike the surface, they cause localized impacts that are
strong enough to overcome the binding forces acting upon soil dust particles, leading to
dust emission. This mechanism is also known as sand blasting or aeolian abrasion
(Alfaro et al, 1997 Bullard and White, 2005).

1 Disaggregation If saltating grains have dust coatings or if soil aggregates are
transported in saltation, the energy exerted on the aggregates during impact can lead to
their disaggregation and the release of dust pestid his process is called aggregate
disintegration or auto/se#dbrasione.g.,Gillette, 1974 Chappell et al., 2008)

We can formally express the diesthission rate arising from these three mechanisms as
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whereFa denoes aerodynamic liff, saltation bombardment, aid aggregate disintegration.

[Insert Figure 9 here]

Figure9: Mechanisms for dust emission. (I) Dust emission by (a) aerodynamic lift, (b) saltation bombardment and
(c) aggregate disintegration. Traditilly, these processes are considered to be driven by mean wind shear, but
large eddies can also cause intermittent sand drift and dust emission. (I1) lllustration of particle lifting caused by
the momentum intermittently transported to the surface tutent eddies. Saltation may bevolved but does

not need to be. (I) modified from Shao (2008) and (II) modified from Klose and Shao (2013).

In 1991, Yaping Shabegana postdoctoral position at the Pye Lab under the supervision of
MR? to conduct wineerosion related researcFor conducting the experimenttheportable

wind tunnel of John Leysas set up in front of the Pye LadR? originally planned to test
some of the theoriethat werethendeveloping (e.g.Andersonand Haff 1991) on saltation
feedback (Shao and Raupach, 1992). One day,thbe Australian Federal Ministefor
Environment(Hon. Mr. Ross Freefame to visit the Pye LalRaupachet al. were to
demonstrate the problem of wind erosion. Soil was placed on the tunnel floor and the wind
tunnel was startebut no serious dugmission occurred and the Minister was ingpresed

The idea of saltation bombardment came toMRo thenplaced sand in front ahedust and
produced for the Ministea mini dust storm using the wind tunn€his storywasthe origin of

the ideas tested in Shao et al. (1993Yhatexperiment they gparedwo beds of material in

the wind tunnel: an upstream sand bed which produced a supply of saltating grains, followed
immediately by a dust batlatwas subjecto saltation bombardment. They used combinations

of four sandpatrticle sizes (150, 250, 300 and &00@hand three dugparticle sizeg3, 11 and
19em). Shao et al. (1993) reported that there was little dust emission even at the maximum
flow speedhatthe tunnel generateetZ0 ms?) if no saltation particles were introduced, while
strong dust emissionccurred if sand particles were propelled over the dust sur$ammn
thereafter a similar windtunnel experiment was carried out by Alfaro et al. (39 the
Laboratoire Interuniversitaire des Systemes AtmosphériquésA). Their windtunnel
experimats not only demonstrated the importance of saltation bombardment on dust emission,
but also the emission of more small particles in the case of stronger sal#tiatwvaslearned

from theseexperiments is that dust emission is in general proportiorstfédamwise saltation

flux, i.e.,Fe Q.

It was soon recognized that the? Q relationship must be soil type dependent. Based on this
understanding and using the data of Gillette g)9®articorena and Bergamet{lLl995)
proposedhe semtempirical reléionship

F =100exp (0.308(% +13.82)Q (20)

whered is percentage of clay contenttime parent soil, and andQ must berespectively in

eg ?mtand %g. Many attempts have been made to develop palygibaseddust
emission schemes.g, Shao et al. 19931996 while it iswell-recognized that such efforts are
complicated by the fact that thatio F/Q must also depend on saltation particle size (how much
kinetic energy is available) and on soil surface conditions (soft or hard swafaltiee strength

of cohesive binding forcesg, Lu and Shao, 199€happell et al., 20080k et al., 2014p

Attemptssoon followedo develop schemes capablgoédictng sizeresolved dust emission
also calledspectral dust emissisthemege.g, Alfaro and Gmez 2001;Shao et al. 2Q1).
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The major challengkere isunderstanthg the binding characteristics of dust particesl how
they vary in space and time and change with particle Jikere is so farnsufficient
understanding oflustparticle binding strength, but we know frodimon (1982 that ths
strengthhas astochasticomponent

One possible way of overcomingighdifficulty is to make use of the observed parsoi
particle size distribution (PSDIt is known from laboratory analysithat minimally dispersed
and fully disperse®SDs pm(d) andps(d) are profoundly differentt is plausible tassumehat
dust aerosdPSD ps(d), is confinedby two limits:

Ps(d) = Py (d) + (- g)p; (d) (21)

whereais the weight fopm(d) and(1-2) for pi(d). Shao (2004suggestedhatthe emission of
dust particles of sizé arising from the saltation @k is given by

E(d) =¢,[t- 9)+ g s, +hci)% (22)

Theintegration ovearange of sangized particles giveBqi, andthe sum ofFg over all dust
paricle size bins giveshe total dust emissiorir. The processof saltation bombardment is
embedded in the parameser = m,/ m,, the ratio between the mass ejected by bombardment,

mq, andthe mass of thenpacting particlems, andin the parametex, = p.,(d.)/ p; (d,) .

Due to the lack obbservationabata, spectral dust emissisnshemeswvere not sufficiently
tested earlier More recenly, sizeresolved dustfluxes have beerestmated from field
measurements afust concentrationSow et al. 2009) Ishizuka et al. (204) conductedin
Australia a sophisticated field experiment, in which dust emission for several partichwaizes
determined. Shao et al. (ZDWwere able to use &se data toalibrate the&Shao (20045cheme

Overtime a considerable amount of-aiorne dustPSDdata have been collected around the
world. While differences itheseP SDsexist when theyareplotted in one graph the differences
do not seem to be emvhelming(Figure 10). This leads to the suggestion, that airborne dust
PSDmay be universal. Thegrerational argumestfor the approach adopted by SH2604),

i.e., Eq. (21). However, in hindsighthe laboratory measurements of minimally disperseb an
fully dispersedPSDdo not provide appropriate constraimd ps(d), because the preseatdy
availablepm(d) is already close to thm(d) at maximum saltation intensity, waib(d) is simply
notachievablghrough mechanical abrasion.

Although physis basedlust emissiorschemeghatrequire the properties of soil as input for
determining sizeesolved dust emission jgstifiable, thisincreases the practical difficulty of
implementation irflargescale models, such as global climate models (GClg@)sequently,

someclimate models use ad hoc or empirical assumptions to describe the size distribution of

emitted dust aerosols (e.gender et a).2003 Mahowald et al.2006a Yue et al, 2010.

Previous research sh@d that stressed dry soil aggregates fail as brittle matgiials and
Ingles, 1968Braunack et al., 197%erfect and Kay, 199Zobeck et al., 1999Consequently,
Kok (2011h consideredhat most dust emission resutigginatedfrom the fragmentation of
aggregatesdlue tosaltation bombardment or selbrasionSinceaggregatdragmentation is a
form of brittle fragmentation, the size disttion produced by this process should be scale
invariant for a limited rangéAstrom, 2006. The lower limit of ths range is set by the size of
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the aggregateonstituent particles, whereas the upper lisigetby the size of the aggregate
Kok (20118 proposed that the size distribution of dust aerosols can be described by

e A ( ‘S)ae e 3
dvy :ié]_+erfae:l/_d/d &Jexpe-%
dind ¢, g c 2Ins 3 g ¢cU-

where Vq is the normalized volume of dust aerosols with geometric diantetey is a
normalization constants and d, are the geometric standard deviation and median diameter

by volume of the loghormal distribution of a typical arid soil size distribution in #@e nsize

range, and the parametedenotes the propagation distance of side branoheracks created

in the dust aggregate by a fragmenting impact. Based on measurements of arid soil size
distributions(Dalmeida and Schutz, 198Boldstein et al., 2005Kok (2011h obtainedss =

3.0 andd_S = 3.4 &m. F u-squale dittinto dusPSD nheasarsntents yieldexk-

12 N Jlsuch thmty = 12.64¢ m.

anoy,

(23)

[caria ]

Equation(23) is in good agreement with measuremehigyre 10 of the dusPSDat emission.
Notethat he newest measurementsRuiisenberg et a{2014) suggesh larger fraction of very
fine particles than previous measuremginidicatingthat more measurements of the dust size
distribution are neededllotably,apart from th&Rosenberg et al. (2014tudy, the scatter from
the different measurements is quite limited, implying that differsiirc the wind speed and soll
size distribution produce only limited variability in the emitted dust size distrib(iRerd et

al., 2008 Kok, 20113

Kok et al. (2014b)Yeveloped a new dust emissischeme(referredhereafteras K14), the
underpinning of which remains saltation bombardment, now combined With hypothesis

that most dust emissiaa produced byggegate fragmentatiorK14 shows better agreement
against a compilation of dust flux measurements than the previous schdbilesttefand Passi

(1988 and Marticorena and Bergametti (199%0th of which are widely used in climate
models(Huneeus et al., 20L1Furthermorethe implementation of K14 into the Community

Earth System Model produces an improved simulation of the dust cycle (Kok Z201a1a).

This improved agreement is at least partially due to accounting fgrrweesses that were not
included in previous parameterizatsfrirst, K14 accounts for the increasing scaling of dust
flux with wind speed that occurs as a soil becomes less erodible and only the most energetic
saltators become capable of producing d8stond, K14 accounts for the decrease in dust
production per saltator impact that occurs as the soil becomes less erodible. This important
effect was previously realized IBhao et al. (1993and included in the physicallxplicit dust
emissionscheme®f Shao et al. (1996 Shao(2001), andShao(2004), butit is not included

in dust emission schemes used in climate models.

[Insert Figure 10 here]

Figure 10: Compilation of measurements of the volume size distribution of dust aerosols at emission (colored
data),compared with the theoretical prediction from brittle fragmentation theory (dashed line). Measurements by
Gillette and colleagud$illette et al., 1972Gillette, 1974 Gillette et al., 197¥were taken in Mbraska and Texas

and used optical microscopy, whereas measuremerfsabini et al. (200Y, Sow et al. (2009 andShao et al.

(2011) used optical particle counters and were respectively taken in China, Niger, and Australia. All these
measurements were made on the ground during wind erosion events. In contrast, the measureosantber

et al. (2014 were made from an airplane flying over the northwestern Sahara, and ghdteguency optical
particle counters to obtain the simsolved dust flux from eddy covariance. All measurements were normalized
following the procedure describedkok (20118 andMahowald et al. (2014

The insight that saltator impact speed determinesrtbegg available for dust entrainment is
to date an underlying assumption of all dust emission schesses osaltation bombardment,
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irrespective of whether the emission process is then described in terms of energy balance (Shao
et al., 1993, 1996; Alfarand Gomes, 2001), soil dust particle abundance (Marticorena and
Bergametti, 1995), volume removal (Shao, 2(04), or fragmentation (Kok, 2011; Kok et

al., 2014, b. The fragmentation process introduced by K2611) gives a specification on the
binding energythat scales with particle sizavhich s consistent with the understanding that
inter-particle cohesive force scales with particle sfeewe have rather poor understanding of

the particle binding strength, tifilrmgmentation assumption offersemsonable approximation.

Given he fact that most observed dust aerosol particledssegbutionscan be reasonably well
represente@igurel0), indicatesthe approximation is useful.

Despite the significant progress made in dust emission modellimgdbe recent decaddbe

existing dust schemes contain weakne#isasarestill a foaus of current research effortssA
Raupach and Lu (2004Ireadystatedin 2004 these weaknessdsi ncl ude di f fi
application at large spatial and temporedles, because of input data availability, parameter
measurability, and large cal e variability in microphysical

In most dust emission schemasandus are decisive for the calculation séltation and dust
emissionflux. Both u- andu« arespatb-temporally integrated quantities and do not describe
subgrid scale and sulneasuremenscale variability. Noemissionis predicted ifus < us.
However, measurements show that aeolian activities can occur intermittemthf eve us
holds on average (Stout and Zobeck, 1997; Wiggs et al., 2004). Recent studies hadofocus
intermittent saltation and achieved progress in its numerical liimagle=or example, Dupont

et al. (2013, 2014) reproduced the development ofaestreamers due to turbulent eddies by
implementing a saltation model in a larggdy simulation framework.

Aerodynamic dust entrainment has received little attention until rec&éhtl/has two reasons:

(1) theoreticalconsiderations on intgrarticle cohesion suggest that cohesive forces are too
strong for particles in the dusize range to be directly entrained; and (2) dust entrainment
without saltation as observed in wind tunnels is much smaller than with saltéiowever,
considering the stocktic behaviour ofnter-particle cohesiomiue to thenultiple influencing
factors, such as particle shape, particle surface roughness, or complesitisng avide range

of scatter even for particles of similar s{Zemon, 1982; Shao, 2008).

A few studies show that dust emission can occur in the absence of saltation, but with much
smaller magnitude (e.g., Shao et al., 1993; Loosmore and Hunt, 2000). However, these studies
had been set up to study dust entrainment at different mean wind speadsemat designed

to investigateéhe influence of atmospheric turbulence. Turbulence can have coherent structures
induced by buoyancy under unstable atmospheric conditions or by roughness elements as
described for vegetation canopies by Raupach et al. (1988)Iéads tsurfacemomentum

fluxes much larger than the mean wind speed suggests. Convective turbulence is most
pronounced irthe absence of strong mean winds, i.e., below the saltation threshold. Rigure 1
(Klose and Shao, 2013) shows an example of@lusisiongenerated by convective turbulence
modelled withlargeeddy simulation. At locations A (micfconvergence lines), Br(icro-

burstg and C (voiices, significant dust emission may occur. Due to the stochastic nature of
cohesive and turbulent aesotmic lifting forces, aerodynamic dust entrainment is possible
(Klose and Shao, 2012, 2018).extreme casg®.g, dust devils), turbulent dust emission can
reachthe magnitude typical for dust emission indudeygsaltation bombardmenbutin most

cawsit is typically one to twoorders of magnitude smaller. As turbulent dust emission occurs
frequently it may contribute significantly to the global dust cycle (Klose et al., 2014; Li et al.,
2014).
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[Insert Figure 11 here]

Figure 11: Turbulent wind sped (vectors, in m™§ and instantaneous turbulent momentum flux (black contour

linesat1Nnmf) at 10 m height together wi t3s) tUpdateddromekiose du st

and Shao (2013) kyeinclusion of the dust emission schenfeKlose et al. (2014).

5: Threshold friction velocity
5.1 Threshold as control parameter

Shields(1936 studied the threshold friction velocitys, for a spherical particlgplacedon a
bare flat surfaceby considering thbalance between the grty force and hydrodynamic drag
Heintroduced the dimensionless threshold shear stress

I‘k

(r.- r1)gd @9

andsuggested tha is a function ofonly the particle Reynolds numbée: ( = u« d/3, where
3 is kinematic viscosity)in Eq. (2)), r,and r; arerespectivelytheparticle and fluid density
Bagnold(1941)derived a similar expressidor wind-erosion threshold friction velocitgnd
found that for large Ret, A is nearly constant and, Jd . wind-tunnel experiments of
windblown sandsimulating the atmospheric conditions Mars and Venus with different

kinematicviscositesand/or air dendéss uggest ed t haton®Berks weallfod 6 s

particles withd >100 um, but largely undeestimatesr: ford< 1 0 (Greelay and Iversen
1985. Iversen and White (1983)ointed outthat the rapid increase of: with decreasing

particle size is caused by infparticle cohesionThis led to a revised expression of the

dimensionless threshold shear sti&gisat depends on the intparticle forcelp, in addition to
Ret. ThelversenWhite scheme i©iowever rather compleghao and Li§2000)advanced this
approactby explicitly consideing I, asinversely proportional td. This led to a much simgt
expressia of usx with the dimensionless shear stréseemaining as a function de; only.

This new expression has been widely ukedestimage of threshold velocity in air and as a

reference foother planetary condition®urr et al, 2015).

MR? andHua Lucollaborated on several research topics, one of which was soil erosion by wind

andwater.Theyexplored the questiomhy experimentally derived values Afare consistently
higher than th theoretical stimates, and identifiedeseral realworld factors hat may have
major effects orA. These include soil cohesion that can be influenced by temperature
humidity, soil moisture, surface crusting and sheltering effemilbghness elementsi¢Kenna

and

Neuman 2009. They alsoconsideredo what extent tempetare-dependent changes in air
density and viscositgould play a role in explaining the discrepancies between the observed

and theoretical threshold velocities. Such discussion and other topics that related to more

general wind erosion modelling led the review of Raupach and Lu (20049n the
representation of larslurface processes in aeolian transport

Along this line MR? and Luworkedin greater detaio solve the observauizzeo f t h e
AversusRe; diagram When the data obtained frorarious experiments in air and in waaee
pl otted on t liagramhey do rot coll§pkse taeal sidgée GuRigure 12). What
is then thereasonfor the departure between thatataken inair and wate? Lu et al. (2005)
proposecda more geeral expression of, by incorporatingthe characteristicef near surface
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turbulencecharacterised by tHow Reynolds numbeRea;= u-l/3, wherel is thedepth of the
boundarylayer (Marusic and Kunkel2003. They showed thanear surface flow velocity
increases witlRe, andthetypical values oRe for air areseveral ordersf magnituddarger

than thosdor water The largeRe; in air is associated with intense nded turbulence that is
dominated by gudike eddy motions with length scales determined by the characteristic length
scale of the roughnegRaupach et gl1991, 1996). These gusts cause the streamwise velocity
to show significant departure from a normal velocity distribu{Morrison et al. 2004), with
astrong positive skewness near the bed. Conversely, in water, the mean flow above the layer
where the particle entrainment occurs is mostly laminar. Thistsesula close to normal
velocity distribution and smaller length scale of the roughness, therefore smaller vaRaes of
andA. They also demonstrated that the upturdddr smallRe: can also be affected by the
background flow conditions apart fromteémn-particle cohesion. As suctihhey showed that their
generalised expression achieves a consistent agreement with data for particle tugtiftaim

and water flows. Based on thainalysis, they suggested that caution is needed in applying
previous aalytical and semempirical modelsPerhaps mre importantly, heypointed outhat
incorporating statistical descriptions of the mean flow condition may lead to noticeable
improvement of wind erosion modelndeed, tieseinsights of MR? and Luprovided he basis

for current researchased on statistical description, as shawklose and Shao (2012, 2013),
and some of the aspects considered in Kok et al. (2014b).

[Insert Figure 12 here]

Figure 12: Dimensionless threshold shear strAsss a functiorof particle Reynolds numbé&te; based on data
obtained in water flow (filled) and in air stream (unfilled). These two groups of observations depart both at the
large Re; regime, where aerodynamics dominates and for sR®ll values, where particle cosien becomes
important in determiné. From Lu et al. (2005).

6: The Carbon Link

Soil stores up to 80% of the organic carbon in the terrestrial biosphere and com@ia than
three times the soil organic carbon (SOC) in the atmosphere (Lal, Z083¥L pools are
interconnected anthus a disturbance of the terrestrial C pofd.g. by soil erosioh can
introducesignificant changem theatmosphericC pool. The amount of carbon dioxide (GO
captured and converted to SOC annually via terrestrial meiap/ productivity (NPP) or
released as C{by soil microbial respiration (R) is about an order of magnitude greater than
the annual increase in atmospheric.GBoughton et al., 1992). Soil therefore represents a
substantial component in the global carlogcle and small changes in the SOC stock may result
in large changes of atmospheric 4Giorgi, 2006)

Wind-erosion generated dust emisgaeposition and the associated SOC exchange between
the atmosphere and soil constitutes important part of thelustcycle and carbowycle
interactionsalong withthe dustiron effect on the atmosphere and ocean €@hange (Shao
et al., 2013). Fomore than twalecadegearly1990sto 2015), MR? workedextensivelyonthe
global carbon budget and madiadamersl contribution tathatresearclfFieldandRaupach
2012. MR? realized earlythe importance of win@rosiondriven soil nutrient and organic
carbon transport, and pointed dhat wind erosiomemovespreferentiallythe fine, nutrient
and SOGrich top il, reduces the soil water holding capacity and theredyses land
degradatiorfRaupach et al. 1994Raupach et al. (1994) providedassessment of soil nutrient
loss, in terms oiNitrogen (N) Phosphorous (Pand Potassium (K) caused by the 1983
Melbourne dust stormhile time did not permit MRto work directly on the SOC problem in



0O~NO OIS WN P

32

46

22

relation to wind erosion, himitial work was continued by the Australian aeolian research
communityandin particular Butler, Chappell, Strong and Wetiio establishedhe foundation
for relating continental estimates of wind erosion (CEMSY'S; Shao, 2000) to SOC

For example,Chappell et al. (2014) described how SOC dust emission is omitted from
Australiannational C accounting and is an underestimated source ofT0€y developed a

first approximation to SOC enrichment for the dust emission model CEMSYS and quantified
SOC dust emission for Australia (5.8 Tg £€Jy) and Australian agricultural soils (0.4 Tg £0

ely). These amoustinderestimate C@emissiondy approxmately 10%for thecombined C

pools in Australialjased or2000estimatey with approximatelyo% derived fromAustralian
rangelands and 3% of Australian agricultural saing theKyoto accounting method
Northern hemisphere countries with greater eéuasission than Australia are also likely to have
much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a
considerable underestimate from those n&idh accounts. Chappell et al. (2014) suggested
that the omission of SOdust emission from C cycling and C accounting is a significant global
source of uncertainty.

7: Summary

In this tribute, we revieweR a u p awork énsaeolian fluid dynamicand the impact of his
work on he progress of aeolian researdthis is onlya small part oR a u p aexténgive
studieson environmental mechanics and climate chafeyg, Field and Raupach, 2012
Raupach et al., 2014B5pecifically for aeolian research, MRhelped to consolidate the
foundationof aeolian fluid dynamicandaeolan modellingandto propelaeolian researcto
become a core themeegarth system studies.

R a u p amohegring work is linkeddirectly to a number of conceptual and modelling
advancements made in recent years, while at the same time opening numenugs ahat
allowedthe aeolian research commurtitynakenumerous advances toward our understanding
of aeolian processe8venues of inquiry opened by Mihclude

(1) Aeolian Processes over Heterogeneauseges Ever since thd940s, we have focused
onstudying aeolian processes of relatively simple surfaces, wfitger theassumption
of surface homogeneitgnd uniform saltationThanks to Rupach (1991, 1992and
Raupach et al. (1993andnumeroudield and numericaéxperimens, the essence of
the nomentum exchange between the atmosphere awalian surface isnow
understoodAs we followed Rwpach (1992and Raupach et al. (1993)ve realizedhat
the spatial and temporafariations of momentumfluxes profoundly affect aeolian
trangort, which is inmore general termthe typical case oheterogeneous aeolian
transportWhile research othis topic is rapidly progressing, desmonstrated bwebb
et al. (2014) and Duporsdt al. (2014) much more needs to be done to establish a
theoretical framework ahto develop predictive tools.

(2) Stochastic and Statistical Dust Modelirigkisting wind-erosion models are mostly of
deterministic nature. However, aeolian processes involve stochastic variables, such as
inter-particle cohesion or turbulent surface shéass, as indicated ingdRpach and Lu
(2004) New developments in dustmission models o4 statistical nature have been
maderecently by Klose et al. (2014nd may herald new generation of windrosion
models in the coming years.

(3) Integration of Aeolia Models with Ecological Model3he carbon cycle is of central
importance to climate studies. MBevoted more than 20 years of his academic life to
research on the global carbon budget. We now knowuth@dgrstanding athe carbon
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cycle cannot be complked without knowledge of the dust cycle. This is because dust
plays a pivotal role in the atmosphere and oceap&xChange and aeolian processes
are vital forSOC transport and fixation. Thus, aeolian research plaght@alrole in
global Earth system sidies. For this tde adequately represented in Earth system
models the dust cycl@eeds to béetterrepresentede.g, Kok et al., 2014)but also
the coupling of aeolian and ecologipabcessess important For steppéandscapethe
coupling of winderosion models with ecological modelsdisveloping(e.g., Shinoda
et al, 2011). We expect that this effort will acceleratette future

(4) New Measurement®VIR? was famous for his theoretical work, but he was also an
accomplished experimental researched arganizer. He conducted and organized
numerous wingunnel (e.g Raupach and Legg, 1983) and field experiments,(e.qg.
Leuning et al., 2004). The very first talk MRave on wind erosion was at th& 1
Australian Workshop on oWiMed skirr es iWa m de rEtriot
was an introductory talk on the basic techniques for saltation measurements. We have
moved on sincéhattime, and much more cohesive and sophisticated measurements can
be made today. Sizesolved sand transport and dust emrssneasurements were
made earlynin Australia (Nickling et al.1999), in Niger (Sow et al., 2009) and again
in Australia in the Japan Australian Dust Experiment (Ishizuka et al., 2014). New
instruments such aBl- SWERL® (Etyemezian et g1.2014) andmicro wind tunnel
(Strong et al., 2015) have been developed for field measurements with emphasis on
characterizingpatial variabilityof dust emissions

(5) Large-eddy Aeolian Simulation (LEAS)he basic concept of aeolian transport process
as a feedback stem involving the atmosphere, land surfaaedsoil particlesemerged
in theearly 19909Anderson and Haff, 131). Earlier versions oEEAS models were
developed by Shao and Li (1999) and Doorschot and Lehning (266#)g others. In
more recent yeardhighly sophisticated LES models have beendeveloped, for
exampleby Klose and Shao (201andDupont et al. (2014)Vith these mods| some
of thehypothesesf MR? cannow be fully tested, anhore importantl EAS models
serve as powerful tools for gerating in depth understanding for improved aeolian
procesgparameterization(Li et al., 2014;Klose et al., 2014).

For many of us, MRwas not only a role model schglaut also a great colleague and a friend.

A long-time colleague of MRdescribes tht his fiexcellence in scientific research is not the

only skill that enabled Mike to build such a brilliant career. He always had a warm and
thoughtful way of collaborating with his colleagues. He showed respect and humility in
interacting not only with thm, but also with the policy world and the public. Mike
communications skills were legendary. He could distil the most complex ideas into crisp,
understandable stories. His words were carefully chosen, and his spoken sentences often carried
the grace andower of expertly crafted written prose. His touchstone, however, was always the
science, and in that he was wunfailingly rigo

MR? wasa modest person, always keen to learn from others and at the same time, he was a
natural teacher foyounger researchers worldwidde made a large effort to nurtuyeunger
Australianaeolianresearcherddarry Butler, Paul Findlater, John Leys, Hua Lu and Yaping
Shao all benefitednmensely from hisleep knowledge and enthusiasm f@esce. Long after

MR? had moved on fronaeolian studiesand he was swimming in the much larger research
pool of global carbon budgeting, he continued to demonstrate his generosity and nurturing
attitude towards students for examplewhen headvisedCraig Strongonthe fluid dynamics

of a micro wind tunnel. In 2014, Strong took up a lectureship at ANU and months later MR
also arrivedto take on the role of Director at the Climate Change Institute. Discussion re
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commencedetween thembut sadlyMR? passed away beforthe publicationof their work
(Strong et al., 2015).

Our communitymourns the loss of MRas abig thinkerand influential leader arab this review
demonstratediiswork provided many foundations for the curreaivance and new directins
of aeolian research. As wellow in many of hisfootsteps an@xploreunchartederritories
Mike will be missed.
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Fig. 1. Michael R. Raupach (back, 6th left) among the participants of the 1st Australian Workshop on
Wind Erosion, 1991, Murdi University, Perth. Several contributorgh@s paper were among the
participants: Grant McTainsh (front, 1st left), Paul Findlater (front, 2nd left), Yaping Shag {Back

left), William Nickling (back, 5th left), John Leybad, 7th left). The workshop convener was

William Scott (front, 3rd left).
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Fig. 2 Raupacho6s conceptual model for drag partiti
roughness elements and a sultstsarface. A roughness elemenbvduces a effective sheltering area

and volume. The integrative effect of the roughnesseaisican be estimated by random

supeposition [Redrawn from Raupa¢h992)].
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RGL93_1, RGL93 2 and RGL93_3 are the estimasérzg the Raupach et al. (19%&heme withm=

0.5,r =1, andb = 100, 200 and 400, respectively.
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of Gillette et al. (1998).
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Fig. 7. (a) Roughness elements protect a portion of the substrate surface that may include alll
or part of other roughness elements in a heterogeneous surface. (b) A change in wind
directionredefines the sheltering effect
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Fig. 8 Examples of aerodynamic properties@lyh and (b) lateral cover estimatedindhe
MODIS MCD43A3 albedo product (500 m resolution) for Australia 1 Jan, 2013.
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Fig 9. Mechanisms for dust emission. (I) Dust emission by (a) aerodynamic lift, (b) saltation
bombardment and (c) aggregate disintegration. Traditionally, these processes are considered to
be driven by mean wind shear, but large eddies can also céeseiitent sand drift and dust
emission. (I1) lllustration of particle lifting caused by the momentum intermittently transported

to the surface by turbulent eddies. Saltation may be but does not need to be involved. (I)
modified from Shao (2008) and (iodified from Klose and Shao (2013).



0.1

0.014

Norm. volume size distr. (d V /d In D )

1E-3

v

L=

L

v

L

Gillette et al. (1972) 1

Gillette et al. (1974)
Gillette (1974), soil 1
Gillette (1974), soil 2 |7
Gillette (1974), soil 3 ]
Fratini et al. (2007)
Sow et al. (2009)
Shao et al. (2011)
[> Rosenberg etal. (2014)
= = = Brittle fragmentation E
theory (Kok, 2011)
— 1T

lodJvlule)

<40

0.2

Fig. 10. Compilation of measurements of the volume size distribuwfafust aerosolat
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emission(colored data), compared with the theoretical prediction from brittle fragmentation
theory (dashed lineMeasurements by Gillette and colleag(@8lette et al., 1972Gillette,
1974 Gillette et al., 197¥were taken in Nebraska and Tesaslused optical microscopy,
whereasneasurements [iyratini et al. (200), Sow et al. (2009 andShao et al. (20)lused
optical particle counters and were respectively takgbhina, Niger, and Australidll these
measurements were made on the ground during wind erosion events. In contrast, the

measurements olRosenberg et al. (201were maddrom an airplane flying over the

northwestern Sahara, and used Higdgjuency optical particle counters to obtain the-size
resolved dust flux from eddy covarianédl. measurements were normalized following the
procedure described Kok (2011 andMahowald et al. (Q14).
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Fig. 11. Turbulent wind speed (vectors, in M)sand instantaneous turbulent momentum flux
(black contourlines at IN m?) at 10 m height together with turbulent dust emission (shaded,
i n &€gY). updated from Klose and Shao (2013) by inclusiothefdust emission scheme

of Klose et al. (2014).



