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Abstract:  

Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane 

produced can be burned to generate electricity, and the digestate, which is rich in mineral nitrogen, can be 

used as a fertiliser. The storage and processing of large volumes of organic wastes through AD has been 

identified as a significant source of NH3 emissions, however only one study has previously quantified the 

totality NH3 emissions that arise in situ at an AD plant. In this study the emissions from an AD plant was 

estimated through the integration of supportive methodologies involving passive and continuous air NH3 

sampling, atmospheric dispersion modelling and the application of published emission factors (EFs) and 

empirical models within the literature. Two dispersion models (ADMS and a Lagrangian stochastic model) 

were applied to produce robust emission estimates. The Lagrangian stochastic model (Windtrax) was used 

for inverse dispersion modelling to back-calculate the total emission rate from the point of continuous 

measurement. Back-calculated emission rates and literature EFs were applied to the ADMS model to make 

predictions of air NH3 concentrations. Predicted concentrations were verified against weekly passive (CEH 

ALPHA) NH3 measurements, where measured concentrations were well described by the numerical model 

framework using the emission rate estimated by inverse dispersion modelling. EFs that were applied from 

the literature required adjustment to fit the measured concentrations, however after sensible adjustment an 

excellent match of observed and predicted concentrations was achieved. Total emissions from the AD plant 

was estimated to be 16.8 µg s-1 ± 1.8 mg s-1. This is significantly higher than the back-calculated estimate 

(10.3 ± 1.1 mgs-1), due to a more realistic treatment of the source area. The storage of solid digestate and 

the aerobic treatment of liquid effluents were the most significant sources of NH3. The representativeness 

of the existing EF estimated for AD plants is evaluated through application to the present case study and 

comparing with NH3 measurements and estimated emission rates. The existing AD EF considerably 

overestimated observed concentrations by an average factor of 54. The applicability of calculated EFs to 

other AD plants is discussed.  

ABSTRACT OF THESIS 
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1. INTRODUCTION 

1.1 ANAEROBIC DIGESTION AND AMMONIA EMISSIONS 
Anaerobic Digestion (AD) is an organic waste treatment technology that is seen as a viable means to 

recover heat and electricity from organic waste streams such as animal slurry and food wastes (e.g. Wulf 

et al. 2006). The number of AD plants in the UK has increased from 68 to 140 between 2011 and 2014 

(Defra 2013; biogas-info.co.uk); supported by national and international policy objectives (e.g. the 

European Landfill Directive and Renewable Energy Directive). AD is the microbially-mediated process 

of decomposition of organic matter in the absence of oxygen to recover biogas and a nutrient-rich 

digestate which is often used as an organic fertilizer (Pain et al. 1990). The biogas (a mixture of methane 

and carbon dioxide) produced can be sold as an energy fuel or combusted on-site to produce renewable 

heat and electricity. 

Organic waste sources are highly distributed across the landscape at agricultural, commercial, and 

municipal activities – primarily originating from the food and drink production industries. Anaerobic 

Digestion plants are centralised locations where organic wastes are delivered, stored and processed in 

high volume. This presents a high risk of significant and often highly malodourous gaseous emissions 

associated with the decay of organic materials. The decay of organic materials and the presence of 

nitrogen compounds such as urea can lead to the release of ammonia (NH3) into the air by the process of 

volatilisation. Organic wastes and NH3 volatilisation from them may be concentrated to the extent that the 

deposition of ammoniacal nitrogen (NH3 & NH4) has led to deleterious effects on semi-natural 

ecosystems through excess nitrogen acidification and eutrophication (Bobbink et al. 2010; Nihlgard 1985; 

Draaijers et al. 1989). Emissions of ammonia also lead to the accumulation of formation fine particulate 

matter (PM2.5), which is recognised to have an adverse effect on respiratory and cardiovascular health 

(Lillyman et al. 2009).  

Emissions of NH3 in the UK are dominated by the contribution from the agricultural sector (e.g. Pain et 

al. 1998, NAEI). These emissions originate from surface application of agricultural wastes, livestock 

housings, slurry stores, fertilizer applications and grazing (Hill et al. 2008). AD plants could present a 

similar emission source to an intensive farming environment. The treatment of animal slurries or co-

digestion of mixed substrates through AD has been investigated for its impact on gaseous emissions, 

where the NH3 emissions from digested slurry have been measured to be twice as high as untreated slurry 

during a 140 day summer storage experiment (Clemens et al. 2006). Waste reception buildings at AD 

plants may emit NH3 in a similar fugitive fashion to animal housing units, while numerous studies have 

measured the volitilisation of NH3 following the application anaerobically digested livestock manures to 

agricultural fields (Clemens et al. 2006, Pain et al. 1990, Amon et al. 2006), although few have studied 

emissions from AD plants 

Studies which quantify atmospheric emissions provide emission factors which are used to produce 

inventories of the total emissions, upscaling to national level. For NH3, emissions inventories are 

important for several reasons including input into some chemical transport atmospheric models, 

assessment of the source sector contributions, geographic location of emissions and the development of 

abatement strategies for targeting reductions in NH3 emissions to demonstrate compliance with 

international legislation on NH3 emission ceilings (EC 2001). The accuracy of the emission estimates is 

determined by the quality of the emission factors that are applied (Hill et al. 2008). In order to capture 

real-world variability numerous emission factors for the variants of each source type may be required to 

be measured to ensure that emissions inventories are representative. 
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Anaerobic Digestion is not a new technology yet with the recent increase in numbers of AD plants further 

efforts should be made to quantify their gaseous emissions. Previous studies into gaseous emissions from 

AD plants have for the most part been carried out in the context of greenhouse gas (GHG) emissions, 

focussing on the abatement or release of methane (e.g. Moller et al. 2009; Flesch et al. 2011, Liebetrau et 

al. 2013). r In situ NH3 emissions from the totality of AD plant sources has only been measured once 

previously (Cumby et al. 2005), thus the magnitude to which specific digester types emit NH3 is not well 

defined. AD is classified as a known source of NH3 however emissions are largely not quantified 

(Misselbrook et al 2011). 

The current UK emission factor for AD plants was obtained from Cumby et al. (2005) who undertook a 

pilot Life Cycle Analysis (LCA) study at a large centralised AD plant processing mostly agricultural 

slurries near Holsworthy, Devon. NH3 emissions from the site had increased +175 tonnes NH3 per annum 

(pa) relative to previous manure management practices, caused by greater emissions from digestate 

storage and spreading. The pH of the digestate is higher than undigested slurry increasing NH3 

volatilisation. Fugitive emissions from the waste reception area at the plant were also significant. The 

authors identified two key areas of NH3 emission: (a) the waste reception area where the organic waste 

substrates are delivered for processing; (b) the digestate storage area which holds the final product of the 

AD process (separated or unseparated) before further processing or use as biofertiliser. The degree to 

which these sources emit NH3 will likely show significant variation between AD plants, as the rate of 

NH3 volatilisation is governed by numerous environmental and substrate parameters, most importantly 

temperature, pH, ventilation and ammoniacal N concentration (e.g. Hansen et al. 2005). NH3 emissions 

are also dependent on site practices concerning the handling, storage and treatment of organic wastes. For 

example, Whelan et al (2010) demonstrated in ex-situ experiments that despite a high propensity for NH3 

to volatilise from food waste digestate due to an elevated pH and NH3:NH4
+ ratio, emissions could be 

controlled by covering storage facilities and increasing the depth to surface ratio. Cumby et al. (2005) 

demonstrated that the concentration of NH3 above a wet scrubber and biofilter was reduced by 87% 

relative to untreated air within the waste treatment area at the Holsworthy biogas plant. 

1.2 LOCAL SCALE DISPERSION MODELS 
 

Short-range atmospheric dispersion models are frequently used to estimate the concentration and/or 

deposition of NH3 across a specified area or receptor within environmental impact assessments (Theobald 

et al. 2012). For example, Fowler et al (1998) quantified concentrations and deposition fluxes within 

300m of a poultry farm in Scotland using concentration measurements and dispersion modelling, 

reporting a strong decrease in NH3 concentrations with distance downwind from the source in the 

woodland environment. Hill et al. (2008) used short-range dispersion models and passive samplers to 

estimate the NH3 emission fluxes from livestock slurry stores. Theobald et al. (2012) highlighted the 

importance of such integrated approaches with the measurement and modelling of NH3 concentrations to 

determine emission fluxes, as the performance of models can vary significantly between sites and can 

often require calibration against verification measurements. 

The dispersion of NH3 emitted to the atmosphere can be investigated with the use of mathematical models 

such as ADMS (Carruthers et al. 1994), AERMOD (Cimorelli et al. 2002) and LADD (Dragosits et al. 

2002). Such models are typically used to predict air concentrations (Χm, in g m-3; Eq. 1) arising from 

known, or estimated, rates of emission (E, in g s-1) and a modelled dispersion factor (D, in s m-3, Equation 

1). The dispersion factor is a function of the prevailing meteorological conditions (particularly wind 
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speed, wind direction and atmospheric stability), the geometry of the source and dynamics of emission, 

and the potentially complex interactions with terrain, surface roughness and building effects. 

𝑋𝑚 = 𝐷𝐸     (1) 

Predicting the air concentrations that arise from a known emission rate is known as a ‘forward-dispersion 

modelling’. As the downwind concentration of a pollutant is directly proportional to the source strength 

(Eq. 1), the accuracy of model predicted concentrations relative to atmospheric concentration 

measurements is heavily dependent on NH3 emissions being accurately defined (Dragosits et al. 2002; 

Hellsten et al. 2008). Where the emission rate is not known, dispersion models can also be applied to 

back-calculate the emission rates from known air concentrations. Also known as ‘inverse-dispersion 

modelling’ – these techniques have been applied to determine emissions from single isolated sources, 

such as dairy farms (Flesch et al. 2009), agricultural AD plants (Flesch et al. 2011) and penguin colonies 

(Theobald et al. 2013). 

Inverse dispersion modelling uses the clear relationship that exists between the downwind concentration 

measurement C and the gas emission rate Q, which depends on the size and shape of the emission source, 

wind conditions, and the C sensor location (Flesch et al. 2011). The inverse dispersion technique back-

calculates the source strength using a micrometeorological method which predicts the downwind 

concentration (above background level) to the emission rate, (C/Q)sim, so that:  

     𝑄 =  
(𝐶−𝐶𝑏)

(𝐶/𝑄)𝑠𝑖𝑚
     (2) 

Where Cb is the background gas concentration (Flesch et al. 2004). 

A spread of field C measurements has been demonstrated to work in harmony with well-populated 

forward and inverse dispersion models as a tool for emissions and environmental impact assessment. 

Such systems do not require the time-consuming and expensive task of individual gaseous emission 

rate(s) being directly measured, which is of major benefit for a complex site such as an anaerobic 

digestion plant which has many possible emission points, such as liquid treatment tanks, waste reception 

and digestate storage buildings, surface water tanks etc. The inverse dispersion modelling technique may 

be applied where the totality of emissions is to be calculated or one or a group of emission sources lie 

directly upwind of a C sensor location. The effective use of the inverse dispersion has been demonstrated 

where the modelling scenario benefits from significant reductions in complexity due to well-defined 

sources, a lack of complex terrain and where concentration measurements are made sufficiently 

downwind from the source to negate any source complexity that is present (Flesh et al. 2011). 
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1.1 AIMS OF THIS STUDY 
 

In this study the total of NH3 emissions that arise in situ at a commercial food waste-processing anaerobic 

digestion plant in Cumbernauld, Scotland are modeled and compared against measurements. The 

Cumbernauld AD is of the ‘community’ variety - meaning that wastes are accepted from the surrounding 

catchment of municipal and commercial (predominantly food waste) collections. Of the 140 ADs in the 

UK, 38% are of the community-type (biogas-info.co.uk). The other two major AD types are: 1) 

agricultural – which use feedstock derived on-farm such as livestock slurries and crop residues; 2) 

industrial - plants which treat waste generated on-site such as brewery effluent or food waste processing 

residues.  

The use of forward and inverse dispersion modelling methods may be applied in a supportive fashion in 

cases where the emission rate(s) are not known while air concentration measurements are made that allow 

for calibration and verification of estimated emission rates. This is the approach that was applied in this 

study, where concentration measurements were made in and around the anaerobic digestion plant using 

passive samplers and a continuous gas analyser. NH3 concentrations were likely to arise from multiple 

sources within the plant depending on the direction of the prevailing wind and atmospheric stability 

conditions. Emission estimates were determined by several methodologies, using published emission 

factors within the literature, field measurements and plant specifications, inverse dispersion techniques 

and applying optimized scaling factors for emission rates that are determined by fitting the modelled air 

concentrations against measured concentrations in forward simulations. 

The objective of this project was to quantify NH3 emissions from the AD plant to add to the single 

existing UK AD NH3 emission factor study. An assessment of the uncertainties involved and the 

applicability of this approach and others for future work is discussed.  

 

 

2 MATERIALS AND METHODS 

2.1 NH3 MEASUREMENTS 
 

2.1.1 Passive NH3 samplers 

NH3 concentration measurements were conducted using three methods: 1) time-integrated sampling with 

passive diffusion ALPHA (Adapted Low-cost Passive High Adsorption) samplers (Tang et al. 2001), 2) 

continuous on-line NH3 analysis using a trace gas analyser and 3) instantaneous/snap measurements made 

with a portable NH3 gas analyser. The high-sensitivity ALPHA samplers were deployed during each 

successive measurement period. Six ALPHA measurement periods in total were carried out at the site 

from the 15th of May to the 10th of July. The period of individual measurement campaigns ranged from 6 

days to 2 weeks. 

The open end of each sampler holds in place a PTFE membrane (27 mm diameter, 5 µm pore size) 

(Figure 1), this serves to limit the formation of a boundary layer in front of the sampler and ensure that a 

stable, turbulent-free path length is achieved behind the membrane. A citric acid-coated filter paper is 
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held behind the membrane which absorbs atmospheric NH3 which passes through the membrane. The 

samplers were placed out as triplicates at 20 locations in and around the AD plant (Figure 3). They were 

attached with velcro underneath shelters (upturned plant saucers) at sampling heights of around 1.5m 

above the ground (protocol used in the Defra National Ammonia Monitoring Network). Each saucer was 

fitted with bird spikes to prevent birds from perching and ammonia contamination. The samplers were 

stored in sealed plastic containers and were kept refrigerated before and after exposure. After each 

measurement period the samplers were extracted with 3 ml of deionised water, and analysed for NH4
+ on 

the AMmonium Flow Injection Analysis system (AMFIA) (Wyers et al. 1993). The flow injection 

method is based on the selective dialysis of ammonium across a membrane at a high pH, followed by 

measurement of conductivity. Calibration of the extracted samples with prepared ammonium solutions of 

0.1 ppm, 1 ppm and 10 ppm enabled the concentration of ammonium in the extracted samples to be 

determined. Laboratory blanks were subtracted from the samples. The air NH3 concentration is estimated 

from the NH4 concentration within the extracted samples and the uptake rate calculated according to the 

principles of Fick’s law. The theoretical uptake rate of a sampler is a function of the diffusion length, L 

(m), the cross sectional area, A (m2) of the stationary layer within the sampler and the diffusion 

coefficient (D) m2 s-1) of the gas being analysed. The effective volume of the gas air sampled (V, m3) is 

therefore given by: 

     𝑉 =
𝐷𝐴𝑡

𝐿
      (3)   

Where: t = time of exposure (h), D = 2.09 x 10-5 m2/s at 10°C,  A = 3.4636 x 10-4 m2, L = 0.006 m. Thus 

V (m3) = 0.00434 m3 x t (h) 

 

The air concentration of a pollutant (C µg/m3) can then be calculated as: 

 

    𝐶 = (𝑚𝑒 − 𝑚𝑏)/ 𝑉       (4)   

       

Where: 𝑚𝑒 = amount of NH3 collected on sample (µg m-3) 

 𝑚𝑏 = amount of NH3 in blank sample (µg m-3) 

 

 

 

 

 

 

 

 

 

Figure 1: Outline Diagram of a single CEH ALPHA sampler 
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The ALPHA samplers are calibrated against a reference denuder method, DELTA (Sutton et al. 2001) to 

derive an effective field uptake rate, which was determined as : V (m3) = 0.00324 m3 x t (h). 

The coefficient of variation (CV) was calculated from the difference between measured NH4
+ between 

sample triplicates as an indicator for uncertainty. The analytical precision was also assessed by co-

analysing the samples with four quality control solutions at concentrations of 0.2, 0.9, 2 and 9ppm. The 

analysis of the NH4
+ content of the ALPHA samples was also checked against international quality 

standards from the laboratory intercomparison programme of the World Meteorological Organisation 

Global Atmospheric Watch, where the accuracy of the AMFIA analysis system was found to be within 

5% of the provided standards. 

 

2.1.2 Continuous NH3 analyser 

On-line continuous NH3 concentration measurements were made with an AiRRmonia gas analyser 

(Mechatronics, NL). The AiRRmonia was strategically deployed for two periods of measurement at two 

locations (Figure 3, 4). The first measurement campaign, (28th May – 26th June) was 100m northwest of 

the AD plant along the axis of the prevailing wind direction, while the second (27th June – 16th July) was 

within the inner courtyard at the plant, 20m from the entrance to the digestate store (Figure 4), which was 

assumed to be a key source of emissions for the plant (Figure 3, 4). The continuous sampler consists of a 

membrane sampler for quantitative sampling of gas-phase NH3. NH3 within the air stream at the sampling 

inlet diffuses through a membrane where it is absorbed in a sampling solution which is pumped 

continuously (ECN, 2003). The aqueous sampling solution is mixed with a NaOH carrier solution of 

around pH 12 which converts all NH4+ to NH3, at which point NH3 is the only small molecule in solution 

that may readily diffuse through a 0.22 µm pore size teflon membrane. NH3 which passes through the 

membrane is met with a counterflow of deonised water. At pH 7 the NH3 converts back to NH4 and is 

analysed by a conductivity detector. The AiRRmonia was housed within a weather-proof box (Figure 2) 

and sampled air at a rate of 1 l/m. Measurements were recorded every minute by the in-built datalogger, 

and the data was later averaged for 10, 30 and 60 minute periods for analysis. Calibration was carried out 

in the field every 6 days with 0, 50 and 500 ppb NH4
+ solutions and showed good stability over the 

periods of measurement. 
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2.1.3 Portable gas analyser 

The gas alert Micro 5 portable multi-gas analyser (www.calgarysense.com) was used to provide snap 

measurements of the concentration of NH3 inside the central waste reception building at the site which 

was expected to be a key source NH3. The portable gas analyser was only suited to the high 

concentrations within the waste reception building as the limit of detection for the device was 1 ppm (0.75 

mg m-3), which is two orders of magnitude higher than the background concentration determined for the 

area (1.5 µg m-3 ). Snap measurements were made upon visits to the site every week in an attempt to 

characterise the observed NH3 concentrations rather than provide long-term averages, as it was not 

possible to maintain continuous measurement due to a lack of power supply. The observed NH3 

concentrations from within the waste reception building were used to estimate fugitive emissions, making 

assumptions on the direct discharge rate from the findings of the fugitive emissions study by Cumby et al 

(2005). 

 

 

 

 

 

Figure 2: AiRRmonia gas analyser & ALPHA setup. 

AiRRmonia air sampling inlet. 

Upturned saucer with attached birdspikes and ALPHA 

triplicate held underneath. 

 

AiRRmonia continuous gas analyser. 

 

Laptop for data acquisition. 

 

http://www.calgarysense.com/
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2.2 ESTIMATION OF AMMONIA EMISSIONS 
 

Multiple approaches were taken to estimate the emission rate for the plant as a whole and for the 

individual emission sources at the site. Windtrax and ADMS Urban were both used and methodologies 

are described below.  

2.2.1 Windtrax  

The Windtrax atmospheric dispersion model (Flesch et al. 2004) was used to calculate the totality of 

emissions from the AD plant. The Windtrax model (available at www.thunderbeachscientific.com) is of 

the backward Langrangian stochastic (bLS) dispersion type. Windtrax has the capability to operate in 

‘forwards’ and ‘backwards’ mode, where in both cases fifty thousand “fluid particles” are released and 

from an emission source or concentration receptor. The trajectory of the particles are predicted through 

the equations of Lagrangian stochastic motion, which are used to simulate the transport of gases from an 

emission source to a receptor or the reverse if in backwards mode. 

Continuous NH3 concentration data from the AiRRmonia measurements was averaged over 10 minute or 

1 hour periods for various functions and combined with meteorological data which was provided by a 

local weather station in Cumbernauld (www.cumbernauldweather.co.uk), located 1.6km to the northeast 

of Deerdykes. Note in situ meteorological measurements were attempted but the newly bought 

meteorological station had a fault. Cumbernauldweather.co.uk provided a high resolution anemometer 

that allowed the comparison of NH3 concentration data from different wind sectors. This was better suited 

than the met. data which was made available from the on-site weather station, as wind direction data from 

the on-site anemometer is given in sectors of 22.5° which reduces the resolution of model output. The 

AiRRmonia data was filtered to select only measurements taken where the AD plant was directly upwind 

of the AiRRmonia gas analyser (chosen to be 220 - 230°). The AiRRmonia NH3 concentration data was 

also filtered to remove calibration periods and where wind speed (u) was less than 0.1 m/s. The mean, 

median, 75th, 95th and 99th percentiles where then calculated from the filtered AiRRmonia data over the 

first measurement period (28th May – 26th June).  

The data input to Windtrax was filtered averages of the following parameters: NH3 concentration at 2m 

height (Xm µg/m3), background concentration (Xb µg/m3), wind speed (u, m/s), wind direction (WD, °), 

temperature, (T, °C), and an atmospheric stability parameter. As the long-term average concentration was 

used across the 220 - 230°C wind sector, the mean temperature (15 °C) for that period was used in the 

model. ALPHA measurements from locations that had little influence from the Deerdykes AD plant or 

other sources of NH3 suggested that the local background concentration was around 1.5 µg m-3, which was 

set as the background concentration in the Windtrax model. This was later affirmed in forward dispersion 

modelling scenarios, where the ability of the model to accurately predict concentrations at ALPHA 

receptors was significantly improved when using this background concentration value. 

Without a sonic anemometer measuring atmospheric stability, it was assumed that a neutrally stratified 

surface layer would best represent the averaged stability throughout the measurement period. This 

assumption seemed to be valid as the predicted concentrations given from the Windrax model in forwards 

mode fared better with long-term concentration measurements than unstable or neutral surface layer 

conditions. Therefore the atmospheric stability parameter was given in general terms, specified as neutral 

or Pasquill-Gifford stability class D. 

The Deerdykes AD facility presents complications for inverse dispersion calculations. Buildings and 

structures generate complex wind movements, and the intensity and precise locations of all the emission 

http://www.thunderbeachscientific.com/
http://www.cumbernauldweather.co.uk/
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sources is unknown. However studies using the inverse dispersion method have demonstrated 

insensitivity to these complications if Xm is measured far enough downwind (Flesch et al. 2005, McGinn 

et al. 2006, Flesch et al. 2011). It is suggested by Flesch et al. (2008) that the downwind distance of the 

concentration sensor should be a minimum of ten times the height of the largest wind obstacle, and 

roughly two times the maximum distance between potential sources. The largest obstacle is the waste 

reception building at 6.4m tall, as the AIRRmonia gas analyser is 70m from the nearest obstacle, the 

sequencing batch reactor (SBR), and 100m from the waste reception building this criterion is met. 

However Flesch et al (2008) also recommend that the concentration sensor should be roughly two times 

the maximum distance between potential sources, in this case the distance between the surface water 

balancing tank (SWBT) is greater than the distance to the concentration sensor. Furthermore, the 

Windtrax model assumes a spatially uniform surface area source, which is not a realistic treatment as 

emissions will not be evenly distributed over the ground area. Therefore the Windtrax model is not 

expected to accurately reproduce near-source NH3 concentration characteristics, however it was hoped 

that this tool will provide a reasonable estimate of the totality of emissions that occur at the site. 

A conceptual model for NH3 emission and dispersion was created for the site after consultation with the 

operators of the plant and obtaining knowledge of the storage conditions of waste being delivered to the 

site and of the digestate produced by the digestion process. The waste reception building (containing the 

digestate store), and the sequencing batch reactor were identified as likely being the most significant 

source of NH3 (Figure 4). Early NH3 measurements quickly identified the surface water balancing tanks as 

another major source at the plant. These were the three source definitions within the Windtrax model 

where each was given as an area source spatially proportional to their plan which is shown in Figure 4. 

Each of the three area sources defined in the model were assigned identical emission rates per unit area. 

  

ADMS Urban 

Source strengths may be determined by assigning an arbitrary emission rate and fitting the modelled 

concentrations to the measured values (above background) by applying a correction factor (e.g. Hill et al. 

2008; Faukner et al. 2007; Theobald et al. 2013). This technique was applied with the Atmospheric 

Dispersion Modelling System (ADMS) (Carruthers et al. 1994). ADMS is an “advanced generation” 

Gaussian-type model that uses the Gaussian Plume equation to provide a statistical approximation of the 

complex nonlinear equations that control the dispersion of gases in the atmosphere. ADMS incorporates 

several features which makes it a strong choice for simulating the emissions from a complex source such 

the Deerdykes AD plant: ADMS includes a building effects module which allows for the streamline 

deflections and enhanced turbulence that occur downwind of structures at the site such as the waste 

reception building and the various tall tanks present at the site, ADMS can compute dispersion across an 

x-y field where the roughness length varies to simulate the effects of complex terrain such as woodland, 

agricultural land and built-up areas within the model domain, and also a realistic treatment of the 

atmospheric boundary layer, using Monin-Obukhov scaling, to describe the vertical variation in wind 

speed and turbulence in the atmosphere. Without direct measurements of atmospheric stability taken at 

the site, ADMS features a meteorological pre-processor that can provide an estimate of the Monin-

Obukhov scaling using cloud cover, wind data and air temperature to estimate the surface-sensible heat 

flux and provide a reciprocal of the Monin-Obikhov length. Cloud cover data was obtained from the Met 

Office MIDAS Land Surface Station dataset. The nearest synoptic surface station was the Glasgow 

Bishopon station (55°54'0N, -4°31'58.8W"). As this station is 30km west of the Deerdykes facility it may 

not capture local variations in cloud cover data that can be observed over the site, but it was assumed that 

the cloud cover data would be representative of the study area. 
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The ADMS model was configured with the following input data: 

 Meteorological data for each measurement period provided by cumbernauldweather.com and the 

Deerdykes site meteorological station, including wind speed and wind direction, rain intensity, air 

temperature and relative humidity. 

 Cloud cover data from the Glasgow Bishopton surface observation station. 

 Source location and dimensions for the major points of NH3 emission at the site, including the 

biofilter stack, the entrances to the waste reception area and digestate store, the surface water 

balancing tank (SWBT) and the sequencing batch reactor (SBR) (Figure 4). 

 A building configuration for the site; specifying location, width, length, height and shape. 

 Estimates of the surface roughness length for the structures at the site and the surrounding 

landscape, given as surface roughness file containing a matrix of around 1700 surface roughness 

definitions across the model domain. 

 The positions of the ALPHA monitoring points. 

 Dry deposition rate (m s-1). 

 Washout coefficient. 

 

Gaseous NH3, being chemically reactive and highly soluble, has a short residence time in the atmosphere. 

Losses of NH3 from the atmosphere occur due to dry and wet deposition and chemical reactions to form 

particulate NH4+. As a result the concentration of NH3 within an emission plume will become depleted 

with distance downwind than pollutants that are conserved in the gaseous phase. ADMS describes the rate 

of dry deposition by the dry deposition rate which is given as a constant settling velocity across the model 

domain. The recommended UK Environment Agency deposition velocity value for NH3 (0.02 ms-1, short 

grass) was adopted for the model. Wet deposition is described by the washout coefficient, which is 

defined as a constant value as a function of the precipitation rate for a particular pollutant. The washout 

coefficient for NH3 was given as 9 x10-6 s-1 (CLAG 1994). 

A number of scenarios were set up to investigate the emissions of NH3 from the Deerdykes AD. Firstly 

the back-calculated emission rate for the totality of the emissions from the plant was applied and 

measured concentrations were compared with predictions to evaluate the Windtrax estimate. The 

subsequent scenarios involved model differentiation into multiple sources, using the all of the available 

information including: published emission factors within the literature, on-site measurements using a the 

portable Gas Alert Micro 5 portable gas analyser (www.calgarysense.com), indications from ALPHA and 

AiRRmonia measurements and site parameters such as chemical analysis of solid digestate and liquid 

effluents obtained from the AD plant. Emission factors were adjusted to fit the modelled concentrations 

with time-integrated measurements from the ALPHA samplers. The available information concerning the 

composition of organic materials and practices at the site was referenced against published emissions 

factors and literature examples to develop a model with source descriptions that are as realistic as 

possible. Discretion was used when adjusting these emission factors to fit the ALPHA measurements. 

Finally, the current APIS (Air Pollution Information System) emission factor for NH3 emissions from 

anaerobic digesters was then applied to this area source to investigate whether the findings of Cumby et 

al. (2005) are representative for the Deerdykes food waste anaerobic digester. All of the scenarios 

predicted the long-term average concentrations across a 900x700m model domain at a 10x10m resolution. 

Each scenario used the available meteorological data and ALPHA NH3 concentration measurements 

corresponding to ALPHA periods 2-5 (28th May – 26th June). Dispersion modelling could not be 

http://www.calgarysense.com/
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conducted for July as total cloud cover data from the Met Office Glasgow/Bishopton surface station had 

not been released. Thus without a proxy for atmospheric stability it was not possible to run ADMS. 

 

Uncertainty in dispersion modelling generally can be due to: 1) variability due to random turbulence, 2) 

input data errors, and 3) errors and uncertainties in model physics (Fox 1994). Dispersion is primarily 

controlled by turbulence in the atmospheric boundary layer, which is random by nature and thus cannot 

be accurately predicted. As a result, the concentration of a pollutant in the atmosphere will vary 

significantly in space and time over an observed field (Chang and Hanna 2004). In order to describe 

turbulence in a meaningful way, dispersion parameters are defined to elicit turbulence as a time averaged 

mean value, in the case of ADMS the dispersion parameters correspond to the hourly averaged input run 

through the meteorological pre-processor. However variation around this mean value is not considered 

(Fox 1994), which neglects uncertainty in the estimated concentration of a pollutant for a particular 

modelling scenario. Decades of experience and numerous validation studies has led many authors to 

adopt a rule-of-thumb confidence limit of ± ‘a factor of 2’ for a given time and location (Pasquill, 1974, 

Smith, 1984, Chang and Hanna 2004). Here, the ALPHA measurements provide means to assess the 

performance of the ADMS dispersion models to predict the air concentration over space and time across 

the study field. Therefore because the predicted concentrations can be verified against the observed 

concentrations at ALPHA sites, uncertainties in dispersion modelling are considerably reduced. However 

as the model is verified by and calibrated with the ALPHA measurements any error associated with the 

passive ALPHA sampling or NH4
+ analysis techniques will directly influence the validity of the model 

and any emission rates deduced therein. Furthermore, after adjustment to fit observed concentrations the 

two datasets are no longer independent which is a key assumption of statistical tests (Chang and Hanna 

2004). Therefore there must be a qualitative element to the discussion of uncertainties after the models are 

fitted to measurements in this manner. 

 

2.3 MODEL PERFORMANCE EVALUATION 
 

Evaluation of model performance requires a statistical comparison of predictions (𝐶𝑝
 ) with observed 

values (𝐶𝑜 ). For the evaluation of ADMS predictions against ALPHA measurements, the five 

performance measures suggested by Chang and Hanna (2004) are used: 

Fractional bias :  FB =  
2(𝐶𝑜̅̅̅̅ −𝐶𝑝)̅̅ ̅̅ ̅

(𝐶𝑜
̅̅ ̅̅ ̅+𝐶𝑝)̅̅ ̅̅ ̅ ;       (5) 

            

Geometric mean bias : MG = exp(ln𝐶𝑜
̅̅ ̅̅ ̅̅ −  ln𝐶𝑝

̅̅ ̅̅ ̅̅ ̅) ;      (6) 

Normalised mean square error: NMSE = 
(𝐶𝑜 − 𝐶𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  2

𝐶𝑜𝐶𝑝̅̅ ̅̅ ̅̅ ̅
      (7) 

Geometric variance : VG = exp [(ln𝐶𝑜 − 𝑙𝑛𝐶𝑝)2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (8) 
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and the fraction of model predictions that are within a factor of two within the observations   

FAC2 = fraction of data that satisfy :  0.5 ≤ 
𝐶𝑝

𝐶𝑜
 ≤ 2 

 

Overbars denote the mean of each dataset. The NMSE, VG and FAC2 are composite measures that take 

into account the both bias and scatter in the predicted values relative to the observations, while the FB and 

MG are measures of model bias and describe the tendency of the model to over or under-predict observed 

concentrations. Chang and Hanna have suggested ranges for the five performance indices that indicate 

acceptable model performance. The ranges suggested are: FB < 0.3, 0.7 < MG < 1.3, NMSE <1.5, VG < 4 

and FAC2 > 50%. The correlation coefficient (R2) was also calculated and used an index for model 

performance. The model suitability was assessed by comparing the performance measures to these criteria 

for the mean atmospheric concentration at each ALPHA receptor. Later studies have recognized that due 

to stochastic and turbulent processes, even an acceptable model may not be able to meet all the 

acceptability criteria for all the experiments (Hanna and Chang 2010; Theobald et al. 2012). As a result, it 

has been proposed that an acceptable model is one which meets at least half of the performance tests. This 

approach was adopted in defining the ‘acceptability’ of the models developed, however in determining 

the source strength the emission rates of individual sources were sensibly iterated to closely match the 

ALPHA. Thus the objective was to develop a model that performs well in statistical tests but also finds a 

balance with the conceptual model of emissions from the AD and the published findings within the 

literature. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Location of passive ALPHA and continuous AiRRmonia NH3 monitoring sites. Samplers 

were predominantly aligned to the SW – NE axis of the site, in line with the prevailing wind 

direction.  
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Figure 4: Site plan of the Deerdykes anaerobic digestion plant. 

The inner site is mostly concrete courtyard with tall buildings and tanks that are associated with the AD process or the posting 

facility that was in place prior to 2011. The AD plant is surrounded by tall trees, hedges and a screening bund  

Suspected sources of NH3 at the site are marked in red, which may be grouped as the sources in and around the Waste 

Reception Building (biofilter, waste reception area, pre-processing area and digestate store); the sequencing batch reactor 

(SBR) which aerobically treats the separated liquid effluents; the open Surface Water Balancing Tank (SWBT), which 

collects surface drainage from the plant and is hence contaminated by spillages; and the subterranean sludge reception tank 

which stores deliveries of liquid substrates to the site. 

The location of passive NH3 ALPHA samplers placed at the site are marked with green circles, while the AiRRmonia 

continuous gas analyser locations for both AiRRmonia measurement periods are marked as blue circles. 
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3. DEERDYKES ANAEROBIC DIGESTER/LITERATURE REVIEW 

OF EMISSIONS 

2.4 SITE OPERATION 
The Deerdykes combined heat and power (CHP) biogas AD plant is located to the south of the Westfield 

Industrial Estate and approximately 250m North of Mollinsburn, Cumbernauld (55°55’28N, 4°03’24W). 

Constructed in 2010, the plant processes about 30,000 tonnes of materials per year, comprising a mixture 

co-mingled green/catering wastes from municipal collections, biodegradable industrial sludges and 

category 3 animal by-products. The wastes to be digested arrive both in liquid and solid form, the solid 

wastes being delivered to the floor of the waste reception hall, where it is transferred to equipment that 

will shred and decontaminate the waste before it is fed into the process by screw conveyors (See Figure 6 

for a schematic diagram). Liquids and sludges are offloaded to a separate subterranean tank, before being 

pumped into the anaerobic digestion process via a small buffer tank. Various waste inputs are combined 

with recycled, anaerobically treated and diluted process liquor to form a 15% slurry using high energy 

mixers. This slurry is screened to remove packaging and oversized materials, before passing into a buffer 

tank to even out its composition before going forward for anaerobic digestion, whilst allowing time for 

the hydrolysis of suspended solids into soluble components and the formation of short chain fatty acids in 

advance of anaerobic digestion. Following pasteurisation at 70°C for one hour to destroy pathogens, the 

slurry is transferred into the anaerobic digester which operates at mesophilic temperature (37°C), which 

operates on a semi-continuous basis. The biogas released during anaerobic digestion (primarily methane 

and carbon dioxide) is withdrawn from the digester headspace into a dedicated biogas holder adjacent to 

the digester and buffer tank. The biogas is combusted by one or two spark ignition gas engines to produce 

electricity and heat, although some or all biogas may be combusted by a flare in the event of excess 

biogas production or vented to air via release valves if biogas pressure rises too high. 

The digested sludge (digestate) displaced from the bioreactor is dewatered and separated into liquid and 

solid fractions, where the solids are stored temporarily on-site before being sold as biofertiliser. The 

liquor expressed from the sludge that isn’t recycled to the pumping stage is sent to a large sequencing 

batch reactor where the aerobic treatment process will convert ammoniacal nitrogen to nitrite and nitrate, 

while the residual BOD in the effluent is be further reduced. Treated effluent that cannot be recycled to 

the start of the process is discharged to sewer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Aerial photograph of the Deerdykes Anaerobic Digestion Plant looking northwards. From the 

bottom, the biogas holder, digester and buffer tank can be seen from left to right. The primary emission 

sources are labeled as follows: 1) Biofilter; 2) Waste reception hall door; 3) Digestate store; 4) SBR; 5) 

Surface Water Balancing Tank; 6) Sludge reception tank. 
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Due to the high volume of malodourous of wastes present at the plant, odour control technologies are 

employed to limit the release of odorous emissions. The solid waste reception zone of the plant takes 

place within a dedicated waste reception building that is fitted with an air extraction system. The air 

extraction system captures contaminated air within the waste reception and preprocessing areas of the 

waste reception building, which vents to the atmosphere via a downflow biofilter and ultimately a 3m 

discharge stack. Room air is extracted from the waste reception building at a rate of 9000 m3/hour, 

passing through a humidified biofilter with sufficient residence time to provide a minimum deodourising 

efficiency of 75%. The solid digestate is stored within a separate compartment of the waste reception 

building which does not feature any odour control measures. This may increase the likelihood of release 

NH3 from room air within the store into the atmosphere, most likely as the digestate store opened to 

allow the loading of digestate onto biofertiliser delivery trucks, which occurs roughly three times per 

week. A portion of the liquid digestate is aerobically treated within an open sequencing batch reactor 

tank, which causes the potential for further emissions from the tank surface. The subterranean sludge 

reception tank is fitted with an activated carbon drum to scrub any gases from the tank that are vented to 

the atmosphere. The gaseous emissions from this tank should be generally the air that is displaced when 

the tank is filled with sludges and liquids, as breathing losses should be minimal. The emissions from this 

tank have not been quantified in terms of volume or NH3 concentration, and it is not known the extent to 

which the tank emits to the atmosphere nor the effectiveness of the activated carbon drum or the 

concentration of NH3 in the air within the tank. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Schematic model of the pathways of wastes through the Deerdykes AD plant. 
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2.5 EMISSIONS FROM SOLID DIGESTATE 
 

The anaerobic digestion process is for the most part a closed system, which limits the contact of process 

matters with the atmosphere and hence the potential for fugitive emissions of NH3. Odour control 

measures further constrict potential pollution pathways for NH3, however the storage and treatment of 

substrates and effluents in liquid and solid form are key parts of the anaerobic digestion system where 

emissions of NH3 can occur. If the effluents are separated, the heaps of solid digestate are similar to 

farmyard manure heaps and contain aerobic and anaerobic micro-sites (Sommer and Moller 2000), readily 

degradable carbon and a nitrifiable nitrogen source (Asmus et al. 1988; Reinold et al. 1990, moisture 

(Chadwick et al. 1999) and heat (Clemens and Ahlgrimm 2001).  During digestion, dry matter is partially 

degraded (Koriath et al. 1985), which reduces the total effluent volume while increasing the concentration 

of nutrients. Anaerobic digestion effluents have a reduced biological oxygen demand, a higher 

ammonium (NH4+)/total nitrogen (N) ratio, a smaller C/N ration and an elevated pH than the digestion 

substrates (Asmus et al. 1988; Moller et al. 2008). The culmination of these effluent properties is to 

produce favorable conditions for gaseous NH3 emissions and the production of nitrous oxide (N20) via 

denitrification.  

Previous studies that have set out to measure or estimate the emissions of ammonia from manure and 

slurry stores through mathematical models have done so through the use of simple empirical relationships 

(e.g. Jarvis 1993; Ross et al. 2002), to the development of models for the detailed mechanistic 

descriptions of the physical characteristics of mass transfer (See Ni 1999, for a review). The similarities 

between digestate and agricultural slurries and manure heaps has led some authors to assume a 

comparable rate of NH3 loss. Concerning NH3 emissions from solid and liquid effluents only, applying 

the default IPCC emission factors for gaseous N loss during manure storage (30% for dairy cow manure, 

and 45% for swine manure (IPCC 2006), Moller et al. (2010) reported that 30 – 40% and around 1% of 

the total N contained within solid and liquid effluents respectively were released as NH3 emissions during 

the storage of digestate from two biogas digestion plants in Germany. The primary substrate was 

dedicated energy crops, where after digestion the effluents were separated into liquid and solid fractions 

which were stored on-site. The greater loss of NH3 assumed from the solid fraction was due to storage 

practices, where the solid fraction was piled in open heaps within a warehouse, while the liquid fraction 

that is not recycled through the process was stored in closed tanks. Cumby et al (2005) reported that the 

total nitrogen content of the digestate from the Holsworthy agricultural anaerobic digester was 64% 

higher than cattle slurry, 33% higher than pig slurry, and 43% lower than poultry layer slurry. Cumby et 

al. (2006) also noted an elevated pH of 8.2, relative to the undigested slurry of enrolled farms to the 

centralised anaerobic digestion system (pH 7.5). The elevated pH was estimated to increase NH3 

volatilisation during storage by a factor of 1 and 4, where a 2.6 fold increase in ammonia emissions was 

observed between slurries with a pH 7.5 and 8.  

Clemens et al (2006) measured NH3 and GHG emissions from the storage of digested and undigested 

cattle slurry in summer (140 days) and winter (100 days) experiments, finding comparable NH3 emissions 

during winter. However emissions from digested slurry during summer were twice as high as undigested 

slurry. The effect of temperature on NH3 losses from agricultural slurries is well documented in the 

literature. Denmead et al. (1982) developed a regression equation that estimates NH3 losses from NH4-N 

content, temperature, and pH following the furrow irrigation of maize. They demonstrated an increase in 

NH3 emissions with temperature, especially if slurry NH4-N and pH are high. 
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The effect of covering slurry and manure heaps on NH3 emissions relative to leaving uncovered has been 

shown to significantly reduce emissions of NH3 by maintaining a high concentration of NH3 at the 

surface, limiting volatilisation and physically preventing emission to the atmosphere (Cumby et al. 1995). 

Clemens et al (2006) showed a 65% decrease in NH3 emissions from digestate stored with a wooden 

cover relative to uncovered digestate. Another experiment in the same study demonstrated that emissions 

from digestate covered with a layer of chopped straw were nearly as high as uncovered slurry, 

highlighting the need for effective storage facilities (Table 1). 

Whelan et al. (2010) conducted an experimental study to evaluate the volatilisation of NH3 from food 

waste anaerobic digestate whilst developing a mathematical model to describe the process. This is of 

particular relevance to the Deerdykes project as it is the only study in the literature to specifically target 

NH3 emissions from anaerobically digested food waste. The authors reported that the rate of NH3 loss is 

inversely proportional to the depth of the digestate storage container, thus deep containment facilities 

have relatively low emission rates. Secondly, storage facilities with a poorly ventilated headspace (i.e. 

closed) will also have relatively low emission rates. The presence of a cover can limit the losses of 

ammonia by allowing the concentration of NH3 above the digestate to approach a thermodynamic 

equilibrium with the free ammonia in the liquid, thereby minimizing the net flux. Cumby et al. (1995) 

investigated the release kinetics of NH3 within an odour and emissions chamber (OEC), finding that the 

equilibrium concentration between free NH3 in the manure the air NH3 above it occurred as the air 

concentration reached 300 – 400ppm. The rate of ventilation of digestate containers also affects the rate 

of turbulent diffusion across the liquid interface, where a reduction in the ventilation rate (α) suppresses 

the convective mass transfer of NH3 between the interface and the free air, thus limiting emissions of 

NH3 (Whelan et al. 2010). 

Empirical relationships based upon the regression of NH3 emissions against influencing parameters such 

as temperature, NH4-N content, pH and air ventilation rates can give valuable predictions of NH3 

emission rates when limited parameters are available for calculation (e.g. Jarvis 1993; Ross et al. 2002). 

The model of Borka et al. (2000) describes the emissions of NH3 (E, mg m-2 h-1) from manure in livestock 

buildings, and was developed from the regression of substrate temperature (TS, °C), air exchange rate 

(LD, m3 h-1 m-2), and NH4-N content (TAN, g N kg-1) (Eq 4), in controlled experiments within respiration 

chambers. 

The correlation of each experiment was highly significant, and from each regression a simple multi-

factorial emission model was developed: 

    E = 17.254 * 1.060TS * LD0.274 * TAN   (9) 

 

2.6 APPLICATION OF BORKA MODEL TO STUDY AD PLANT 
Table 1 presents a comparison of the chemical properties and calculated NH3 emission rates of the solid 

fraction of the Deerdykes digestate against the properties of digestate in published articles. The 

Deerdykes digestate has a substantially higher Total Kjeidjahl Nitrogen (TKN) and NH4-N content than 

any of the published studies on the composition of digestate. This in theory allows more free NH3 

available for volatilisation by moving the equilibrium towards the composition of free NH3 in 

thermodynamic equilibrium within the digestate, as described by the dissociation constant Kd. The 

Deerdykes digestate shares a similar food waste digestion substrate with the digestate that was analysed in 

the study of Whelan et al (2010). The composition also features a better fit to the Deerdykes digestate 
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than the digestate livestock slurries that were analysed and reported by Clemens et al. (2006) and Cumby 

et al. (2006). Solid digestate at Deerdykes is stored in shallow, sprawling heaps within the digestate 

storage area, the average depth (z) of which is less than 1m (Figure 7). Thus for comparison the NH3 

equivalent flux rate (JNH3) in the experiments and model scenarios of Whelan et al. (2010) for ventilation 

rates (α) of 0.1, 1 and 10 air changes per hour are given, where z = 1m. The Deerdykes digestate store is 

not well ventilated which helps to limit odourous emissions. However it is by no means a secured storage 

vessel, thus the air exchange rate (α) was assumed to be between 0.5 and 1.5, typical values for buildings 

of tight and loose insulation respectively. However around three times per week the large digestate store 

door is opened for several minutes in order to extract the digestate for sale as biofertiliser. The large door 

is fully opened (Figure 7), while a JCB loader transfers the digestate into a storage container for haulage 

off the site where the end-use is application to agricultural land. This ventilates the digestate storage area 

and is an intense NH3 emission event at the site, and may shift the ventilation rate towards the higher end 

of estimates. Due to the uncertainty around this parameter, the emission rate for air change rates of 0.5, 1 

and 0.5 were calculated for use in dispersion modelling (Table 1). The equivalent flux rates calculated 

using equation 1 correspond well to the literature values given. However, equivalent flux rates calculated 

using Eq. 4 are less sensitive to changes ventilation rate than model of Whelan et al. (2010) would 

suggest. 

In the AD plant studied, the digestate pile typically covers the floor of the storage area, which is 60m2 

(Figure 7). However the surface of the digestate is not smooth, i.e. has a high roughness factor, which was 

estimated to increase the surface area available for volatilisation by between a factor of between 5 and 10.  

These roughness factors were applied to the source area in ADMS. The temperature was recorded from 

inside the digestate store between the 27th of June and the 7th of July using a Tiny Tag data logger 

(www.geminidataloggers.com). The temperature within the digestate store displayed strong diurnal 

variations, with temperatures ranging from 25°C during the day to 10°C during the night. The average 

temperature over this period was 16.4°C. The average air temperature (16.4 °C) was taken as the 

temperature of the surface of the manure for calculations of emission rates using the empirical model of 

Borka et al. (2000), Eq. 9. 

Table 1: Intercomparison of the Deerdykes digestate chemical composition and NH3 emission rates from the storage 

of different digestates reported in the literature. 

Parameter 

Deerdykes 

(Food Waste) 

(16.4 °C) 

Cumby et 

al. 2006 

(Livestock 

Slurry) 

Clemens et al. 2006 (Cattle Slurry, Summer Experiment, 

140 days) 

Whelan et al. 2006 

(Food Waste) 

(25°C) 

 Digestate Digestate Cattle Slurry Digestate Digestate 

TKN (mg/l) 62600 6583 2170 2280 - 

NH4-N (mg/l) 25000 5040 1190 1510 5775 

pH 8 8.2 7.4 7.8 8.28 

DM (g/kg) 120 - 32.9 22.9 37.2 

JNH3 (g NH3 m-2 d-1) 

Borka et al. (2000) model1 

- 

uncovered covered  uncovered straw cover covered α = 0.1 α = 1 α = 10 

α = 0.5* α = 1.0 α = 1.5 
0.73 0.43 1.59 0.9 0.56 2.06 14 38.9 

1.24 1.5 1.68 

EFNH3 (kg N as NH3, 

% TKN/year) 
 21.78 - - - 

The Total Kjeidjahl Nitrogen (TKN), NH4 concentration (NH4-N), pH and Dry Matter (DM) are given. NH3 emission rates are given as the 

 equivalent flux rate (JNH3) and the yearly emission factor (EFNH3). *α is the ventilation rate (air changes per hour). 
1 Deerdykes equivalent fluxes calculated from the empirical model of Borka et al. (2000), Eq. 9. Where: TS = 16.4, LD = 0.5,1.0,1.5, TAN = 20.516 

http://www.geminidataloggers.com/
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2.7 LIQUID FRACTION OF EFFLUENTS 
 

The liquid fraction of the separated digestate that is not recycled through the digestion process is sent to 

an aerobic treatment tank on site. During the batch process, organic material is converted mainly to 

carbon dioxide and water through biological activity. The aerobic treatment of liquid digestate at the plant 

is facilitated through a sequencing batch reactor system. This occurs within an open single treatment tank 

with a volume of 1000m3 and a liquid surface area of 200m2. Liquid digestate is fed into the into the 

aeration tank, in the period following the addition of slurry, NH3 is nitrified to nitrite and/or nitrate and 

then denitrified to nitrogen gas (N2) with the breakdown of degradable organic substances. Ammonia 

emissions can be expected when nitrification and denitrification of rich process liquors occurs in open 

Figure 7: Top; photograph of digestate taken from inside the digestate store at Deerdykes. Bottom; 

photograph of digestate being loaded into a container for haulage off site, note the opening of the large 

door which will induce ventilation. 
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tanks. Burton et al. (1993) reported a loss of 2% of total N as NH3 emissions when pig slurry was aerated 

under nitrifying/denitrifying conditions. 

After the aeration cycle is stopped, remaining solids are allowed to settle while the top layer of the 

supernatant was discharged as wastewater to the local sewage system. SBR systems typically operate in 

24 hour cycles, Willers et al. (1995) monitored the emissions of NH3 during the cycling of a SBR system 

which processes large volumes of veal slurry in the Netherlands, reporting ammonia emission rates of 

0.7% of total Kjeldahl nitrogen per day during the aeration cycle of the batch process. A mean emission 

rate of 220mg m-2 h-1 was observed during the first 10 hours of the aeration cycle, while no emissions 

were detected during the remaining 10 hours of the cycle nor the sludge settling or effluent discharge 

phases of the 24 hour batch process. Without directly measuring emissions from the SBR, the NH4+ 

concentration and pH of the liquid fraction of the Deerdykes digestate was compared with the 

composition of the veal slurry in the study of Willers et al. (1995) (Table 2). Upon comparing the 

composition of both liquids the valididity of the published emission factor of 220 mg-1 m-2 h-1 for 10 hours 

out of 24 was assessed and found to be acceptable for the estimation of emissions from the Deerdykes 

Anaerobic Digestion plant. 

Table 2: Chemical comparison of liquid effluents within the Deerdykes SBR tank against the properties of the SBR 

experiment of Willers et al. (1995). 

 

 

2.8 FUGITIVE EMISSIONS FROM THE WASTE RECEPTION AREA 
 

The waste reception and pre-processing areas at Deerdykes are fitted with an air extraction and 

humidified biofilter system. The degree to which the biofilter scrubs NH3 from extracted room air is not 

known, however due to the reactive properties of NH3 a high percentage can be expected to be removed. 

Cumby et al (2005) reported an 87% reduction in NH3 concentrations above the biofilter of the 

Holsworthy anaerobic digestion plant relative to the waste reception area. However in monitoring the 

concentration of a non-reactive trace gas (SF6) released into the waste reception area over time, the 

authors reported that around 50% of the room air within the waste reception area escaped through discrete 

sources such as openings within the building, primarily as the reception doors were opened for deliveries 

of wastes to the site. Therefore only half of the contaminated room air was treated by the biofilter system. 

As a result 95% of NH3 emissions from the waste reception area occurred from discrete fugitive sources, 

while the remaining 5% was released from the biofilter stack (Table 3). The Deerdykes biofilter system 

achieves an air flow through rate of 1.6 room changes/hr, which is similar to that of the Holsworthy 

system (1.2 air exchanges/hr). Both setups share the same design principle where the waste reception door 

will open only where a delivery vehicle approaches and will quickly close after the vehicle is fully inside 

the building to reduce fugitive emissions. Yet Cumby et al (2005) reported that significant emissions can 

occur despite these prevention measures; while the large doors were opened for loading/unloading or 

SBR Ammonium content (mg/l) pH 

Willers et al. 1996 150 8.5 – 8.7 

Deerdykes mean 104 max 438 7.7 – 8.7 
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where spillages occurred. Due to the similarities between the two waste reception systems the discrete 

emission rate of 50% and biofilter NH3 scrubbing efficiency of 87% were adopted as emission factors for 

the waste reception area at Deerdykes. 

Concentration measurements from within the waste reception building at Deerdykes using the Gas Alert 

Micro 5 multi gas detector showed distinct concentration profiles between the three sections within the 

waste reception building (waste reception area, pre-processing area and digestate store). The highest 

concentration measurements were taken from inside the digestate storage compartment of the waste 

reception building (Figure 7, Table 3), where concentrations measurements ranged from 7 – 60ppm as 

recorded episodically on visits to the site. The most commonly recorded concentration measurement 

which was thought to be the most representative of the digestate store was around 20ppm which was 

recorded on several occasions. The digestate store is not connected to the biofilter system and this area of 

the building is largely isolated, except where the store is opened and digestate is manually removed for 

sale as biofertiliser which occurs roughly three times per week. The air extraction and biofilter system 

serves the waste reception and pre-processing area: measurements with the portable gas detector indicated 

a higher concentration of NH3 within the pre-processing area (2-3 ppm) than within the waste reception 

area (≤ 1). 

This is in striking contrast to the concentrations found within the Holsworthy biogas plant, where a mean 

concentration of 50 ppm was recorded within the waste reception area (Table 3). This is likely a result of 

the difference in digestion substrates between the two plants, where the Holsworthy biogas plant 

predominantly processed livestock slurries from surrounding farms, while the waste reception area at the 

Deerdykes plant receives solid food wastes from municipal collections and industrial collections, while 

sludges are held separately in a subterranean tank. As a result, NH3 emissions from the Deerdykes waste 

reception area are expected to be significantly lower (See Table 3 for the calculated biofilter and fugitive 

emission rates for the waste reception area and biofilter). As the outside entrances to the pre-processing 

area are small personnel doors, the assumed fugitive emission rate of 50% would likely be too high in this 

case. Scenarios were therefore created for 0 and 25% discrete direct discharge rates from this source. It 

was assumed for Deerdykes that the room air flow rate through the biofilter was directly proportional to 

the volume of each source (waste reception and pre-processing areas), thus maintaining a constant air 

exchange rate of 1.63 room changes/hour throughout.
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Measurement NH3 Concentration (ppm)  

Measured NH3 

Concentrations (ppm) 

15/05/2014 

12/06/2014 

18/06/2014 

23/06/2014 

26/06/2014 

04/07/2014 

10/07/2014 

16/07/2014 

Best Estimate 

(Cumbernauld) 

Holsworthy mean 

Waste 

Reception 

 

3-4 

1-2 

 

 

0 (2 hrs) 

8 (2 hrs) 

2 

≤ 1 

 

50 

Preprocessing 

Room 

2 

7-8 

3 (3 hrs) 

 

 

 

2 (1 hr) 

6-7 

2-3 

- 

Digestate 

Store 

7-8 

7-8 

15-16 

58 

18 (3 hrs) 

22 (4 hrs) 

40 (1 hr) 

18 (2 hrs) 

20 (mode) 

- 

Holsworthy Physical Characteristics 

Reception Hall volume:  3600 m3 

Air flow rate through biofilter: 1.2 air changes/h 

Biofilter discharge rate:  4320 m3/h 

Direct discharge:   4320 m3/h 

Deerdykes Physical Characteristics 

Waste Reception Area volume: 2997 m3 

Preprocessing Area volume:  2511 m3 

Total building volume:  5508 m3                           

Air flow rate through biofilter: 1.63 air changes/h 

Biofilter discharge rate:  9000 m3/h 

Direct discharge rate:   4900 – 6050 m3/h 

Holsworthy Biofilter & Fugitive NH3 Emissions 

Waste Reception Area concentration: 37.5 mg/m3 (50 ppm) 

Biofilter NH3 scrubbing efficiency:   87% 

Biofilter discharge rate:   4320 m3/h 

Bioflter NH3 emission rate:   5.8 mg/s 

Waste Reception leakage rate:  50% 

% total emissions from discrete sources: 95% 

Direct discharge:    4320 m3/h 

Fugitive emission rate:   28 mg/s 

Deerdykes Biofilter & Fugitive NH3 Emissions 

Waste Reception Area concentration:  0.75 mg/m3 (1 ppm) 

Preprocessing Area concentration:   2.25 mg/m3 (3ppm) 

Combined concentration:    1.43 mg/m3 (1.91 ppm) 

Biofilter emission rate:    0.465 mg/s 

Waste Reception Area direct discharge:   4900 m3/h 

Waste Reception Area fugitive emission rate:  1.02 mg/s 

Preprocessing Area direct discharge:   0 – 2050m3/h 

Pre-processing Area fugitive emission rate: 0 – 1.285 mg/s 

Emission rates were estimated on the basis of the experiments and findings at the Holsworthy digester (Cumby et al. 2005); where 50% of 

room air was discharged via the biofilter, which achieved an NH3 scrubbing efficiency of 87%, while the remaining 50% escaped via fugitive 

pathways (direct discharge). 

Concentration measurements with a (n hrs) denote averaged concentrations over n hours. Non-marked measurements are spot measurements. 

Table 3: Estimation of biofilter and fugitive emission rates for the Deerdykes waste reception and pre-processing areas. 
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2.9 SURFACE WATER BALANCING TANK 
 

The surface water balancing tank (SWBT) receives most of the runoff and from the central area of the site 

where spillages are most likely. The yard and vehicles are also regularly washed with power-hoses around 

this area, thus this tank receives a significant amount of organic wastes and is highly contaminated 

(Figure 8). This tank was found to be a significant source of NH3 after the measured concentration at the 

edge of it was consistently the highest or among the highest in the ALPHA surveys. It was therefore 

concluded that a significant amount of NH3 was volatilising from its surface which should be included 

within local dispersion models. As no samples were taken from the SWBT its emission strength was 

inferred by fitting modelled air concentrations to ALPHA data from the same period. The SWBT may be 

comparable to waste water ponds at a dairy farm containing parlour wash and feeding lot runoff in wet 

seasons, as a body of water that is highly contaminated by organic wastes. Emission rates were taken 

from studies which measured the emission rates from waste water ponds through inverse dispersion 

methods. Flesch et al. (2009) and Leytem et al. (2010) published emission rates of 3.5 and 2.02 g m-2 d-1 

respectively. These emission factors were initially used for modelling the emissions from the tank, which 

has a surface area of 200m2. 

 

 

Figure 8: The contaminated Surface Water Balancing Tank and ALPHA sampler saucer 

located at its edge. 
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3 RESULTS 

3.1 AIRRMONIA PERIOD 1/WINDTRAX EMISSION ESTIMATES 
 

The AIRRmonia continuous air NH3 measurements was found to fluctuate with changes in wind 

direction, where the highest concentrations were measured when the AiRRmonia was directly downwind 

of the AD plant (Figure 9, 10). The mean air NH3 concentration between the 28th of May and the 26th of 

June was 3.96 µg m-3. Filtering the AiRRmonia data measurements to where the wind direction is 

between 214 and 236° and wind speed is greater than or equal to 0.1 m s-1 corresponds to periods where 

the AiRRmonia sensor was directly downwind of the central area of the AD plant, including key sources 

such as the SBR, waste reception building and the SWBT. After filtering the data to meet these conditions 

the average air NH3 concentration measurements was 7.42 µg m-3. Further filtering the data to the wind 

sector between 220 and 230° produced the highest mean concentration within the AiRRmonia data at 7.87 

µg m-3, as the footprint of the key sources are more exclusively sampled at this narrower wind sector. The 

data pertaining to the 220 - 230° wind sector was taken as the input data for inverse dispersion modelling, 

where the mean, median, 75th and 95th percentile of the NH3 concentration measurements was run in a 

model which represented the spatial distribution of the AD plant relative to the AiRRmonia sensor. It was 

assumed that all of the emissions originated from the waste reception building, the SBR and the SWBT. A 

bearing from the AiRRmonia sector at 225° intersects these sources at a distance of 100m at the nearest 

point. The source strength was then calculated for the mean and each percentile of the data. The 

calculated source strength ranged from 2.93 µg m-3 using the median NH3 concentration and 16.27 µg m-3 

using the 99th percentile of the data (Table 4). 

Figure 9: Time series of AiRRmonia continuous air NH3 measurements against wind direction, AiRRmonia Period 1 (28th May 

– 26th June). Sections that are shaded in blue correspond to periods where the AiRRmonia NH3 sensor is approximately 

downwind of the AD plant (wind direction 200 - 250°), during these periods the highest measured NH3 concentrations 

occurred. 

µg m-3 
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Plotting the AiRRmonia Period 1 (28th May – 26th June) NH3 concentration data against wind speed and 

wind direction as a concentration polar plot using the OpenAir package (Carslaw 2012) illustrates the 

influence of the AD plant and wind direction on the air NH3 concentration at the AiRRmonia receptor 

(Figure 10). Air originating from the easterly half of the windrose has a much lower average NH3 

concentration (1.76 µg m-3), than southwesterly winds (220 - 230°, 7.89 µg m-3) while the northwesterly 

wind sector (290 - 330°) had higher mean concentration (4.49 µg m-3). This suggests a possible influence 

of the Dairy Farm which is located 500m northwest (280 - 300°) of the measurement point. Assuming 

that all of the emissions originate from the yard and animal housing area at the farm (9000m2), the 

Windtrax calculated source strength for the Farm was 1.54 µg m2 s-1. 

 

 

Table 4: Mean, median and percentiles of AiRRmonia NH3 concentration data from AiRRmonia Period 1   

 (28th May – 26th June) and Windtrax source strength calculations 

 

AiRRmonia averaged NH3 concentration per wind sector 

(µg m-3) 
Windtrax-Calculated 

Source Strength 

220 - 230° 

(µg m-2 s-1) 

Area-Integrated Source 

Strength 

(2231m2
) 

(mg s-1) 
All wind sectors 214-236° 220-230° 

Mean 3.96 7.42 7.87 4.04 10.21 

Median 3.13 5.95 6.13 2.93 7.42 

75th 5.11 8.96 9.51 5.07 13.24 

95th 10.61 18.90 19.39 11.33 29.58 

99th 18.61 26.0 27.19 16.27 42.47 

The source strength using the Windtrax model was back calculated from NH3 concentrations captured when directly downwind from the AD 

plant (220 - 230° wind sector). The background NH3 concentration in each simulation was 1.5 µg m-3. 
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Figure 10: Polarplot of AiRRmonia data with wind speed and direction 

for AiRRmonia Period 1, (28th May – 26th June). Averaging period is 10 

minutes. 

Met. data supplied by www.cumbernauldweather.com, plotted using 

the OpenAir package. 

Figure 11: Windrose of meteorological data from the 28th May to the 

26th June. Averaging period is 1 hour. 

Met. data supplied by www.cumbernaldweather.com. Plotted using 

the ADMS met. data processor. 

(µg m-3) 

http://www.cumbernauldweather.com/
http://www.cumbernaldweather.com/
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A wind rose pertaining to AiRRmonia Period 1 (Figure 11) reveals that the prevailing wind at the site is 

polarised in the NE and SW wind directions. Therefore receptors in these bearings from the plant will be 

more strongly influenced by emissions from the plant than those to the south, southwest or north of the 

plant. This also indicates that passive NH3 samplers around the site are not likely to be significantly 

influenced by NH3 emissions originating from the Dairy Farm.  

 

3.2 ALPHA MEASUREMENTS 
 

Table 5: ALPHA sampler NH3 measurements at Deerdykes. 

 

 

In general, the samplers that were placed in the central area of the AD plant (site 6, 7, 18, 19) showed the 

highest measured concentrations. However the concentration at these sites was also the most variable, 

suggesting that NH3 emissions from the plant can vary from week to week – this is either due to 

variability in emissions or other factors such as temperature, rainfall or site management. Site 6 at the 

Site OSX OSY 
Distance* 

(m) 

NH3 Concentration (µg m-3) 

Period 1 

15/05-

27/05/2014 

Period 2 

27/05-

03/06/2014 

Period 3 

03/06-

12/06/2014 

Period 4 

12/06-

18/06/2014 

Period 5 

18/06-

26/06/2014 

Period 6 

26/06-

10/07/2014 

Period 2-5 

Average 

1 271700 672155 115 2.30 2.31 3.31 2.99 2.95 4.15 2.92 

2 271679 672113 93 2.22 2.82 3.71 2.95 3.63 3.94 3.33 

3 271634 672215 158 1.79 1.68 3.68 1.97 2.31 2.72 2.53 

4 271579 672215 157 1.76 1.80 4.06 2.05 2.56 2.54 2.76 

5 271515 672054 83 2.85 2.50 4.05 3.58 3.53 9.25 3.46 

6 271557 672049 45 7.39 10.52 23.10 18.49 11.71 42.18 16.20 

7 271595 672088 26 9.90 9.69 10.23 18.90 14.62 17.15 13.01 

8 271656 672038 58 1.58 1.26 2.21 2.36 3.38 2.72 2.33 

9 271662 672186 142 1.90 2.01 2.78 2.14 2.24 3.20 2.34 

10 271626 672148 88 4.09 3.48 4.60 3.51 2.99 5.43 3.70 

11 271960 672043 364  1.50 1.42 1.75 1.52 1.80 1.53 

12 271427 672475 446  3.71 3.69 3.26 3.45 3.38 3.55 

13 271512 671907 177  1.31 1.29 1.64 1.18 1.91 1.34 

14 271634 672194 122  1.79 1.63 2.08 1.74 2.05 1.78 

15 271406 671974 212  1.47 1.76 1.88 1.53 2.62 1.66 

16 271417 672238 252  2.71 8.14 3.22 3.18 4.14 4.56 

17 271692 672237 200   2.24 2.59 2.97 2.90 2.59 

18 281627 672096 38    12.53 13.49 9.03 12.34 

19 271583 672060 16    13.73 8.45 27.50 9.95 

20 271723 672203 186     1.50 1.47 1.50 

 *Distance is given as the distance from the center of the waste reception building to the sampler. 
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SWBT showed the highest degree of variation (7.39 – 42.18 µg m-3), while sites 5 (2.50 – 9.25 µg m-3) 

and 19 (8.45 – 27.5) which are nearby also vary to a degree in response to changes in emissions from the 

SWBT. Site 16 (which is near the Dairy Farm) also shows a higher degree of variation and measured 

concentrations are typically higher than other samplers which are a similar distance from the AD. NH3 

emissions from farm activities and grazing livestock are likely to influence concentrations at this site. 

ALPHA site 12 is far north of the site and closer to the farm, therefore the relatively high NH3 

concentration measurements may be influenced by the farm or the main road which it is sited near. The 

lowest concentrations were generally measured at sites furthest from the plant, where concentrations of 

around 1.5 µg m-3 were common. Therefore 1.5 µg m-3 was taken as the background concentration for 

dispersion modelling. The regression of measured versus predicted concentration using dispersion 

modelling also showed the best fit when this value is used. The average of ALPHA periods 2-5 is given in 

Table 5 and Figure 12 as this period corresponds 1st period of AiRRmonia measurement, the data from 

which was used to back-calculate the source strength using Windtrax and make predictions of average 

concentration of NH3 in the area using ADMS dispersion model. 

 

 

 

 

Figure 12: Map showing the location and average NH3 concentration at ALPHA receptors (Period 2-

5, 28th May – 26th June) through proportional symbols. 

Figure plotted using ArcMap software. 

µg NH3 m-3 
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Table 6 presents an intercomparison of measured NH3 concentrations with the ALPHA samplers and 

AiRRmonia instrument (continuous data averaged to ALPHA periods). The AiRRmonia measured mean 

concentrations appear to exceed the ALPHA measured concentrations from ALPHA periods 2 – 5 

(ALPHA site 1), while the ALPHA measurements were greater than the AiRRmonia measurements for 

ALPHA periods 6 and 7 after the AiRRmonia was moved to a central location within the plant (ALPHA 

site 7), opposite of the entrance to the digestate store. At location 1, the AIRRmonia was operated from 

inside a small weighbridge cabin where there was access to mains power, sampling via a short (<1.5 m) 

insulated polyethylene inlet line. This building is next to a weighbridge where passing HGVs containing 

volatilising wastes may have influenced the AIRRmonia sampler more than the ALPHA location which 

was 6 meters east of the AiRRmonia. An alternative explanation may involve emissions of amines which 

are likely to be emitted from the AD plant but at much lower concentrations than NH3 therefore they may 

be a positive interferent close to the source. The CV between the triplicates of ALPHA samplers were 

typically less than 5%, confirming good precision in the measurements (Table 10, Appendix 1). 

 

 

Table 6: Intercomparison of co-located ALPHA and AiRRmonia NH3 samplers at Deerdykes. 

ALPHA 

Period* 

Start GMT End GMT ALPHA (µg m-3) AiRRmonia (µg m-3) % AiRRmonia 

coverage 

2 27/05/2014 11:00 03/06/2014 11:30 2.31 4.89 100 

3 03/06/2014 11:30 12/06/2014 11:10 3.31 3.83 72 

4 12/06/2014 11:10 18/06/2014 11:20 2.99 3.48 96 

5 18/06/2014 11:20 26/06/2014 12:00 2.95 3.49 97 

6 26/06/2014 14:00 10/07/2014 12:00 14.62 10.82 87 

7 10/07/2014 12:00 16/07/2014 13:00 7.88 6.15 100 

*The AiRRmonia was located 10m west of the location of ALPHA site 1 during ALPHA period 2-5. It was then moved to the 

location of ALPHA site 7 for the final ALPHA periods 6 and 7. 
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3.3 MODELLING OF NH3 CONCENTRATIONS 
 

 

Each of the Windtrax back-calculated emission rates given in Table 4 was entered into ADMS, where the 

model assumes a constant emission rate per m2 at the three sources identified in the model: the waste 

reception building (1369 m2), the SWBT (661 m2) and the SBR (201 m2) using met. data corresponding to 

the time period for which the emission strength was back-calculated (28th May – 26th  June). The emission 

rate back-calculated from the mean of the filtered AiRRmonia concentration data (7.9 µg m-3) best fit the 

measurements around the site. The predicted concentrations around Deerdykes can be seen in Figure 13. 

The ALPHA measurements for this period are set over the predicted concentration contour plot with the 

same scale on the colour axis to allow comparison. Measured concentrations from ALPHA samplers 17-

20 which were set in place later and don’t cover the measurement period are included. The concentration 

is heavily influenced by the SE – NW prevailing wind directions and by buildings and tanks (5 – 10 m in 

height) to the north and south of the central area source, which limits dispersion in these directions. 

 

 

 

Figure 13: Contour map of the ADMS predicted long-term average concentrations (28th May – 26th June). 

ALPHA measurements are plotted over the ADMS predicted concentration background using the same 

colour axis. Plotted using the ADMS-ArcGIS extension. The emission factor (4.035 µg m-2 s-1) is 

backcalculated from the mean of the filtered 220° - 230° wind sector AiRRmonia NH3 concentration data 

(7.87 µg m-3). All emissions in this model are emitted from the waste reception building, the SBR and the 

SWBT. 

(µg m-3) 
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The regression of the modelled concentration at the ALPHA receptors shows a near 1:1 ratio which 

suggests that the magnitudes of the modelled and measured data are roughly proportional to one another 

(Figure 14). However there is a poorer fit near to the central area sources where concentrations are 

highest. The predicted concentration at ALPHA receptor 19 is over twice the measured concentration. 

Windtrax assumes that emissions are homogeneously distributed at the source, which produces an equal 

emission rate at the boundary of the central area source when run in ADMS. As NH3 emissions at the 

plant arise from distinct locations at varying strengths, this treatment will not accurately capture the 

measured distribution. For example, receptor 19 is sited a few meters from the western wall of the waste 

reception building which is assumed to be emitting NH3 at the same rate as the door of the digestate store, 

thus the concentration at receptor 19 is increased relative to site 7. The predicted concentration at receptor 

2 and 8 are increased relative to measurements as the waste reception building is closed from the south 

and east ends. Therefore low emissions are expected to occur in these areas while the area source assumes 

equal emissions from all surfaces surrounding the waste reception building. 

ALPHA measurements at sites 12 and 16 are significantly higher than model predictions. It is likely that 

the proximity of these sites to the dairy farm is increasing the air NH3 which is not well simulated by the 

model. The Windtrax-calculated emission rate of the Dairy Farm was 1.54 µg m-3 s-1, where it was 

assumed that all of the emissions are produced at the farmyard and animal housing area. The model 

suggests that this emission rate has little influence on the receptors at ALPHA site 12 and 16. However 

cattle were observed grazing in fields near to these receptors and emissions from fields was not included 

in the source definitions within the model. As the predicted influence of the AD plant on these receptors 

is very low these points can be removed when assessing the regression of measured vs modelled 

concentrations to remove this source of error. 
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Figure 14: Scatterplot of measured versus 

ADMS-predicted NH3 concentrations from the 

Windtrax-calculated area sources (4.035 µg m-2 
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3.4 AIRRMONIA PERIOD 2 
 

During the second period of AiRRmonia continuous air NH3 concentration monitoring, the AiRRmonia 

was placed to the north of the waste reception building at ALPHA site 7, 20m from the entrance to the 

digestate store. The NH3 concentration time series during this period (27th June – 16th July) is 

characterised by a relatively low baseline with high-concentration events occurring every 2 – 6 days, 

where air concentration would rise up to 300 µg m-3 and return back to a low baseline (<10 µg m-3) within 

a few hours from  (Figure 15). Emissions from the digestate store are expected to be episodic as high 

concentrations accumulate within the digestate store and are released as the store is opened and the 

digestate is extracted. This is said to occur roughly three times per week (days/times were not recorded by 

the AD plant), which is consistent with the number of emission events that occurred over the monitoring 

period. Therefore the digestate store door is a dominating point source at this location which should be 

differentiated in source definitions within the dispersion model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 DIFFERENTIATION OF MODEL INTO MULTIPLE SOURCES 
 

In order to accurately reproduce the measured concentrations near the source it was necessary to 

individually define each significant source within the model (Figure 16). While the flux rate from these 

sources was not directly measured, NH3 concentration measurements from ALPHA, AiRRmonia, and 

handheld multi-gas detector sensors were able to identify the most significant sources at the plant. A 

literature review allowed an estimate of the emission rate for each source to be produced, which are listed 

in Table 7. 

Figure 15: Timeseries of AiRRmonia-measured NH3 concentrations  

(µg m-3) 
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Table 7: NH3 Emission factors for differentiated sources at Deerdykes 

Source 

Name 
Type 

Emission 

Factor 
Intensity 

Area-

Integrated 

Emission 

Rate 

(µg s-1) 

Rationale/Reference 

Digestate 

store 
Point 17.4 µg m-2 s-1 

60 m2 x 5 

roughness 

factor 

5208 

Calculated using the empirical model of Borka et al. (2000), Eq. 4. 

The assumed ventilation rate is 1.0 air changes per hour. Surface 

roughness factor is estimated to be 5. 

Biofilter Point 465 µg s-1 1 465 

Calculated from the mean of the measurements of NH3 concentration 

within the waste reception area, air flow rate is 9000 m3 h-1. Biofilter 

NH3 scrubbing efficiency is assumed to 87% (Cumby et al. 2006) 

(Table 3). 

Waste 

reception 

area door 

Point 1020  µg s-1 1 1020 

Based on the assumption that 50% of air exchange occurs through 

direct discharge (Cumby et al. 2006), and that the large door to the 

waste reception area on the west side of the building is the only outlet 

(Table 3). Measured inside concentration: 0.75 mg m-3. 

Pre-

processing 

area 

Line 
41.5  µg m-1 s-

1 
31 m 1285 

Assumed 25% direct discharge (Table 3) from the pre-processing 

area which features two small personnel doors on the north side of 

the building. Emissions assumed to occur evenly across this surface.  

Measured inside concentration: 2.25 mg m-3. 

SBR Point 
61.1  µg m-2 s-

1 

200 m2 x 

(10/24) 
5091 

The emission factor of 220 mg-1 m-2 h-1 for SBR aerobic treatment of 

veal slurry (Willers et al. 1995), which was found to be suitable after 

comparing to chemical analysis of Deerdykes SBR liquid. The 

authors reported that this was the average emission for the first 10 

hours of the 24 hour cycle, with no emissions occurring after. 

SWBT Area 
23.4  µg m-2 s-

1 
616 m2 14409 

Flesch et al. (2009) and Leytem et al. (2010) published emission rates 

from dairy farm wastewater lagoons in the U.S., the lower estimate of 

the two (2.02 g m-2 d-1, Leytem et al. 2010) was selected for the 

SWBT at Deerdykes. 

Figure 16: ADMS source and building 

configuration at Deerdykes. 

Red circles are point sources, orange shaded areas 

are area sources, black lines are line sources and 

green squares are ALPHA receptors. 

SBR: Sequencing batch reactor 

SWBT: Surface water balancing tank. 

Annotated screenshot taken from the ADMS 3D 

Mapper utility. 
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After applying the emission factors listed in Table 7, predicted concentrations at the ALPHA receptors 

exceeded ALPHA measurements by a factor of around 2.4 (Figure 17, 18). In particular, the predicted 

concentrations around the SWBT were much higher than the ALPHA measurements, with concentrations 

at site 5, 6 and 19 all exceeding measured concentrations by factors of around 3.2. Therefore as the 

SWBT emission rate in the model is much higher than reality, a model optimisation factor must be added 

to produce a realistic emission rate for this source. It was found that an optimisation factor of 2/9 best 

replicated the long-term average concentration of the ALPHA samplers around the SWBT for periods 2-

5. Further optimisation factors were applied to the digestate store (increase), the water reception hall door 

(decrease), and the pre-processing area line source (decrease) to fit the predicted concentrations against 

the ALPHA measurements. The final optimisation factors after a series of iterations are shown in Table 8 

along with the resulting emission rates for each source. The predicted concentrations around the site 

relative to ALPHA measurements are shown in Figures 19 and 20, where a near-perfect linear regression 

can be seen between measured and predicted concentrations. 

 

Figure 17: Contour map of the ADMS predicted concentrations using the source definitions listed in Table 7. 

Note the high concentrations around the SWBT and ALPHA site 6 associated with an elevated SWBT emission rate 

relative to observed concentrations. 

 

(µg m-3) 
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 Table 8: Optimised emission factors for NH3 sources at Deerdykes 

 

Source 

Name 
Type 

Emission 

Factor 

Area-

Integrated 

Emission 

Rate 

(µg s-1) 

Optimisation 

Factor 

Optimised 

Emission 

Factor 

Optimised

Emission 

Rate 

(µg s-1) 

Description 

Digestate 

store 
Point 17.4 µg m-2 s-1 5208 

60 m2 x 7 

roughness 

factor 
17.4 µg m-2 s-1 7290 

Same emission factor but 

assuming a higher surface 

roughness factor (7) which 

scales the total emissions. 

Biofilter Point 465 µg s-1 465 - 465 µg s-1 465 No change. 

Waste 

reception 

area Door 

Point 1020  µg s-1 1020 1/16 63.8 µg s-1 64 

Emissions reduced by a factor 

of 16. 

Pre-

processing 

area 

Line 41.5  µg m-1 s-1 1285 1/2 
20.8  µg m-1 s-

1 
643 

Now assuming a 12.5% direct 

discharge rate along the 

northern boundary of the waste 

reception building. 

SBR Point 61.1  µg m-2 s-1 5091 - 
61.1  µg m-2 s-

1 
5091 No change. 

SWBT Area 23.4  µg m-2 s-1 14409 2/9 5.2  µg m-2 s-1 3202 
Emissions reduced by a factor 

of 2/9. 

  Total (mg s-1): 27.5   
Total (mg s-

1): 
16.8 

 

y = 2.4191x
R² = 0.8189

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 2 4 6 8 10 12 14 16 18

A
D

M
S 

(µ
g 

m
-3

)

ALPHA (µg m-3)

Multiple Sources Scenario

19

6 

  

 

5 

Figure 18: Scatterplot of modelled concentrations calculated using the source definitions listed in 

Table 7 versus modelled concentrations. 
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Figure 19: Contour map of predicted concentrations after applying optimisation factors to the sources that 

required adjustment. This model shows an excellent fit to the ALPHA measurements and provides the best 

estimate of the magnitude and distribution of emissions of NH3 at Deerdykes. 

Figure 20: Scatterplot of measured and predicted concentrations of NH3 after applying optimisation 

factors (Table 8). 
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3.6 EVALUATION OF EXISTING AD EMISSION FACTOR 
 

An intercomparison of the Windtrax and source-differentiated emission factors and total emission rates 

are given in Table 9. The existing EF is a factor of 56 and 34 higher than the Windtrax and optimsed 

multiple source estimates respectively (Table 9). This generates predicted concentrations that exceed the 

ALPHA concentration measurements on average by a factor of 54 (Figure 21 & 22). This EF is clearly is 

not representative of the Deerdykes anaerobic digester, thus the emission factor given for the total of the 

differentiated sources is recommended. 

Table 9: Comparison of the existing EF against calculated emission rates for Deerdykes. The existing emission 

factor appears to exceed the Windtrax-calculated EF by a factor of 34 - 56. Total annual fresh waste input to 

Deerdykes is the listed capacity of 30,000 tonnes per year 

 Existing emission factor Windtrax – calculated 

emission factor 

Optimised emission factor 

for total of multiple sources 

scenario 

Emission Factor (% Total FW 

input volatalised as NH3 

(t NH3 / t input FW) Annual 

input = 30,000 t FW 

0.0599636* 0.00106666 0.00176602 

Annual emissions (t NH3) 

(Applied to Deerdykes) 

18.0 0.32 0.53 

Total Emission rate (mg s-1) 

(Applied to Deerdykes) 

570.5 10.3 16.8 

* Existing emission factor taken from Dragosits et al. 2013. 

Figure 21: Scatterplot of measured concentrations against 

modelled concentrations calculated using the current 

emission factor for AD plants (0.06% Total FW input 

volatalised as NH3). 

Figure 22: Contour map of the ADMS predicted concentrations using 

the current AD EF (0.06 % Total FW input volatalised as NH3). 
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The difference between the total emission rate of the Windtrax-calculated emission factor and the total of 

the differentiated sources is likely caused by the positioning of individual sources relative to the ALPHA 

receptors, the bias of the sampling locations at the site which are predominantly towards the northeast of 

the site along the axis of the prevailing wind direction, and the interaction of emission plumes with 

buildings at the site. In assuming equal emissions at the boundary of the emission source, treating the 

waste reception area as a single area source introduces higher emissions at the eastern boundary of the 

waste reception area where there is a high concentration of ALPHA samplers. Thus it is possible to 

achieve a similar regression with ALPHA measurements with a lower total emission rate. The SWBT and 

digestate store are two of the greatest sources of emissions at the plant, emissions from which are 

obstructed by tanks and buildings along the axis of the prevailing wind direction reducing the impact on 

concentrations downwind. The emissions from the SBR occur at a height of 5m which increases 

dispersion and dilution with the ambient air which will reduce concentrations relative to an area source at 

ground level. 

3.7 EVALUATION OF MODEL PERFORMANCE 
 

The model performance criteria of Chang and Hanna (2004) suggests that three of the four models 

presented can be considered ‘acceptable’, with the model run using the existing EF for AD plants 

performing very poorly compared to the measured values (Table 10). A perfect model would have MG, 

VG, R2 and FAC2 = 1.0; and FB and NMSE = 0.0. The multiple source model with optimised emission 

factors performs exceptionally well, with each performance criterion approaching ideal values. The model 

run with the Windtrax-calculated source strength also fares well and is within the acceptability range for 

all of the Chang and Hanna performance measures. The initial multiple source passes more than half of 

the performance criteria and can be considered ‘acceptable’, although the model considerably over-

estimates the observed concentrations and as a result does not pass the fractional bias and geometric mean 

bias criteria. 

 

 

Table 10: Statistical performance criteria for model evaluation 

Performance measure NMSE VG FB MG FAC2 R2 Pass/Fail 

Chang and Hanna (2004) 

acceptability criteria 
< 1.5 < 4 < 0.3 0.7 < MG <1.3 > 50% - - 

Windtrax source strength 0.003 1.21 0.09 0.91 100% 0.76 Pass 

Multiple source scenario 

(initial) 
0.07 1.01 0.74 0.46 80% - Pass 

Multiple source scenario 

(optimised)  
0.007 1.18 0.06 0.95 100% 0.97 Pass 

Current EF 9.00 17.12 1.92 0.021 5% - Fail 

NMSE : normalized mean squared error ;VG : geometric variance; MG : geometric mean bias; FB : fractional bias; R2 : correlation; 

FAC2 : fraction of model predictions within a factor of two of observations. 

Measured and predicted concentrations at ALPHA receptors 12 and 16 are excluded. 
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Table 11: Intercomparison of measured and modelled concentrations 

ALPHA Data ADMS Predictions 

ALPHA 

Receptor 

Measured 

concentration 

(µg m-3) P2-5 

Coefficient of 

Variation 

between 

ALPHA 

triplicates P2-5 

(%) 

WIndtrax-

calculated 

emission rate  

(µg m-3) 

Multiple 

sources (inital) 

(µg m-3) 

Multiple 

sources 

(optimised)       

(µg m-3) 

ADMS 

predicted from 

current AD EF 

(µg m-3) 

1 2.92 10.7 3.10 4.61 3.25 99.97 

2 3.33 2.4 4.27 6.65 4.47 172.42 

3 2.53 3.9 2.14 2.90 2.09 40.25 

4 2.76 3.5 1.73 2.39 1.80 14.50 

5 3.46 5.7 4.22 10.72 4.45 169.98 

6 16.2 10.9 14.71 53.25 15.44 820.16 

7 13.01 4.6 8.81 20.13 12.67 454.19 

8 2.33 5.3 4.03 5.38 2.76 157.93 

9 2.34 3.2 2.64 3.57 2.63 71.35 

10 3.7 2.5 3.84 5.43 3.23 145.98 

11 1.53 6.8 1.58 1.74 1.66 5.97 

12 3.55 6.7 1.66 1.66 1.66 1.83 

13 1.34 4.9 1.61 1.65 1.60 8.34 

14 1.78 4.0 1.52 1.57 1.52 2.36 

15 1.66 3.2 2.18 3.87 2.28 43.77 

16 4.56 1.9 1.56 1.58 1.56 2.22 

17 2.59 4.4 1.97 2.49 2.08 29.68 

18 12.34 3.0 12.73 20.06 12.57 696.79 

19 9.95 5.9 18.91 32.60 12.08 1080.47 

20 1.5 3.2 1.97 2.62 2.16 29.70 
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4 DISCUSSION 

 

4.1 MEASUREMENT/MODELLING APPROACH 
 

The aim of this project was to estimate the emissions of NH3 from the Deerdykes AD plant. No direct 

measurements of emissions were made, rather the source strength was inferred using three techniques: 1) 

back-calculating the emission rate for the totality of emissions at the plant using a backward Lagrangian 

stochastic (bLS) dispersion model and in-line continuous NH3 concentration measurements with 

integrated meteorological information; 2) estimation of emission rate using published emission factors for 

similar sources, information relating to the composition of digestate at the plant, and measurements taken 

of the NH3 concentration within key sources; 3) applying optimization factors to the emission rate of 

sources within the ADMS dispersion model to fit the predicted and observed concentrations at ALPHA 

receptors.  

Ultimately, three dispersion models were produced using these methods which met the Chang and Hanna 

(2004) model performance criteria.  The first treated the emissions from the AD plant as three area 

sources that are marked by the boundaries of the waste reception building, sequencing batch reactor and 

surface water balancing tank, which were identified as likely to be the main sources. The emission rate 

was determined by back-calculating (Windtrax) from the average concentration that was measured from 

the filtered 220-230° wind sector of the period 1 (28th May – 26th June) AiRRmonia continuous NH3 

measurements. Considering the simplifications made in assuming homogenous area sources, the ADMS 

predicted concentrations of this model performed very well in satisfying all of the criteria for model 

acceptability listed in Table 11. This was an economical means of estimating the source strength which 

required only the spatial arrangement of the AD plant relative to the concentration receptor, a continuous 

gas analyser and rudimental met. data. A lack of atmospheric stability measurements was a limiting factor 

in the use of Windtrax to estimate the source strength. However the stout assumption that the averaged 

atmospheric stability would correspond to neutrally stratified atmospheric conditions seemed to be 

supported by the observed NH3 concentration profile across the site. Although the Windtrax estimates 

showed very good statistical performance relative to passive measurements, predictions were less reliable 

at the source area and the total emission rate is likely underestimated by around 40% (relative to the 

optimised multiple source model). This is attributed to the complexity of the source area at Deerdykes, 

which was better described after differentiating the source area into discrete sources. 

The second model differentiated the source area into six discrete sources. Emission rates for each source 

was estimated after a review of emission factors for comparable sources published in the literature, which 

were applied to the information that was available regarding plant specifications, composition of digestate 

and measurements of NH3 concentrations within the waste reception building. The predictions made by 

this model could be considered at the borderline ‘acceptable’ according to the Chang and Hanna (2004) 

criteria as more than half of the performance measures were met, however there was considerable bias to 

overestimate the observed concentrations and as a result the fractional bias (FB)  and geometric mean bias 

(MG) criteria was failed. This positive bias was due to an applied emission factor to the SWBT being too 

high, this was not unexpected as the SWBT was the source at the site with the least available information 

as no samples were taken and thus it was difficult to estimate the extent to which it will emit NH3. The 

third dispersion model was developed after numerous iterations of optimisation factors applied to the 
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estimated emission rates of the multiple source scenario. The key changes were to decrease the emissions 

from the SWBT by a factor of 2/9, decrease fugitive emissions from the waste reception area door by a 

factor of 16, decrease fugitive emissions from the pre-processing area by a factor of 2 and increase 

emissions from the digestate store by around 1/3 (Table 8). Often when estimating the emissions from an 

unknown source in this way the starting point is an arbitrary value, yet presented here is an initial 

condition where the emission rate has been estimated purely from published emission factors and the 

information on the plant that was available. The model source area was defined by these initial conditions 

without consulting the ALPHA or AiRRmonia measurements and a model was produced that could be 

considered acceptable according to the established performance criteria. The initial estimates were found 

to be particularly robust as the final model with the greatest statistical performance differed in total 

emissions from the initial source condition by less than 40%, with the great majority of this difference 

attributed to the SWBT.  

 

4.2 KEY SOURCES OF EMISSIONS 
 

The optimised model with six discrete source performed well in reproducing the observed concentrations 

at the ALPHA receptors. The largest source of NH3 at the plant was found to be the digestate store (7290 

µg s-1). Continuous AiRRmonia measurements taken over a period of 3 weeks from 20m outside of the 

digestate store revealed that concentrations were dominated by high-magnitude events during which the 

air concentration would rise up to 300 µg m-3 and return back to a low baseline (<10 µg m-3) within a few 

hours (Figure 13). This is consistent with the conceptual model of intense emission events occurring as 

the digestate store is opened, inducing ventilation and release of the NH3 within the room air of the 

digestate store, measurements of which were as high as 60 ppm (45 mg m-3). Fugitive emissions from the 

waste reception and pre-processing area were much lower than the agricultural AD emissions study 

carried out by Cumby et al (2005). The indoor measured concentrations at Deerdykes seemed to be 

around 26 times lower than the Holsworthy agricultural AD plant (Table 3). The difference may also be 

due to a lower direct discharge rate from the Deerdykes waste reception building - the initial emission 

rates for the waste reception area door and pre-processing area at Deerdykes were reduced by factors of 

16 and 2 respectively to match the measured concentrations at these areas. However determining the 

average concentration within a compartmentalised space with such a large volume proved difficult, 

especially as measurements could only be taken intermittently upon visits to the site and as measured 

concentrations showed significant variation. The waste reception area door at Deerdykes is located far 

from the solid waste depositing region and de-packaging equipment which are sources of NH3. NH3 

measurements using the portable multi-gas analyser at the entrance were below the detection limit (1 

ppm, 0.75 mg m-3) for the device. Therefore it is also likely that the average NH3 concentration assumed 

for emissions from this area (1 ppm) is too high, which is supported by the fact that emissions from the 

waste reception area door had to be reduced by a factor of 16 to fit to the measurements at ALPHA site 19 

which is very close to this source. The SBR was the second greatest source of NH3 at the plant (5091 µg s-

1) , a source which required no correction to fit the observed NH3 concentrations around it from the initial 

emission factor (220 mg m-2 h-1) adopted from the findings of Willers et al. (1996). 

When the existing emission factor derived from the Holsworthy biogas plant was applied to Deerdykes, 

the total emission rate was 56 and 34 times higher than the Windtrax back-calculated estimate and the 

optimised multiple source estimate respectively. It is clear that this emission factor is unsuitable in this 

case, therefore it is also likely that the current emission factor also considerably overestimates the 
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emissions from other food waste ADs. The current AD EF was derived from a pilot study into the overall 

environmental impact from a centralised AD which processed mostly livestock slurries. The most 

significant difference between the Holsworthy AD plant and Deerdykes was the emissions from the waste 

reception area, which were much greater at the Holsworthy biogas plant, likely due to greater 

volitilisation of NH3 from livestock slurries relative to the solid commercial and municipal collections 

that are delivered to Deerdykes. The Holsworthy waste reception area receives digestion substrates as a 

slurry, whereas at Deerdykes solid and liquid substrates are delivered separately, with the liquids (sludge) 

sent to a subterranean storage tank and solids to the waste reception area. It assumed that the sludge tank 

was not a source of NH3, as there was no indication from passive air NH3 measurements near to this area 

that there should be a source at that location it was not included in the model. Therefore separating liquid 

and solid substrates in this way is likely to significantly reduce emissions of NH3, assuming that the liquid 

fraction is stored securely underground and odour-abatement technologies such as activated carbons are 

in place to scrub any fugitive emissions – as is the case at Deerdykes. 

 

4.3 UNCERTAINTY IN PREDICTIONS 
 

The averaged CV between ALPHA triplicates for measurement periods 2-5 ranged from 1.9 to 10.9%, 

with the average being 4.5% (Table 12). As the downwind air concentration of a pollutant can be assumed 

to be directly proportional to the source strength (Eq 1), a maximum error of 10.9% may be applied to 

emission rates that have been deduced by fitting predicted concentrations to those observed at the 

ALPHA sites. This is considerably reduced relative to the rule-of-thumb of ‘plus or minus a factor of two’ 

that has often been adopted to describe the quality of predictions from atmospheric dispersion models 

(Pasquill, 1974, Smith, 1984, Chang and Hanna 2004). Taking the best performing model produced and 

the maximum error observed in the ALPHA measurements, this gives an emission rate for the totality of 

sources at the AD plant of 16.8 ± 1.8 mg s-1. The emission rates for the Windtrax and initial multiple 

source models were 10.3 ± 1.2 mg s-1 and 27.5 ± mg s-1 respectively. 

In optimising emission factors to fit the measured concentrations, the two data sets no longer become 

independent. The Chang and Hanna (2006) statistic tests assume independence which lessens the 

significance of the positive outcome of the tests. With six discrete sources grouped in a small area 

determining individual emission rates by optimising to fit measurements is challenging, as there may be 

multiple source strength configurations to arrive at the ‘correct’ predictions. Fortunately at Deerdykes 

buildings and structures add complexity which can isolate certain sources, and ADMS has the capability 

to provide accurate predictions where there are building effects (Hill et al. 2001). There is a distinct 

relationship in the measured concentrations between the ALPHA sites surrounding the SWBT (6, 5 & 19) 

that adds confidence to the emission rate estimated at this source. It is also clear that there must be very 

little influence from the waste reception area entrance. The digestate store and pre-processing area are 

difficult to separate as they are directly adjacent to each other. However the AiRRmonia measurements 

for period are clearly dominated by a high-magnitude intermittent source which can only be the digestate 

store. There is likely some contribution from fugitive emissions escaping from the pre-processing area, 

however there is expected to be significant error in the estimate of 643 µg s-1 (assuming 12.5% direct 

discharge rate). The digestate store is the largest source of the two (7290 µg s-1), thus the uncertainty 

associated with the preprocessing area has less of an effect on this estimate. The emission rates from the 

biofilter and SBR were both derived from emission factors reported in the literature. Emissions from the 

biofilter is estimated to be relatively small (465 µg s-1) while the SBR was the second largest source (5091 
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µg s-1). Emissions from the SBR are released at a height of 5m which increases dispersion downwind 

creating a less distinct concentration profile. Therefore the confidence in this estimate is attributed to the 

suitability of the SBR emission factor produced by Willers et al. (1995), which was found to match the 

available parameters for the Deerdykes SBR which is a positive indication. Without any measurements 

for verification, emission factors reported in the literature and their applicability to Deerdykes (chemical 

composition etc.) are the only other means of assessing the quality of estimated emission rates. In this 

case relatively robust initial estimates reduces the uncertainties associated with model predictions, in 

qualitative terms. 

The measurement period at Deerdykes was relatively short and is only representative of summer weather 

and climate. The volatilisation of NH3 is strongly influenced by temperature, where emissions can be 

expected to be higher during summer than the rest of the year. The average air temperature over the 

measurement & modelling period was 16.4°C, while the multi-year average air temperature from 2011 – 

2013 was 9.2°C. After applying the temperature regression equation from the Borka (2000) model (Eq 4) 

to the total estimated emissions from the plant, a 34% reduction can be expected for the annual emission 

factor with this temperature decrease. This gives an annual emission factor of 11.1 ± 1.2 µg m-3 when 

using the optimized multiple sources emission rate. However this is an extra source of error as ideally 

measurement would occur throughout the year to capture seasonal variability caused by weather, climate 

and variations in emissions and site management. 

It may be advantageous to remove the contribution of the SWBT from the total emissions at the plant if 

applying the estimated emission factor from Deerdykes to other ADs of the food waste variety. Emissions 

from the SWBT were found to show the greatest variation throughout the measurement campaign, where 

although the available July meteorological data was not sufficient to run ADMS, the ALPHA data shows 

that NH3 concentrations around the SWBT were nearly twice as high from the 26th June – 10th July as any 

other period, with samplers 5, 6 and 19 (around the SWBT) showing substantially elevated concentrations 

of up to 42 µg m-3. Emissions from the SWBT will vary over time with temperature, rainfall and activities 

at the site. Spillages are drained directly into the SWBT, while all surface runoff during rainfall events is 

directed to the SWBT which will carry organic wastes into the tank but may also cause dilution and 

mixing. Excluding the emissions from the SWBT a total emission rate of 13.6 ± 1.5 mg s-1 was estimated 

(optimised multiple source model). 

 

4.4 APPLICABILITY OF EMISSION FACTORS 
 

Before broadly applying the Deerdykes emission factor it is important to determine whether the 

Deerdykes AD is representative of other food waste-processing facilities. The best performing model 

suggested that the most significant emissions from Deerdykes originated from the solid and liquid 

fractions of the separated digestate. At Deerdykes the digestate is dewatered and separated into solid and 

liquid fractions, where solids are stored on-site in a warehouse-type area with no odour control measures 

which is periodically opened to extract the digestate for sale as biofertiliser. A fraction of the liquids are 

recycled and mixed with fresh substrates while the remainder is aerobically treated within in an open 

sequencing batch reactor before being discharged to sewer. Digestate is continuously produced at an 

anaerobic digestion plant, which can cause issues with management and oversupply. When the digestate 

is extracted from the digestion tank (wet digestion) it is typically around 95% water (KTBL 2005). 

Therefore it is often necessary to reduce the water content of digestate to cut transport costs for field 
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application and to make on-site storage more feasible. Digestate can be separated into solid and liquid 

fractions by a number of existing technologies (Rehl et al. 2011). The separated liquid fractions are often 

concentrated liquors of high NH4
+ content, which may not be suitable for land application due to controls 

on the spreading of liquid fertiliser, and will require nitrogen removal before discharge to sewer 

(Scaglione et al. 2013). Therefore treatment liquid effluents within an on-site waste water treatment plant 

such as an SBR is sometimes featured at larger community AD plants where it is the most economical 

solution. 

In the UK, it is a requirement of the Anaerobic Digestate Quality Protocol (ADQP) that on-site storage of 

digestate is covered, however this regulation does not apply to offsite storage (WRAP/EA 2009). Due to 

the yearly fertiliser spreading schedule and government regulation, it is often necessary to store the solid 

fraction of digestate for a few to several months before end use, either at the plant itself or at satellite 

storage tanks e.g. on farms (Paavola and Rintala 2008). At Deerdykes, the solid digestate retention time 

before sale to end-users is around 2-4 days, and the capacity of the digestate store is not sufficient for long 

periods of time. Therefore emissions may be lower than an AD plant which uses similar separation 

practices but retains a greater volume of solid digestate on-site before sale. However, although the solid 

digestate at Deerdykes is covered, the depth of the digestate heap is typically around 1m while there is an 

extra 5m of headspace above it. A cover directly over the heap will raise NH3 concentrations within the 

headspace air and allow a thermodynamic equilibrium between the gaseous-phase NH3 within the 

digestate and overlying air to be reached, limiting further volatilisation. The measured air NH3 

concentration range within the Deerdykes digestate store was 7 – 60 ppm, which is far from the air 

equilibrium range suggested by Cumby et al. (1995) of 300 – 400 ppm. The Deerdykes digestate store 

also features a large entrance, which causes ventilation of the headspace air and release of NH3 whenever 

it is opened. Therefore an AD plant which utilizes a comparatively sealed storage system will reduce NH3 

emissions in this respect. Other AD plants have packaged digestate in plastic bags for sale in the 

landscaping/horticultural sector, or delivered unseparated digestate directly from sealed storage vessels to 

agricultural tankers via an umbilical system (WRAP 2013). These systems limit exposure of digestate to 

the air and hence the opportunity for NH3 volatilisation. The majority of digestate is used by the 

agricultural sector, where geography is a key factor determining the distribution strategy. If there is 

sufficient demand, the most cost-effective model is for the sale of unseparated digestate for land 

spreading. However if there is insufficient demand from nearby farms it may be more economical to 

invest in dewatering technologies for the significant savings that can be made in storage, transport and 

application. Dewatering of digestate typically produces liquids and solids and the ratio of 9:1 by volume 

(WRAP 2013), thus with the addition of waste water treatment infrastructure the volume of material to be 

handled is substantially reduced. 

The digestate store and SBR were the greatest sources of NH3 were identified as the greatest sources of 

NH3 at Deerdykes. The emission factor of the best-performing model (0.0018 % Total FW input 

volatalised as NH3) is likely to be representative AD plants where the digestate is separated into liquid 

and solid effluents, the liquid effluents being aerobically treated on-site while solids are stored for a short 

period of time in a warehouse-type storage unit with no emission control. Ultimately the management of 

digestate is an economic choice that is up to the operator, ranging from treating as a waste product and 

discharging to sewer to marketing as a high-value horticultural soil. The UK market for digestate is 

immature and the distribution is largely driven by local circumstances, where spreading of unseparated 

digestate to agricultural land is the most common end-use (WRAP 2013). Therefore this emission factor 

is not likely to be representative of the majority of cases. However, the estimated emissions from 

substrate storage and processing at the plant may well be representative of other community ADs that 

process source-segregated municipal and industrial wastes. There is a significant niche for emission from 
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the aerobic treatment of liquid effluents and storage of separated solids to which the calculated emission 

factors could be applied. Emissions from substrate storage (waste reception area, pre-processing area & 

biofilter) contributed just 7% to the total emission rate for the Deerdykes plant, with biofilter emission 

rates around 12 times lower than the Holsworthy AD (Cumby et al. 2005) and fugitive emission rates 

around 30 times lower. Based on this evidence the EF for community ADs should be adjusted accordingly 

to incorporate lower substrate emissions for the 53 community ADs in operation within the UK (biogas-

info.co.uk). 

4.5 APPLICABILITY OF APPROACH FOR FUTURE STUDIES 
 

This study has demonstrated an economical methodology for the estimation of NH3 emissions from 

complex source. Predictions from forward and inverse dispersion models were the proxy for the 

estimation of emission rates without direct flux measurements. Passive NH3 measurements at multiple 

locations around the site was an essential component in verifying emission estimates and also in 

producing them by matching predicted and observed concentrations. The continuous measurement and 

inverse dispersion modelling technique is best suited to sites which benefit from significantly reduced 

complexity and can be treated as a single isolated source. As the digestate store at Deerdykes was 

identified as the largest source of NH3 but is not likely to be representative of the majority of ADs, 

applying the inverse dispersion technique to estimate the emissions from isolated or ‘satellite’ digestate 

storage tanks would be a valuable exercise. 

The project could be simplified and uncertainties could be reduced by: 1) selecting a single emission 

source, 2) incorporating atmospheric stability measurements with a sonic anemometer and 3) selecting a 

site with little complex terrain. A small number of passive samplers would be needed for verification of 

estimated emission rates through forwards modelling, whilst the methodology regarding the integration of 

continuous NH3 measurements and meteorological measurements would be much the same. It is also very 

important to compile information regarding the quantity, composition and management practices of the 

digestate in order for results to be interpreted and accurate emission factors to be calculated. Whilst 

further studies which measure the totality of emissions at an AD plant would certainly be beneficial, the 

presence of multiple sources in close proximity makes segregation of individual emission rates difficult. 

Digestate storage has been targeted as the key unquantified source of NH3 emissions from AD which 

should be a focus of future investigations in this field. The compiling of NH3 emissions inventories census 

would be benefit from a census of UK digestate management practices. This would significantly reduce 

error by ensuring that emission factors are applied in the correct proportion once sufficient emissions 

studies into the storage of digestate are available. 
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5 CONCLUSION 

 

A multifaceted methodology was applied to estimate the totality of NH3 emissions from an anaerobic 

digestion plant using passive and continuous NH3 sampling methods, forward and inverse atmospheric 

dispersion models, and existing emission factors and empirical models published in the literature. Four 

dispersion models were run with emission rates derived from a range of sources and methodologies and 

predictions were compared against the observed NH3 concentration profile recorded across the site by 

ALPHA passive samplers. The totality of emissions was backcalculated from measurements at the 

continuous AiRRmonia NH3 gas sensor using the Windtrax inverse dispersion model. The total emission 

rate estimated by Windtrax (10.3 mg s-1) showed good agreement between predicted and observed 

concentrations in ADMS simulations, satisfying all of the Chang and Hanna (2004) model acceptability 

criteria. While this is a useful tool for estimating the totality of emissions, observations at near-source 

receptors were less accurately predicted. Due to simplifications of the source area within this model it was 

unsuitable for estimating the emission rate from individual sources. The second model differentiated the 

source area into six discrete sources. Emission rates for each source was estimated after a review of 

emission factors for comparable sources published in the literature, which were applied to the information 

that was available regarding plant specifications, composition of digestate and measurements of NH3 

concentrations within the waste reception building. The predictions made by this model could be 

considered at the borderline statistically ‘acceptable’ however there was considerable bias to overestimate 

the observed concentrations due to the emission factor adopted form dairy farm wastewater ponds for the 

SWBT being too high.  

With the third model applied optimisation factors to emission rates for the six discrete sources in order to 

fit the predicted concentrations. The outcome was a model which fit the measured concentrations very 

well and performed excellently in the model acceptability criteria. This was the best-performing model 

which suggested that the storage of solid digestate had the greatest contribution to total NH3 emissions 

from the site, with the SBR and SWBT as the 2nd and 3rd most significant sources. The total averaged 

emission rate for the 4 week measurement and modelling period was 16.8 ± 1.8 mg s-1. The storage and 

treatment of solid and liquid fractions of the separated digestate comprised 74% of total emissions, while 

the emissions associated with substrates from the biofilter, waste reception area and pre-processing area 

contributed 8%. The final model applied the existing emission factor for NH3 emissions from AD plants, 

producing a total emission rate equivalent to 570 mg s-1. Predictions from this model exceeded passive 

sampler measurements by an average factor of 54. Emissions from substrate storage and handling at 

Deerdykes was significantly reduced relative to the agricultural AD from which the current EF was 

calculated. Therefore it is suggested that the emission factor for community ADs should be reduced in 

order to reflect this finding. The emission factors associated with the storage and treatment of separated 

solid and liquid digestates are less applicable to the majority of ADs, as in most cases digestate is kept 

unseparated in sealed tanks on-site prior to transport and application to agricultural fields. Therefore it is 

recommended that focusing future emission studies on digestate storage tanks whilst taking precautions to 

isolate the emission source (e.g. by selecting particular wind sectors for continuous measurement) should 

be the immediate focus for future investigations. 

 

 

.  
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7 APPENDIX 1: ALPHA MEASUREMENTS 

Period 1 

  

  
 

ppm NH4
+ in 3 ml extract   

  

  BLANK Extracted Calibrated 
sampler 1  

Sampl

er 2   

sampler 

3    

ALP

HA 

DATE 

OUT 

TIM

E 

OUT DATE IN 

TIME 

IN 

Time 

(Hrs) 

Vol 

(m3) 1 

1 

(rpt) 2 

2 

(rpt) 3 3 (rpt) mean 

% 

CV 

ppm 

NH4
+ Vol (ml) 

 NH3  

(µg m-3) 

D1 
15/05/14 14:12 27/05/2014 11:53 285.7 1.24 0.801 0.807 0.774 0.793 0.803 0.817 0.799 1.8 0.047 3.0 2.30 

D2 
15/05/14 14:45 27/05/2014 12:10 285.4 1.24 0.785  0.765  0.765   0.772 1.5 0.047 3.0 2.22 

D3 
15/05/14 14:49 27/05/2014 15:30 288.7 1.25 0.655   0.628   0.628   0.637 2.4 0.047 3.0 1.79 

D4 
15/05/14 14:54 27/05/2014 15:35 288.7 1.25 0.648   0.626   0.606   0.627 3.4 0.047 3.0 1.76 

D5 
15/05/14 15:10 27/05/2014 12:37 285.5 1.24 1.014   0.939   0.982   0.978 3.8 0.047 3.0 2.85 

D6 
15/05/14 15:17 27/05/2014 12:32 285.3 1.24 2.530   2.391   2.456   2.459 2.8 0.047 3.0 7.39 

D7 
15/05/14 15:25 27/05/2014 12:24 285.0 1.24 3.208 3.223 3.402 3.410 3.196 3.202 3.274 3.1 0.047 3.0 9.90 

D8 
15/05/14 15:35 27/05/2014 12:17 284.7 1.24 0.564   0.580   0.539   0.561 3.6 0.047 3.0 1.58 

D9 
15/05/14 15:50 27/05/2014 15:24 287.6 1.25 0.673   0.669   0.677   0.673 0.6 0.047 3.0 1.90 

D10 
15/05/14 16:08 27/05/2014 15:20 287.2 1.25 1.035   1.078   1.053   1.055 2.1 0.047 4.0 4.09 
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Period 2 

              ppm NH4
+ in 3 ml extract     BLANK 

Extracte

d Calibrated 

              sampler 1   sampler 2   sampler 3             

Sample 

ID 

DATE 

OUT 

TIME 

OUT 

DATE 

IN 

TIME 

IN 

Time 

(Hrs) 

Vol 

(m3) 1 

1 

(rpt) 2 

2 

(rpt) 3 

3 

(rpt) mean 

% 

CV 

ppm 

NH4
+ Vol (ml) 

 NH3 

 (µg m-3) 

D1 27/05/14 11:57 03/06/14 12:27 168.5 0.73 0.490  0.489  0.501  0.493 1.4 0.048 3.0 
2.31 

D2 27/05/14 12:12 03/06/14 12:32 168.3 0.73 0.590  0.589  0.593  0.591 0.3 0.048 3.0 
2.82 

D3 28/05/14 13:48 03/06/14 13:22 143.6 0.62 0.319  0.324  0.330  0.324 1.6 0.048 3.0 
1.68 

D4 28/05/14 13:50 03/06/14 13:19 143.5 0.62 0.348  0.349  0.332  0.343 2.9 0.048 3.0 
1.80 

D5 27/05/14 12:39 03/06/14 13:05 168.4 0.73 0.520  0.552  0.519  0.531 3.6 0.048 3.0 
2.50 

D6 27/05/14 12:34 03/06/14 12:56 168.4 0.73 2.050  2.099    2.074 1.7 0.048 3.0 
10.52 

D7 27/05/14 12:26 03/06/14 12:42 168.3 0.73 1.926 1.936 1.933 1.962 1.846 1.881 1.914 2.2 0.048 3.0 
9.69 

D8 27/05/14 12:19 03/06/14 12:36 168.3 0.73 0.291  0.296  0.286  0.291 1.7 0.048 3.0 
1.26 

D9 28/05/14 14:40 03/06/14 12:29 141.8 0.62 0.360  0.368  0.393  0.374 4.5 0.048 3.0 
2.01 

D10 28/05/14 13:45 03/06/14 13:13 143.5 0.62 0.636  0.611  0.609  0.619 2.4 0.048 3.0 
3.48 

D11 27/05/14 13:15 03/06/14 16:46 171.5 0.74 0.344  0.333  0.352  0.343 2.8 0.048 3.0 
1.50 

D12 27/05/14 13:48 03/06/14 15:52 170.1 0.74 0.708  0.832    0.770 11.4 0.048 3.0 
3.71 

D13 27/05/14 14:09 03/06/14 16:23 170.2 0.74 0.303  0.298  0.311  0.304 2.1 0.048 3.0 
1.31 

D14 27/05/14 14:20 03/06/14 16:28 170.1 0.74 0.414  0.377    0.395 6.5 0.048 3.0 
1.79 

D15 27/05/14 14:44 03/06/14 16:14 169.5 0.74 0.311  0.358  0.329  0.333 7.0 0.048 3.0 
1.47 

D16 27/05/14 15:04 03/06/14 16:05 169.0 0.73 0.592  0.565  0.559  0.572 3.1 0.048 3.0 
2.71 
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Period 3 

 

 

       
ppm NH4

+ in 3 ml extract 
 

 BLANK Extracted Calibrated 

       sampler 1  sampler 2  sampler 3      

Site 

name 

DATE 

OUT 

TIME 

OUT 

DATE 

IN 

TIME 

IN 
Time (Hrs) Vol (m3) 1 1 (rpt) 2 2 (rpt) 3 mean 

% 

CV 

ppm 

NH4
+ 

Vol (ml) NH3 (µg m-3) 

D1 03/06/14 12:27 12/06/14 12:12 215.8 0.94 0.828  0.818  0.802 0.816 1.6 
0.059 

3.0 
3.07 

D2 03/06/14 12:32 12/06/14 12:20 215.8 0.94 0.917  0.911  0.918 0.915 0.4 
0.059 

3.0 
3.47 

D3 03/06/14 13:22 12/06/14 13:20 216.0 0.94 0.883  0.896  0.947 0.909 3.7 
0.059 

3.0 
3.44 

D4 03/06/14 13:19 12/06/14 13:17 216.0 0.94 0.968  1.013  1.027 1.003 3.1 
0.059 

3.0 
3.82 

D5 03/06/14 13:05 12/06/14 14:48 217.7 0.95 1.014  1.010  1.002 1.008 0.6 
0.059 

3.0 
3.81 

D6 03/06/14 12:56 12/06/14 13:04 216.1 0.94 4.678  6.745   5.712 25.6 
0.059 

3.0 
22.86 

D7 03/06/14 12:42 12/06/14 13:02 216.3 0.94 2.497 2.607 2.329  2.525 2.532 5.5 
0.059 

3.0 
9.99 

D8 03/06/14 12:36 12/06/14 12:26 215.8 0.94 0.560  0.566  0.513 0.546 5.3 
0.059 

3.0 
1.97 

D9 03/06/14 12:29 12/06/14 13:55 217.4 0.94 0.664  0.692  0.721 0.692 4.1 
0.059 

3.0 
2.55 

D10 03/06/14 13:13 12/06/14 13:12 216.0 0.94 1.136  1.163  1.114 1.138 2.1 
0.059 

3.0 
4.37 

D11 03/06/14 16:46 12/06/14 14:22 213.6 0.93 0.390  0.348  0.303 0.347 12.6 
0.059 

3.0 
1.18 

D12 03/06/14 15:52 12/06/14 14:33 214.7 0.93 0.923  0.834  0.963 0.907 7.3 
0.059 

3.0 
3.45 

D13 03/06/14 16:23 12/06/14 15:02 214.7 0.93 0.302  0.354  0.290 0.315 10.8 
0.059 

3.0 
1.04 

D14 03/06/14 16:28 12/06/14 15:10 214.7 0.93 0.392  0.388  0.418 0.399 4.1 
0.059 

3.0 
1.39 

D15 03/06/14 16:14 12/06/14 15:07 214.9 0.93 0.428  0.438  0.432 0.433 1.3 
0.059 

3.0 
1.52 

D16 03/06/14 16:05 12/06/14 14:42 214.6 0.93 2.025  1.972   1.999 1.9 
0.059 

3.0 
7.90 

D17 03/06/14 15:34 12/06/14 14:06 214.5 0.93 0.533  0.518  0.601 0.551 8.1 
0.059 

3.0 
2.00 

D18 09/06/14 13:24 12/06/14 12:54 71.5 0.31 0.666 0.703 0.764 0.761 0.645 0.725 8.9 
0.059 

3.0 
8.15 

D19 09/06/14 13:32 12/06/14 13:00 71.5 0.31 0.535  0.509   0.522 3.5 
0.059 

3.0 
5.67 
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Period 4 

              ppm NH4
+ in 3 ml extract     BLANK Extracted Calibrated 

              sampler 1   sampler 2   sampler 3           

Sample ID 

DATE 

OUT 

TIME 

OUT 

DATE 

IN 

TIME 

IN Time (Hrs) Vol (m3) 1 1 (rpt) 2 2 (rpt) 3 mean 

% 

CV 

ppm 

NH4
+ Vol (ml)  NH3 (µg m-3) 

D1 
12/06/14 12:12 18/06/14 12:23 144.2 0.63 0.821  0.404  0.390 0.538 45.5 0.045 3.0 

2.99 

D2 
12/06/14 12:20 18/06/14 12:29 144.2 0.63 0.556  0.485  0.551 0.531 7.5 0.045 3.0 

2.95 

D3 
12/06/14 13:20 18/06/14 13:52 144.5 0.63 0.374  0.361  0.375 0.370 2.2 0.045 3.0 

1.97 

D4 
12/06/14 13:17 18/06/14 13:59 144.7 0.63 0.381  0.398  0.376 0.385 3.0 0.045 3.0 

2.05 

D5 
12/06/14 14:48 18/06/14 16:08 145.3 0.63 0.624  0.644  0.653 0.640 2.3 0.045 3.0 

3.58 

D6 
12/06/14 13:04 18/06/14 12:48 143.7 0.62 2.985  3.108  3.163 3.085 3.0 0.045 3.0 

18.49 

D7 
12/06/14 13:02 18/06/14 12:41 143.7 0.62 3.041  3.251  3.159 3.150 3.3 0.045 3.0 

18.90 

D8 
12/06/14 12:26 18/06/14 12:33 144.1 0.63 0.425  0.423  0.455 0.434 4.2 0.045 3.0 

2.36 

D9 
12/06/14 13:55 18/06/14 13:48 143.9 0.62 0.401  0.400  0.393 0.398 1.2 0.045 3.0 

2.14 

D10 
12/06/14 13:12 18/06/14 12:53 143.7 0.62 0.603  0.620  0.642 0.622 3.2 0.045 3.0 

3.51 

D11 
12/06/14 14:22 18/06/14 14:53 144.5 0.63 0.331  0.322  0.348 0.334 3.9 0.045 3.0 

1.75 

D12 
12/06/14 14:33 18/06/14 15:46 145.2 0.63 0.591  0.602  0.566 0.586 3.2 0.045 3.0 

3.26 

D13 
12/06/14 15:02 18/06/14 16:13 145.2 0.63 0.306  0.332  0.314 0.317 4.2 0.045 3.0 

1.64 

D14 
12/06/14 15:10 18/06/14 16:18 145.1 0.63 0.383  0.391  0.399 0.391 2.0 0.045 3.0 

2.08 

D15 
12/06/14 15:07 18/06/14 16:04 145.0 0.63 0.362  0.351  0.359 0.357 1.7 0.045 3.0 

1.88 

D16 
12/06/14 14:42 18/06/14 15:52 145.2 0.63 0.584  0.583  0.570 0.579 1.4 0.045 3.0 

3.22 

D17 
12/06/14 14:06 18/06/14 14:35 144.5 0.63 0.455  0.483  0.481 0.473 3.4 0.045 3.0 

2.59 

D18 
12/06/14 12:54 18/06/14 12:37 143.7 0.62 2.092  2.047  2.176 2.105 3.1 0.045 3.0 

12.53 

D19 
12/06/14 13:00 18/06/14 12:44 143.7 0.62 2.627 2.075 2.365 2.041 2.552 2.302 10.9 0.045 3.0 

13.73 
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Period 5 

 

              ppm NH4
+ in 3 ml extract     

BLAN

K Extracted Calibrated 

              
sampler 

1   

sampler 

2   
sampler 

3             

Sample 

ID 

DATE 

OUT 

TIME 

OUT DATE IN 

TIM

E IN 

Time 

(Hrs) Vol (m3) 1 1 (rpt) 2 2 (rpt) 3 3 (rpt) mean 

% 

CV 

ppm 

NH4
+ Vol (ml) 

 NH3  

(µg m-3) 

D1 18/06/14 12:23 26/06/14 15:02 194.7 0.85 0.774  0.743  0.790  0.769 3.1 0.112 3.0 
2.95 

D2 18/06/14 12:29 26/06/14 12:45 192.3 0.84 0.937  0.898  0.897  0.911 2.5 0.112 3.0 
3.63 

D3 18/06/14 13:52 26/06/14 12:22 190.5 0.83 0.646  0.583    0.614 7.3 0.112 3.0 
2.31 

D4 18/06/14 13:59 26/06/14 12:24 190.4 0.83 0.647  0.705  0.655  0.669 4.7 0.112 3.0 
2.56 

D5 18/06/14 16:08 26/06/14 14:39 190.5 0.83 0.845  1.038  0.761  0.881 16.1 0.112 3.0 
3.53 

D6 18/06/14 12:48 26/06/14 13:32 192.7 0.84 2.292 2.642 2.687 2.946 2.807 2.789 2.694 8.3 0.112 3.0 
11.71 

D7 18/06/14 12:41 26/06/14 13:25 192.7 0.84 3.330  3.122  3.556  3.336 6.5 0.112 3.0 
14.62 

D8 18/06/14 12:33 26/06/14 13:04 192.5 0.84 0.932  0.774  0.859  0.855 9.3 0.112 3.0 
3.38 

D9 18/06/14 13:48 26/06/14 12:19 190.5 0.83 0.586  0.618  0.595  0.600 2.8 0.112 3.0 
2.24 

D10 18/06/14 12:53 26/06/14 12:33 191.7 0.83 0.780  0.778  0.747  0.768 2.4 0.112 3.0 
2.99 

D11 18/06/14 14:53 26/06/14 14:00 191.1 0.83 0.413  0.463  0.455  0.443 6.1 0.112 3.0 
1.52 

D12 18/06/14 15:46 26/06/14 14:12 190.4 0.83 0.868  0.824  0.901  0.864 4.5 0.112 3.0 
3.45 

D13 18/06/14 16:13 26/06/14 14:44 190.5 0.83   0.373  0.366  0.370 1.3 0.112 3.0 
1.18 

D14 18/06/14 16:18 26/06/14 14:48 190.5 0.83 0.488  0.507  0.477  0.491 3.0 0.112 3.0 
1.74 

D15 18/06/14 16:04 26/06/14 14:35 190.5 0.83 0.458  0.450  0.429  0.446 3.3 0.112 3.0 
1.53 

D16 18/06/14 15:52 26/06/14 14:26 190.6 0.83   0.799  0.812  0.805 1.2 0.112 3.0 
3.18 

D17 18/06/14 14:35 26/06/14 13:50 191.3 0.83 0.759  0.757  0.772  0.763 1.0 0.112 3.0 
2.97 

D18 18/06/14 12:37 26/06/14 13:22 192.8 0.84 3.092  3.102  3.065  3.087 0.6 0.112 3.0 
13.49 

D19 18/06/14 12:44 26/06/14 13:30 192.8 0.84 1.983  2.032  1.910  1.975 3.1 0.112 3.0 
8.45 

D20 18/06/14 14:40 26/06/14 13:53 191.2 0.83 0.367  0.345  0.359  0.357 3.2 0.112 4.0 
1.50 
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Period 6 

              ppm NH4
+ in 3 ml extract     

BLANK 

  

Extracted 

  

Calibrated 

                
sampler 

1   

sampler 

2   sampler 3     

Sample 

ID 

DATE 

OUT 

TIME 

OUT DATE IN 

TIME 

IN 

Time 

(Hrs) 

Vol 

(m3) 1 

1 

(rpt) 2 

2 

(rpt) 3 mean % CV ppm NH4
+ Vol (ml) 

 NH3  

(µg m-3) 

D1 26/06/14 15:02 
10/07/201

4 
13:08 334.1 1.45 1.773  1.622   1.697 6.3 0.111 3.0 4.15 

D2 26/06/14 12:45 
10/07/201

4 
13:33 336.8 1.46 1.619  1.596  1.667 1.627 2.2 0.111 3.0 3.94 

D3 26/06/14 12:22 
10/07/201

4 
13:47 337.4 1.47 1.142  1.180  1.160 1.161 1.6 0.111 3.0 2.72 

D4 26/06/14 12:24 
10/07/201

4 
13:47 337.4 1.47 1.141  1.045   1.093 6.2 0.111 3.0 2.54 

D5 26/06/14 14:39 
10/07/201

4 
16:00 337.4 1.47 3.786  3.700  3.552 3.679 3.2 0.111 3.0 9.25 

D6 26/06/14 13:32 
10/07/201

4 
12:32 335.0 1.46 16.291  16.354  16.187 16.277 0.5 0.111 3.0 42.18 

D7 26/06/14 13:25 
10/07/201

4 
12:20 334.9 1.45 6.528  6.818  6.700 6.682 2.2 0.111 3.0 17.15 

D8 26/06/14 13:04 
10/07/201

4 
14:15 337.2 1.46 1.152  1.146  1.187 1.162 1.9 0.111 3.0 2.72 

D9 26/06/14 12:19 
10/07/201

4 
13:39 337.3 1.47 1.380  1.308  1.350 1.346 2.7 0.111 3.0 3.20 

D10 26/06/14 12:33 
10/07/201

4 
13:04 336.5 1.46 2.266  2.137  2.206 2.203 2.9 0.111 3.0 5.43 

D11 26/06/14 14:00 
10/07/201

4 
15:15 337.3 1.46 0.801  0.822  0.792 0.805 1.9 0.111 3.0 1.80 

D12 26/06/14 14:12 
10/07/201

4 
15:30 337.3 1.47 1.379  1.452   1.416 3.6 0.111 3.0 3.38 

D13 26/06/14 14:44 
10/07/201

4 
16:02 337.3 1.47 0.857  0.853  0.829 0.846 1.8 0.111 3.0 1.91 

D14 26/06/14 14:48 
10/07/201

4 
14:10 335.4 1.46 0.907  0.884  0.896 0.896 1.3 0.111 3.0 2.05 

D15 26/06/14 14:35 
10/07/201

4 
15:55 337.3 1.47 1.107  1.076  1.178 1.120 4.7 0.111 3.0 2.62 

D16 26/06/14 14:26 
10/07/201

4 
15:30 337.1 1.46 1.698  1.732  1.697 1.709 1.2 0.111 3.0 4.14 

D17 26/06/14 13:50 
10/07/201

4 
14:37 336.8 1.46 1.244  1.207  1.229 1.227 1.5 0.111 3.0 2.90 

D18 26/06/14 13:22 
10/07/201

4 
12:25 335.1 1.46 3.603  3.417  3.699 3.573 4.0 0.111 3.0 9.03 

D19 26/06/14 13:30 
10/07/201

4 
12:30 335.0 1.46 10.489  10.822  10.640 10.650 1.6 0.111 3.0 27.50 

D20 26/06/14 13:53 
10/07/201

4 
14:55 337.0 1.46 0.708  0.674  0.647 0.676 4.5 0.111 3.0 1.47 

 


