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Recent intensification of wind-driven upwelling of warm upper circumpolar 1 

deep water (UCDW) has been linked to recent accelerated melting of West Antarctic ice 2 

shelves and glaciers. To better assess the long term relationship between UCDW 3 

upwelling and the West Antarctic Ice Sheet, we present a multi-proxy reconstruction of 4 

surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula 5 

(WAP), through the Holocene. A combination of sedimentological, diatom and 6 

foraminiferal records are, for the first time, presented together and demonstrate the 7 

decline in UCDW influence within Marguerite Bay through the early to mid Holocene 8 

and the onset of cyclic forcing in the late Holocene. We show that persistent incursions 9 

of UCDW between 9707 to 6903 yr BP (modelled ages) restricted sea ice formation, 10 

enhanced primary productivity and promoted basal melting of ice shelves. From 6903 11 

kyr BP the influence of UCDW in Marguerite Bay waned, coincident with the 12 

equatorward migration of the Southern Hemisphere Westerly Winds (SWW). 13 

Weakening UCDW influence continued through the mid Holocene and by 4153 yr BP 14 

lengthy sea ice seasons within Marguerite Bay were only episodically interrupted by 15 

incursions of UCDW. The late Holocene interval, from 4153 kyr BP, appears to have 16 

been sensitive to ENSO forcing as opposed to the SWW-forcing that dominated the 17 

early to mid Holocene. Current measurements of the oceanography of the WAP 18 

continental shelf suggest that the system has returned to the early Holocene-like 19 

oceanographic configuration reported here, which in both cases has been associated 20 

with rapid deglaciation. 21 

 22 

 23 

 24 

 25 
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 1 

1. INTRODUCTION 2 

Relatively warm (>1°C), nutrient rich and CO2 saturated upper circumpolar deep 3 

water (UCDW) is transported around the Antarctic continent in the Antarctic Circumpolar 4 

Current, which is in turn driven by the Southern Hemisphere Westerly Winds (SWW). Where 5 

the Antarctic Circumpolar Current flows close to the Antarctic continental shelf edge, along 6 

the West Antarctic Peninsula (WAP), Bellingshausen and Amundsen Seas, upwelled-UCDW 7 

frequently spills onto the shelf via bathymetric troughs, circulating relatively warm water 8 

under ice shelves and contributing to their retreat (Jacobs et al., 2011; Jenkins and Jacobs, 9 

2008; Wåhlin et al., 2010; Walker et al., 2007). More frequent and/or stronger incursions of 10 

UCDW are believed to contribute to recent, rapid warming (Vaughan et al., 2003), 11 

accelerated ice sheet thinning (Pritchard et al., 2012), reduced sea ice extent and notable 12 

changes in phytoplankton communities (Montes-Hugo et al., 2009) along the WAP in recent 13 

decades (Ducklow et al., 2012). The rapid deglacial retreat of the Marguerite Bay ice stream 14 

from ~9.6 kyr BP, is widely considered to have been driven by enhanced incursions of warm 15 

UCDW encroaching onto the WAP continental shelf (Bentley et al., 2011; Kilfeather et al., 16 

2011). While predicted intensification of the SWW in coming years (Swart and Fyfe, 2012) 17 

may continue to promote UCDW upwelling and further threaten WAP ice shelf stability, a 18 

consensus on how UCDW along the WAP responded to changing SWW in the past has yet to 19 

be achieved (Ishman and Sperling, 2002; Shevenell and Kennett, 2002; also see discussion in 20 

Bentley et al., 2009). The aim of this paper was  to assess the sensitivity of UCDW upwelling 21 

along the WAP to past changes in SWW by analysing the exceptionally well preserved 22 

planktonic and benthic foraminifera, diatoms and pigments in marine sediment core TPC522, 23 

Marguerite Bay (Fig. 1). These biogenic components provide proxies for reconstructing past 24 

surface and bottom water conditions and documenting the changing influence of UCDW on 25 
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the inner WAP continental shelf. We compare these reconstructions with other Southern 1 

Hemisphere records to infer the sensitivity of UCDW-upwelling to SWW intensity and 2 

position and the impact of UCDW-upwelling on deglaciation. 3 

 4 

1.1. Regional setting 5 

Piston core TPC522, collected on British Antarctic Survey cruise JR179 in 2008 recovered 6 

11.7 m of sediment from inner Marguerite Bay (67° 51'.33 S 68° 12'.28 W; Fig. 1). The site 7 

of TPC522, in 910 m of water, is downstream of Marguerite Trough which funnels UCDW 8 

directly from the continental shelf edge, where the Antarctic Circumpolar Current spills into 9 

bathymetric lows (Klinck et al., 2004; Martinson et al., 2008; Moffat et al., 2009). These 10 

incursions of UCDW are modified and cooled through mixing with overlying relatively cold 11 

and fresh Antarctic Surface Water (AASW) such that modified UCDW floods the continental 12 

shelf to the base of the pycnocline (Martinson et al., 2008; Fig.2A). The presence of UDCW 13 

beneath the pycnocline on the WAP is identified by temperature and salinity maxima as well 14 

as oxygen minima (Klinck et al., 2004). Being enriched in nutrients and remineralised 15 

organic matter, UCDW is also depleted in 13C and has diagnostic benthic 13C values <0.4 ‰ 16 

(Mackenesen, 2012). Deep mixing of the AASW occurs during the winter months when 17 

UCDW-derived heat and nutrients may be incorporated into surface waters (Smith et al., 18 

1999; Prezelin et al., 2000). Subsequent stratification during the summer months as 19 

temperatures rise and ice melts is associated with intense primary productivity (e.g. Prezelin 20 

et al., 2000) and the occurrence of a remnant Winter Water temperature minimum at 50-150 21 

m water depth (Meredith et al., 2013; see Fig. 2A). Mixing of UCDW within surface waters 22 

is therefore recognised by enhanced primary productivity (Prezelin et al., 2000) and reduced 23 

sea ice extent (Martinson et al., 2008). 24 

 25 
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 1 

2. METHODS 2 

The chronology of TPC522 is based on twelve acid insoluble organic matter (AIOM), 3 

and one monospecific benthic foraminifera (Globocassidulina biora) radiocarbon dates. 4 

Dates were calibrated using CALIB 6.0 using the MARINE09 calibration curve (Stuiver & 5 

Reimer, 1993). R was set at 1353 years based on a local mean surface sample radiocarbon 6 

age of 1753 14C yr BP from box cores BC523 (at the site of TPC522) and BC521 (9.2 km 7 

distant) minus the global ocean reservoir correction of 400 years. Dates are reported as 8 

conventional radiocarbon years BP (14C yr BP) ±1  and in calibrated years BP (cal yr BP 9 

relative to AD 1950; Table 1). Classical radiocarbon age-depth modelling was undertaken 10 

using CLAM v, 2.1 software in R (Blaauw, 2010) using a smooth spline curve fit, running 11 

1000 iterations at 1 cm intervals (Fig. 3A). To independently date the surface sediments, 12 

excess 210Pb activity was measured on thirteen downcore samples in the top 23 cm of BC523 13 

using a J- shaped ultra low background germanium well detection system at Durham 14 

University. Data analysis and dating model calculations were undertaken following the 15 

standard procedures defined in Appleby (2001). 16 

For foraminifera and ice rafted debris (IRD) analysis, samples of ~2 cm3 were 17 

collected at up to 5 cm intervals, then weighed and sieved through a 63 m mesh using de-18 

ionised water. The residues were dried at 45 °C. Separate samples were collected every 10 19 

cm for wet and dry weight and bulk density measurements without risking the integrity of the 20 

foraminiferal geochemistry. Dried samples from 10 to 20 cm intervals were sieved through a 21 

125 m sieve. Samples with abundant foraminifera were split with a microsplitter prior to 22 

sieving. At least 100 specimens of benthic foraminifera were counted per sample wherever 23 

possible. Between 5 and 20 specimens of N. pachyderma sin. and B. aculeata were picked 24 

from each sample wherever possible for stable isotope analysis. Stable isotope analyses were 25 
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carried out using a VG PRISM mass spectrometer at the Godwin Laboratory, Cambridge and 1 

were measured relative to the Vienna Peedee Belemnite (VPDB) with reproducibility 2 

<0.08  for 18O and <0.06  for 13C. The concentration of glacial debris was determined 3 

from counts of terrigenous grains from the >150 m size fraction. 4 

For diatom counts the quantitative slide preparation method of Scherer (1994) was 5 

used and counting was carried out at ×1000 magnification on an Olympus BX42 microscope.  6 

Taxonomy followed Tomas (1997), supplemented by Fenner et al. (1976) and Johansen and 7 

Fryxell (1985). To extract the most detailed environmental information from the diatom 8 

record, species morphotypes Thalassiosira antarctica T1 and T2 (cold and warm varieties, 9 

respectively; Buffen et al., 2007) and Eucampia antarctica var. antartica and var. recta 10 

(symmetrical and asymmetrical forms respectively) were counted separately (Leventer et al., 11 

2002; Allen, 2014). Chaetoceros resting spores (CRS) comprise at least 82 % of the diatom 12 

assemblage throughout TPC522. In order to extract the ecological information from the 13 

minor species assemblages, CRS-free counts are presented based on minimum counts of 400 14 

valves (excluding CRS) per slide. For statistical analyses, only diatom species that accounted 15 

for >2 % of the CRS-free assemblage within at least one sample were included. 16 

Correspondence analysis (CA) was performed on both the diatom and benthic foraminferal 17 

assemblage counts using the software of Hammer et al. (2005). 18 

For pigment analysis, bulk sediment samples were freeze-dried and homogenised. 19 

Approximately 2 g of sample was extracted with an organic solvent mixture of 20 

dichloromethane/methanol (DCM/MeOH, 3:1, v/v), using a microwave assisted extraction 21 

(Kornilova and Rosell-Mele, 2003). The temperature of the microwave was increased up to 22 

70 ºC over 2 minutes, held at 70 ºC for 5 min and then allowed to cool. Extracts were 23 

transferred to test tubes, centrifuged, and the supernatant dried by rotary evaporation. 24 

Samples were redissolved in a known volume of acetone and transferred to a 2 ml quartz 25 
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cuvette for analysis in a WPA spectrophotometer. Absorbance was recorded by 1 

measurements in triplicate at the wavelengths 410 nm and 665 nm, which correspond to the 2 

diagenetic transformation products of chlorophyll, the chlorins (Harris et al., 1996).  3 

 4 

3. RESULTS  5 

3.1 AGE-DEPTH MODEL 6 

The excess 210Pb activity profile confirmed that the upper sediments were deposited 7 

within recent decades (Fig. 3B). The surface sediment radiocarbon ages are therefore 8 

considered a reliable indication of the modern 14C reservoir age at this site, although older 9 

reservoir ages have been reported in this region (Kilfeather et al., 2011; Graham & Smith, 10 

2012). Total organic carbon values were relatively consistent downcore (0.9-1.7 %) and mean 11 

13CAIOM was -21.6 ‰ with a standard deviation of 0.8 ‰ indicating that AIOM used for 12 

radiocarbon dating was consistently of marine origin with no evidence of variable terrestrial 13 

input. The AIOM age at 955 cm and benthic foraminifera sample at 1000 cm have 14 

overlapping calibrated age ranges suggesting that the radiocarbon reservoir in the AIOM may 15 

be slightly larger towards the base of the core (see Rosenheim et al., 2013). We considered 16 

the conventional radiocarbon age 6420±40 at 350 cm an unrealistic age-reversal and omitted 17 

it from our age-depth model, although the 13CAIOM does not suggest it was of a different 18 

origin. The radiocarbon date at the top of PC522 (0-2 cm) gives a calibrated and corrected 19 

age of 292-461 years suggesting the piston corer may have slightly over-penetrated the 20 

surface.  21 

 22 

 3.2 STATISTICAL ANALYSIS OF ASSEMBLAGES  23 

The first three axes of the CA accounted for 57% and 66% of the variance in the 24 

diatom and foraminifera assemblages respectively (Fig. 4). Significant assemblage shifts (> 1 25 
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s.d.) were used to identify three stratigraphic intervals that approximately corresponding to 1 

the early, mid and late Holocene. Boundaries between these stratigraphic intervals are at near 2 

identical depths in the diatom and benthic foraminiferal records suggesting a close coupling 3 

of surface and benthic conditions within inner Marguerite Bay. The early Holocene interval 4 

begins at 9707 yr BP (best fit from the CLAM age-depth model with 95 % confidence levels 5 

for these dates being 9618-9835 yr BP). Based on diatom assemblage change the early 6 

Holocene interval extends to 6903 yr BP (95% confidence levels for this date being 6820-7 

6984 yr BP) and the benthic foraminifera assemblage change at 6992 yr BP (95% confidence 8 

levels being 6907-7070 yr BP). The mid Holocene interval ends at 4213 yr BP based on the 9 

diatom assemblage (with 95% confidence levels for this date being 4066-4341 yr BP) and 10 

4153 yr BP based on the benthic foraminifera assemblage (with 95% confidence levels being 11 

4008-4274 yr BP). From hereon in the single best fit date from the CLAM age-depth model 12 

will be given. 13 

 14 

3.3 DIATOM ASSEMBLAGES  15 

Interpretations of the diatom and foraminifera assemblages were based on the auto-ecological 16 

data presented in supplementary Table 1. The early Holocene diatom assemblage (9707 to 17 

6992 yr BP),  characterised by Thalassiosira tumida, Eucampia antarctica (Fig. 5F), 18 

Thalassiosira gracilis and Proboscia truncata, is indicates reflect relatively warm surface 19 

waters with a long growth season, minor sea ice influence and rich in iron; most likely 20 

associated with seasonal glacial melt and late summer/autumn productivity (Stickley et al., 21 

2006; Allen et al., 2010).The high ratio of asymmetrical:symmetrical morphotypes of E. 22 

antarctica (Fig. 5G) is consistent with relatively high sea surface temperatures (SST; 23 

Leventer et al., 2002). F. kerguelensis is an open ocean species, used as a tracer for Antarctic 24 

Circumpolar Current waters entrained onto the continental shelf (Bathmann et al., 1991; 25 
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Allen et al., 2010) or carried beyond the Southern Ocean (Stickley et al., 2001; Romero and 1 

Hensen, 2002). Therefore the high relative abundance of open-water F. kerguelensis (Fig. 2 

5D), within TPC522 suggests that the site was bathed by UCDW in the early Holocene. In the 3 

mid Holocene (6903 to 4213 yr BP) the diatom assemblage shows a decline E. antarctica and 4 

increases in Thalassiosira antarctica (cold morphotype; Fig. 5E) and P. truncata. This shift 5 

in assemblage is interpreted as an increasing marginal sea ice influence, including the 6 

presence of ice during the summer months (Pike et al., 2009), and a shortening of the growth 7 

season. The persistent occurrence of F. kerguelensis during the mid Holocene interval 8 

suggests that UCDW continued to bathe our site. The ratio of asymmetrical:symmetrical 9 

morphotypes of E. antarctica peaks between 6903 and 5882 yr BP suggesting the warmest 10 

SSTs of our record, before falling through the mid to late Holocene. The late Holocene 11 

diatom assemblage (from 4213 yr BP) is marked by a very low abundance of the high 12 

nutrient, warm, open-water assemblages of the early Holocene (i.e. T. tumida, E. antarctica, 13 

and F. kerguelensis) and instead is characterised by sea ice proximal species (Fragilariopsis 14 

curta, Fragilariopsis cylindrus and Parmales (Zielinski, 1997). This transition from the mid 15 

to late Holocene assemblages is also marked by a prominent peak in the flux of diatoms 16 

accumulation at the sea floor suggesting a brief interval of exceptionally high primary 17 

productivity. Relatively high fluxes of diatoms continue to 2584 yr BP. The late Holocene 18 

diatom assemblage reflects a significant sea ice influence and further shortening of the 19 

growth season and declining productivity (diatom flux).  20 

 21 

3.4 BENTHIC FORAMINIFERAL ASSEMBLAGES  22 

Extensive dissolution of calcareous foraminfera can occur in sediments collected from the 23 

WAP (Osterman et al., 2001). However, since the concentration of benthic foraminifera in 24 

TPC522 exceeds that within ODP Site 1098 by orders of magnitude throughout the Holocene 25 
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(Supplemetary Fig. 1) we consider dissolution to be less of an issue at TPC522 site compared 1 

to Palmer Deep. SEM images from numerous depths are also provided (supplementary plates 2 

1 and 2).  3 

 The early Holocene benthic foraminiferal assemblage (9707 to 6992 yr BP) is largely 4 

comprised of Fursenkoina fusiformis and Nonionella spp. (Fig. 5K, L). These species are 5 

commonly associated with sites subject to intense pulses of phytodetritus (Gooday, 2003; 6 

Gooday et al. 2012) and organic-rich, low-oxygen settings (Sen Gupta and Machain-Castillo, 7 

1993; Ishman and Domack, 1994). Along the WAP these species occur in surface sediment 8 

samples of the Bransfield Strait (Ishman and Domack, 1994) and the Weddell Sea shelf 9 

(Mackensen et al., 1990), where there is high productivity and high particulate organic carbon 10 

export (Mackensen et al., 1990). Although it has been suggested that the modern 11 

Fursenkoina/Nonionella assemblage in the Bransfield Strait is primarily indicative or 12 

Weddell Sea Water (Ishman and Domack, 1994), the interpretations of Ishman and Sperling 13 

(2002) and Kilfeather et al. (2011), that assemblages with high proportions of these species 14 

are most likely tracking high productivity and organic carbon flux to the sea floor, is more 15 

consistent with our other proxy data (see later discussion). In addition, Weddell Sea Water is 16 

not known to reach this far south along the WAP (Martinson et al., 2008). The mid Holocene 17 

foraminiferal assemblage (6992 to 4153 yr BP) is dominated by Bulimina aculeata (Fig. 5N). 18 

B. aculeata, is associated organic-rich sediments (Mackensen et al. 1993) and has been used 19 

as an UCDW tracer (Ishman and Domack, 1994) at Palmer Deep (Ishman & Sperling 2002) 20 

and Lützow-Holm Bay (Igarashi et al. 2001). The late Holocene foraminiferal assemblage 21 

(from 4153 kyr BP) oscillates between the B. aculeata assemblage of the mid Holocene and  22 

predominantly agglutinated species (Fig. 5M).The agglutinated assemblage, dominated by 23 

Miliamina arenacea and including Trochammina spp. and Reophax spp., is typical of the 24 

agglutinated assemblages which characterise cold saline shelf water around Antarctica 25 
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(Ishman & Domack, 1994; Ishman & Sperling, 2002; Anderson, 1975; Milam & Anderson 1 

1981; Majewski & Anderson, 2009). The oscillation between these two foraminiferal 2 

assemblages suggests switching between two oceanographic modes; most likely the presence 3 

of UCDW associated with the B. aculeata assemblage, and the presence of cold, saline shelf 4 

water associated with the M. arenacea assemblage (Ishman & Sperling, 2002). These 5 

assemblage oscillations are evident on a decadal to centennial timescale through the high 6 

sedimentation up to 2679 yr BP and inferred to have persisted throughout the remainder of 7 

the record but compromised by low sedimentation rates (<1 mm yr-1 from 2679 yr BP)  8 

which may have caused the signal to become homogenised.  9 

 10 

3.5 STABLE ISOTOPES  11 

Since foraminifera do not necessarily precipitate their carbonate in equilibrium with 12 

seawater 18Oseawater we compared our records with predicted 18OCaCO3 values to establish 13 

whether it was necessary to apply a vital effect correction to either of the measured species. 14 

Predicted 18OCaCO3 for the entire water column was calculated from modern temperature and 15 

salinity data (JR179 cruise CTD025 collected 2nd April 2008, see Fig. 1 for locality and Fig. 16 

2A for water column profile) following Shackleton (1974). Seawater 18O was estimated 17 

(Fig. 2B) from salinity using a relationship derived from local, contemporaneous salinity and 18 

isotope measurements, specifically 18Oseawater = 0.6486*S-22.536 (see data in Meredith et al., 19 

2010). During the austral summer, at peak chlorophyll concentrations, N. pachyderma sin. is 20 

commonly found to calcify at pycnocline depths (Mortyn & Charles, 2003; Hendry et al., 21 

2009). The predicted equilibrium 18OCaCO3 values at these calcification depths are consistent 22 

with the range of 18ON. pachyderma sin. values from surface sediments reported here, when a vital 23 

effect correction of 0.63 ‰ is applied (Bausch et al., 1997).  This vital effect correction is 24 
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similar to that applied to N. pachyderma sin. specimens collected in sediment traps during 1 

2005-2006 at the nearby Rothera Oceanographic and Biological Time-Series site (Hendry et 2 

al., 2009). The 18O values we measured from surface sediment samples are within the range 3 

of those reported in Hendry et al. (2009; see Fig. 5P), although at the heavier end of the range 4 

suggesting that N. pachyderma sin. is currently calcifying in warmer and/or fresher waters 5 

today than the recent decades when our sediment surface specimens would represent. Surface 6 

sediment 18OB. aculeata values with no vital effect correction compare well with predicted 7 

equilibrium 18OCaCO3 values at the sea floor consistent with Bulimia spp. precipitating 18O 8 

in equilibrium with seawater (cf. Barras et al., 2010; Grossman, 1987). 9 

The stable and consistently offset benthic and planktonic 18O values throughout the 10 

early Holocene interval are consistent with a persistent density structure between the 11 

pycnocline and sea floor, at least during the growth season of N. pachyderma sin., which is 12 

comparable to today (Fig. 2B). This density structure would suggest that, similarly to today 13 

(see Martinson et al., 2008), modified-UCDW flooded the water column to the base of the 14 

pycnocline across the shelf and into Marguerite Bay. The slight decrease in benthic and 15 

planktonic 18O through the early Holocene would be consistent with warming and/or 16 

increased glacial melt water input. The low 13CN. pachyderma sin. values (Fig. 5O) through the 17 

early Holocene could result from high primary productivity and remineralisation of 12C-18 

enriched organic matter below the mixed layer, diffusive mixing of 13C-depleted UCDW 19 

through the pycnocline (Mackensen, 2012) or N. pachyderma sin. inhabiting sea ice (Hendry 20 

et al,.2009). Given the low abundance of sea ice diatoms, the high fluxes of N. pachyderma 21 

sin. indicative of open water conditions and the relative warm SSTs suggested by the ratio of 22 

asymm:symm E. antarctica we suggest that it is highly unlikely that the decreased 13CN. 23 

pachyderma sin. during the early Holocene resulted from these species inhabiting sea ice. Our 24 
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multi-proxy dataset therefore favours an interpretation where the similar and low benthic and 1 

planktonic 13C values observed in the early Holocene result from diffusive mixing of 2 

nutrient-rich, 13C-depleted UCDW through the pycnocline and remineralisation of relatively 3 

high volumes of organic matter exported from surface waters. We acknowledge that in some 4 

cases 13C from infaunal benthic foraminifera may not be entirely representative of benthic 5 

water values, however we propose that the persistently low benthic 13C values recorded at 6 

TPC522 throughout the early and mid Holocene are consistent with modified-UCDW 7 

maintaining a constant presence at depth within inner Marguerite Bay.  8 

A positive shift in planktonic 13C of 2 ‰ from at least 6992 yr BP, generating an 9 

offset between benthic and planktonic 13C records of ~0.8 ‰, indicates 13C-stratification of 10 

the water column occurred at the onset of the mid Holocene interval. A 0.3 ‰ increase in the 11 

benthic 13C record also occurred at the onset of the mid Holocene, although as stated above, 12 

the persistently low 13CB. aculeata indicate that our site was continually bathed by modified-13 

UCDW throughout the mid Holocene. We therefore consider the 13C-stratification of the 14 

water column to be consistent with reduced mixing of modified-UCDW through the 15 

pycnocline during the winter months and significantly reduced export rates limiting 16 

remineralisation of 12C-enriched organic matter beneath the mixed layer and to a lesser extent 17 

at the sea floor (contributing to the small amplitude change in the benthic 13C relative to the 18 

planktonic 13C). This proposed reduction in UCDW influence in the sub-surface waters is 19 

not associated with a notable change in the planktonic 18O record, which maintains a 20 

persistent offset from the benthic 18O record until 4315 yr BP. The persistent off set between 21 

the benthic and planktonic 18O records suggests that seasonal stratification and the 22 

preservation of a Winter Water layer, as today, was a feature common to both the early and 23 

mid Holocene intervals.  24 
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Increased variability in both the planktonic and benthic stable isotope records from 1 

4315 yr BP suggests significant shifts in sub-surface and benthic watermass properties at this 2 

site during the late Holocene. Convergence of planktonic and benthic 18O and positive 3 

benthic 18O excursions of up to 0.7 ‰, which may account for episodic cooling of benthic 4 

waters of up to 2 °C, suggest overturning of the water column and the displacement of 5 

modified-UCDW by a cold and/or more saline water mass. It should be noted that since the 6 

B. aculeata-assemblage is episodically displaced during the late Holocene by the agglutinate 7 

dominated-assemblage, considered to be associated with cold, saline waters which are 8 

inhospitable to calcareous species, our benthic stable isotope record may not fully represent 9 

intervals of UCDW-displacement. However, the episodic overturn in the benthic foraminifera 10 

assemblage to one dominated by agglutinated species further supports the scenario for 11 

UCDW being displaced by cold, saline shelf waters. 12 

 13 

4. DISCUSSION - MULTI-PROXY INTERPRETATION AND REGIONAL 14 

CONTEXT 15 

 16 

4. 1 Early Holocene 17 

Prior to 9707 yr BP, the retreat of the Marguerite Bay ice stream (Bentley et al., 2011; 18 

Kilfeather et al., 2011) is evident in our record from the high accumulation of glacial debris 19 

(Fig. 5A, 6A). Abundant Antarctic Circumpolar Current-derived F. kerguelensis and low 20 

benthic 13C values are consistent with the continuous advection of UCDW through the 21 

Marguerite Trough and over the core site through this early Holocene interval (Fig. 6B). 22 

Limited sea ice and extensive glacial melt, promoted by enhanced mixing of warm, modified-23 

UCDW through the pycnocline is evidenced by mild, iron-rich and productive surface waters 24 

inferred from the high ratios of asymmetrical:symmetrical morphotypes of E. antarctica 25 
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(Leventer et al., 2002), high relative abundance of E. antarctica (Allen et al., 2010) and high 1 

Chla concentrations (Fig. 5C) and planktonic foraminifera fluxes (Fig. 5H) respectively. 2 

These highly productive conditions are associated with depleted 13C values for N. 3 

pachyderma sin. which likely result from both diffusive mixing of 13C-depleted UCDW 4 

through the pycnocline and remineralisation of enhanced fluxes of organic matter exported 5 

from the mixed layer. At the sea floor, relatively high accumulations (Fig. 5I) of a low 6 

diversity (Fig. 5J), small, thin-walled, infaunal benthic foraminifera (F. fusiformis and 7 

Nonionella spp.) are consistent with intense pulses of phytodetritus (Gooday, 2003; Gooday 8 

et al. 2012; Ishman and Sperling 2002). B. aculeata, commonly cited as an UCDW-indicator 9 

species (Ishman and Domack, 1994; Ishman and Sperling 2002), dominates the benthic fauna 10 

from 6992 yr BP. The low abundance of this species in the early Holocene, when all other 11 

proxies point to the prevalence of modified-UCDW throughout the water column above the 12 

site, may be due to out-competition by more opportunistic species or because oxygen levels 13 

were too low. While B. aculeata, is typically associated with organic-rich sediments 14 

(Gooday, 2003; Mackensen et al., 1993), and warm, moderately oxygenated bottom waters 15 

(Mackensen et al., 1990; Harloff and Mackensen, 1997), the small, thin-walled species F. 16 

fusiformis and Nonionella spp., which dominate the early Holocene interval, are able to 17 

tolerate exceptionally high fluxes of phytodetritus and oxygen depleted bottom waters 18 

(Gooday and Hughes, 2002; Gooday et al., 2012; Ishman and Sperling, 2002; Mackensen et 19 

al., 1990). These upper and lower water column conditions persisted until 6903 yr BP.  20 

Collectively, our data show that the inner Marguerite Bay deglaciation, and the warm 21 

early Holocene interval that followed, were associated with modified-UCDW influence 22 

throughout the entire water column at our site. This interpretation of modified-UDCW 23 

influence on the inner shelf helps explain the rapid retreat of the Marguerite Bay ice stream 24 

from at least 9707 yr BP, and subsequent collapse of the George VI Ice Shelf (Bentley et al., 25 
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2011), the rapid thinning of terrestrial ice in inner Marguerite Bay and the onset of marine 1 

sedimentation in adjacent fjords (Bentley et al., 2011; Hodgson et al., 2013). Similarly, 2 

enhanced upwelling of UCDW onto the shelf prior to ~7 kyr is likely to account for elevated 3 

SST (Etourneau et al., 2013; Shevenell et al., 2011) and frontal melting of glaciers (Pike et 4 

al., 2013; Fig. 7E) further north at Palmer Deep and the generally warm, limited sea ice 5 

conditions experienced throughout the WAP at this time (Bentley et al., 2009; Allen et al., 6 

2010). 7 

4.2 Mid Holocene 8 

From 6903 yr BP the records indicate a decreasing influence of UCDW on inner 9 

Marguerite Bay surface waters, marked by extended sea ice seasons and a decline in primary 10 

productivity and reduced glacial melt water-derived iron. The presence of ice during the 11 

summer months, likely from glacial discharge rather than sea ice, is inferred from increased 12 

abundances of T. antarctica (cold; Buffen et al., 2007) and low abundances of sea ice species 13 

and consistent with the drop in relative SST from 5882 yr BP and reduced flux of planktonic 14 

foraminifera to the sea floor. At Palmer Deep, longer sea ice seasons from ~7 kyr BP 15 

(Etourneau et al., 2013) and reduced glacial discharge (Pike et al., 2013) also suggest cooling 16 

occurred during the mid Holocene at the same time as the ice shelf re-formed in George VI 17 

Sound (Fig. 1; Smith et al., 2007; Roberts et al., 2009). The positive shift in our 13CN. 18 

pachyderma sin. record from at least 6992 yr BP is consistent with the decrease in surface water 19 

productivity and a reduction in 13C-depleted UCDW mixing through the pycnocline at our 20 

site. However, incursions of UCDW into Marguerite Bay continued beneath the pycnocline 21 

(Fig. 6C) as indicated by the persistent influx of open ocean F. kerguelensis and static benthic 22 

13C values. We propose that reduced export of phytodetritus, consistent with the shorter and 23 

less productive growth season inferred from the surface ocean records, allowed B. aculeata to 24 

dominate the benthic foraminiferal assemblage from 6992 to 4153 yr BP.  25 
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The mid Holocene cooling trend culminates with lowest relative SSTs in our record 1 

and a brief advance of sea ice at 4414 yr BP, preceding a period (4414 to 4153 yr BP) of 2 

increased SST and enhanced fluxes of diatoms (Fig. 5B) and planktonic foraminifera. This 3 

brief reversal of surface ocean conditions is accompanied by elevated accumulations of a 4 

benthic foraminifera assemblage indicative of high phytodetrital fluxes. Warm SSTs, high 5 

productivity and the benthic faunal shift indicate that nutrient rich, seasonally stratified 6 

surface waters, similar to the early Holocene, were a feature of this interval. However, since 7 

planktonic 13C does not decrease to early Holocene values, it would appear that mixing of 8 

modified-UCDW through the pycnocline did not establish these conditions. Rather, 9 

atmospheric warming in the Peninsula region (Mulvaney et al., 2012; Fig. 7D) between 5 and 10 

3 kyr BP is likely to account for enhanced glacial melt along the WAP (Allen et al., 2010; 11 

Pike et al., 2013) and may therefore have led to the 260 year re-establishment of early 12 

Holocene-like surface conditions within Marguerite Bay from 4414 yr BP. Atmospheric 13 

forcing at this time also accounts for ice shelf collapse further north (Pudsey et al., 2006) and 14 

generally warm conditions along the Peninsula (Bentley et al. 2009; Allen et al., 2010) 15 

centred around ~4 kyr BP (Hodgson et al., 2013). 16 

 17 

4.3 Late Holocene 18 

Within Marguerite Bay the transition to a colder late Holocene interval from 4153 yr BP, 19 

marked by limited glacier melt water-derived iron, persistently low relative SST and 20 

increased sea ice cover is consistent with minimal UCDW influence within surface waters 21 

above our site. Both planktonic and benthic foraminifera became scarce, while a relatively 22 

high flux of diatoms and Chla from 4414 to 2679 yr BP indicates high export from surface 23 

waters. The fluctuating abundance of T. antarctica (cold) suggests variable summer sea ice 24 

conditions throughout this interval and we therefore propose that the high export resulted 25 
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from pulses of intense productivity associated with episodic opening or retreat of sea ice 1 

above our site. Episodic overturning of the water column and displacement of UCDW is 2 

suggested by the convergence of planktonic and benthic 18O records and multi-decadal to 3 

centennial scale oscillation between UCDW-indicator B. aculeata and agglutinated benthic 4 

foraminifera respectively. Unlike calcareous species, agglutinated foraminifera in Antarctic 5 

basins have a tolerance to low-temperature and variable-salinity conditions (Ishman & 6 

Domack, 1994; Ishman & Sperling 2002).We propose that cool, dense, saline water generated 7 

during sea ice formation, periodically sank to the sea floor (Fig. 6D), cooled benthic waters 8 

by over 2°C (positive benthic 18O excursions of 0.7 ‰) and created unfavourable conditions 9 

for calcareous benthic foraminifera species (Ishman & Domack, 1994). Benthic foraminiferal 10 

(Ishman & Sperling, 2002) and 18Obenthic (Shevenell & Kennett 2002) records from ODP 11 

1098, Palmer Deep, suggest that cyclic incursions of UCDW also penetrated the northern 12 

WAP shelf from 3.7 kyr BP. The establishment of this episodic overturning of the water 13 

column from 4153 yr BP at TPC522 coincides with the interval between 5 and 3.6 kyr BP 14 

which appears to mark a period of transition from non-cyclic to cyclic forcing on the WAP 15 

recognised in surface ocean records at Palmer Deep (Etourneau et al., 2013; Pike et al., 16 

2013).  17 

From 2679 yr BP the flux of diatoms to our site decreased. The mixed calcareous and 18 

agglutinated benthic foraminiferal assemblage throughout the remainder of the record is 19 

consistent with  continued oscillation between conditions dominated by UCDW upwelling 20 

and conditions typical of saline shelf water, although, since the sediment accumulation rate 21 

was significantly lower the individual oscillations are not resolved. This drop in sediment 22 

accumulation rate may reflect increased frequency of oscillation between these two 23 

oceanographic states. More frequent alternation between short-lived intervals of UCDW-24 

upwelling, melting back the sea ice and initiating short-lived intervals of high export flux 25 
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associated with and short-lived intervals of shelf water dominated conditions would have 1 

allowed benthic organisms to consume and break down phytodetritus, reducing sediment 2 

accumulation rates.  3 

 4 

4.4 CONTROLS ON UCDW-UPWELLING WITHIN MARGUERITE BAY 5 

Previous studies have failed to achieve a consensus on the influence of UCDW along the 6 

WAP through the Holocene (Shevenell & Kennett, 2002; Ishman & Sperling, 2002; see 7 

Bentley et al., 2009 for discussion of the conflicting ideas proposed in these papers from 8 

Palmer Deep). Pike et al. (2013) also noted inconsistencies between records surface ocean 9 

records from Palmer Deep. Our multi-proxy records provide compelling evidence for a 10 

decreasing influence of upwelled UCDW within Marguerite Bay through the Holocene. Our 11 

interpretation is consistent with a recent proxy record of glacier front melt on the WAP which 12 

supports UCDW-driven glacier melt in the early Holocene, shifting towards atmospherically 13 

driven-melt in the later Holocene (Pike et al., 2013). The broad correlation of atmospheric 14 

temperatures in the Ross Sea region (Steig et al., 1997; Fig. 7C) and SST records within 15 

Marguerite Bay suggest a similar climate forcing through the early to mid Holocene. In 16 

contrast, atmospheric temperatures recorded in the ice core from James Ross Island in the 17 

NW Weddell Sea do not exhibit similar trends, suggesting conditions along the WAP and the 18 

Ross Sea shelf were being driven by UCDW-influences rather than atmospheric forcing.  19 

Vigorous upwelling of nutrient-rich CDW during the early Holocene is also 20 

evidenced south of the Polar Front by enhanced opal fluxes in the Atlantic and Pacific sectors 21 

of the Southern Ocean (Anderson et al., 2009; Fig. 7G). A driver of early Holocene upwelling 22 

through the Southern Ocean and WAP could be the strengthening and/or poleward shift in the 23 

mean position of the SWW during the last glacial termination (Toggweiler et al., 2006). 24 

Although the past position and strength of Last Glacial Maximum SWW remains elusive 25 
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(Kohfeld et al., 2013), the mean position of the SWW is proposed to have shifted 1 

equatorward during the Holocene (Lamy et al., 2002; Lamy et al., 2010), migrating the core 2 

of the Antarctic Circumpolar Current away from the Antarctic continental shelf. More 3 

southerly SWW during the early Holocene would therefore have driven more frequent and/or 4 

voluminous incursions of warm UCDW onto the continental shelf to mix into surface waters 5 

and account for the relatively warm temperatures recorded in the Ross Sea region (Steig et 6 

al., 1998) and oceanic archives along the WAP (this study; Allen et al., 2010; Shevenell et al., 7 

2011). Northwards migration of the SWW through the mid Holocene would explain a 8 

significant reduction in opal flux south of the Polar Front (Anderson et al., 2009; Fig. 7F), 9 

cooling in the Ross Sea region, and  is consistent with a decline in UCDW-driven warmth 10 

and melt water stratification in Marguerite Bay from 6992 yr BP. By the late Holocene, from 11 

4153 yr BP, only episodic incursions of UCDW entered inner Marguerite Bay and cooler 12 

conditions prevailed along the WAP (Allen et al., 2010).  13 

A transition from non-cyclic to cyclic-forcing at Palmer Deep is recognised between 5 14 

and 3.6 kyr BP (Etourneau et al., 2013; Pike et al., 2013; Shevenell & Kennett, 2002). The 15 

onset of this cyclic-forcing along the WAP appears to be associated with the waning, non-16 

cyclic influence of the SWW and the increased frequency and/or magnitude of ENSO events 17 

from 4.2 kyr BP (Fig. 7A; Conroy et al., 2008; Moy et al., 2002; Pike et al., 2013). From 2.5 18 

kyr BP atmospheric temperatures decrease within the James Ross Island ice core record 19 

(Mulvaney et al., 2013) while increasing glacial discharge to ODP Site 1098 (Pike et al., 20 

2013) suggests enhanced atmospheric warming on the WAP. Mulvaney et al (2013) propose 21 

that such opposed temperature anomalies on either side of the Peninsula represents the 22 

establishment of the Antarctic dipole at 2.5 kyr BP. Proxies of oceanographic conditions 23 

however infer that sea surface temperatures remained low and sea ice was prevalent along the 24 

WAP throughout the late Holocene (Taylor & Sjunneskog 2002; Bentley et al., 2009; Allen et 25 
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al., 2010; this study) indicating that oceanic forcing remained a principle driver of conditions 1 

on the WAP shelf. The loss of clearly resolved UCDW-saline shelf water oscillations within 2 

our benthic foraminifera assemblage record from 2679 yr BP, considered to reflect increased 3 

frequency of water column overturning within Marguerite Bay, is concurrent with      a 4 

prominent increase in the El Junco sand record indicative of increased ENSO frequency 5 

(Conroy et al., 2008). The apparent sensitivity of our record to ENSO frequency during the 6 

late Holocene suggests that ENSO exerted an oceanic forcing along the WAP, as well as an 7 

atmospheric forcing (Pike at al., 2013) from 4153 yr BP.   8 

 9 

5. CONCLUSIONS 10 

Predicted intensification of the SWW through this century (Swart and Fyfe, 2012) 11 

demands better understanding of how UCDW upwelling along the WAP responded to 12 

changing SWW strength and position through the Holocene. Our multi-proxy record of 13 

surface and benthic water conditions provides a comprehensive history of UCDW influence 14 

within Marguerite Bay, and demonstrates the apparent responsiveness of UCDW upwelling 15 

to SWW through the early and mid Holocene, and to ENSO forcing during the late Holocene.  16 

In recent decades a southward migration and intensification of SWW has been 17 

observed (Hande et al., 2012; Swart and Fyfe, 2012). Within the same timeframe increased 18 

UCDW upwelling along the WAP has increased heat flux, and likely nutrient flux, onto the 19 

continental shelf (Ducklow et al., 2012; Martinson et al., 2008). Basal melting caused by 20 

warm modified-UCDW approaching the Getz and Dotson ice shelves (Wåhlin et al, 2010) 21 

and Pine Island and Thwaites glaciers on the Amundsen Sea shelf (Jacobs et al., 2011; 22 

Walker et al., 2007), and flowing beneath the George VI ice shelf on the Bellingshausen sea 23 

shelf (Jenkins and Jacobs, 2008) is the likely cause of accelerated ice sheet thinning in recent 24 

years (Pritchard et al., 2012). Similarly, reduced sea ice extent and asymmetrical changes in 25 
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Chl a along the WAP since the 1980’s (Montes-Hugo et al., 2009) suggest a shift towards the 1 

early Holocene-like oceanographic configuration reported here. With continued strengthening 2 

and poleward migration of the SWW (Swart and Fyfe, 2012), our results show we could 3 

anticipate enhanced upwelling south of the Polar Front, and more frequent and persistent 4 

incursions of UCDW onto the WAP continental shelf. These are changes that respectively 5 

could limit the ability of the Southern Ocean to act as a CO2 sink (Le Quere et al., 2007), and 6 

threaten the stability of the extant ice shelves and feeder glaciers on the WAP.  7 

 8 
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Figure Captions 7 

 8 

Fig. 1. Location of TPC522 (red star) and other sites (numbered in blue) discussed in this 9 

paper. 1. Taylor Dome Ice Core (Steig et al., 1997), 2. Chilean Margin (GeoB 3313_1; Lamy 10 

et al., 2002), 3. South Atlantic (TN057-13), 4. Tasmanian Gateway (E27-23; Anderson et al., 11 

2009), 5. Adélie Land (MD03-2601; Crosta et al., 2007), 6. Lützow-Holm Bay (Igarashi et 12 

al., 2001). On the inset map red arrows indicate the flow of UCDW along the WAP with 13 

incursions onto the shelf through bathymetrical lows including  Marguerite Trough. 14 

Additional sites are; 7. Rothschild Trough (Graham & Smith, 2012), 8. CTD 25; 9-10. 15 

Marguerite Bay mid-shelf (Kilfeather et al., 2011); 11. Ryder Bay, Rothera Oceanographic 16 

and Biological Time-Series site (Hendry et al., 2009), 12. Neny Fjord, (Allen et al., 2010), 17 

13. Palmer Deep (Taylor & Sjunneskog, 2002; Ishman & Sperling, 2002; Shevenell & 18 

Kennett, 2002, Shevenell et al., 2011; Etourneau et al., 2013); 14. Maxwell Bay (Milliken et 19 

al., 2009), 15. Firth of Tay (Michalchuk et al., 2009; Mayewski & Anderson, 2009),  16. 20 

James Ross Island Ice Core (Mulvaney et al., 2012).  21 

 22 

 23 

Fig. 2. Modern temperature and salinity profile and predicted 18OCaCO3 within Marguerite 24 

Trough. (A) temperature (red) and salinity (green) from CTD25 (Number 8; Figure 1) 25 
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collected 2nd April 2008. Antarctic Surface Water (AASW), Winter Water (WW), modified-1 

UCDW (m-UCDW), (B). predicted 18OCaCO3 calculated from temperature and salinity 2 

following Shackleton (1974). Mean 18O N. pachyderma sin.  (after vital effect correction of 0.63 3 

‰ from BC523 surface sediments is shown by a red data point with horizontal bars showing 4 

standard deviation and vertical bars showing the corresponding calcification depth based on 5 

modern predicted 18OCaCO3. Average 18O B. aculeata from BC523 surface sediments is shown 6 

by the blue data point with horizontal bars showing standard deviation confirming that B. 7 

aculeata calcifies close to equilibrium with seawater 18O. Note that TPC522 is at 910 m 8 

water depth. 9 

 10 

Fig. 3. A. Age-depth model of TPC522. Calibrated AIOM radiocarbon dates shown in blue. 11 

Green data point is the calibrated radiocarbon date derived from Globocassidulina biora and 12 

the red data point is the omitted AIOM date. Black line is the best fit with the grey lines 13 

indicating the 95% confidence interval. Sedimentation rates (cm yr-1). B. Excess 210Pb 14 

activity in the upper 24 cm of BC523 demonstrating recent deposition of the surface 15 

sediment.  16 

 17 

Fig. 4. Correspondence analysis of (A) diatom and (B) benthic foraminifera assemblages 18 

from PC522 showing the first three axes. Open symbols in B indicate samples where less 19 

than 50 individual benthic foraminifera specimens were counted. Vertical white shading 20 

bordered by grey lines indicates the standard deviation (1 s.d.) of the data on each axis. Points 21 

beyond 1 s.d. are significant and were used to determine stratigraphic boundaries between 22 

assemblages. Three principal assemblages were identified in each record corresponding to the 23 

early Holocene (yellow), mid Holocene (green) and late Holocene (blue). The darker blue 24 
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interval within the late Holocene assemblage indicates an interval of high sedimentation rates 1 

and improved temporal resolution where oscillatory trends can be identified.  2 

 3 

Fig. 5. Multi-proxy Holocene surface and benthic records from Marguerite Bay, TPC522. 4 

The upper panel shows the surface ocean records and the bottom panel shows benthic 5 

foraminifera assemblages, and benthic and planktonic stable isotope records. Upper panel, 6 

(A) ice rafted debris concentration (# grains >150 m g-1; dark blue) and magnetic 7 

susceptibility (grey), (B) total diatom flux (# cm-2 kyr-1), (C) Chl a concentration (abs at 410 8 

nm g-1), (D) Fragilariopsis curta: Fragilariopsis kerguelensis ratio (E) Thalassiosira 9 

antarctica (cold) %, (F) Eucampia antarctica %, (G) relative SST proxy E. antarctica 10 

asymm:symm, open symbols indicate samples were less than 100 specimens were counted, 11 

(H) flux of planktonic foraminifera N. pachyderma sin. (# cm-2 kyr-1). Coloured horizontal 12 

bars indicate distinct stratigraphic intervals in the diatom assemblages as shown in Fig. 4A. 13 

which correspond to the early Holocene, 9707 to 6903 yr BP (yellow); mid Holocene, 6903 14 

to 4213 yr BP (green); late Holocene, 4213 to 825 yr BP (blue). Lower panel, (I) Benthic 15 

foraminifera accumulation rate (# cm-2 kyr-1), (J) Benthic foraminifera species diversity 16 

(Fischer Alpha), (K) Fursenkoina fusiformis %, (L) Nonionella spp. %, (M) agglutinated 17 

species %, (N) Bulimina aculeata %, Open symbols indicate samples where less than 50 18 

individual benthic foraminifera specimens were counted, paler coloured infill indicate 19 

samples where between 50 and 100 specimens were counted, fully filled symbols indicate 20 

that >100 specimens were counted. (O) benthic (B. aculeata; blue) and planktonic (N. 21 

pachyderma sin.; red) 13C. Dashed line at 0.4 ‰. 13C <0.4 ‰ indicates a diagnostic UCDW 22 

signal within the water mass (Mackensen, 2012), (P) benthic (B. aculeata; blue) and 23 

planktonic (N. pachyderma sin.; red) 18O. Open symbols indicate samples where less than 24 

10 specimens were analysed. Coloured horizontal bars indicate stratigraphic intervals distinct 25 
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benthic foraminifera assemblages as Fig. 4B. which correspond to the early Holocene, 9707 1 

to 6992 yr BP (yellow); mid Holocene, 6992 to 4153 yr BP (green); late Holocene, 4153 to 2 

825 yr BP (blue). In both panels the early Holocene, prior to 9707 kyr BP, is shown in grey. 3 

The darker blue interval within the late Holocene assemblage indicates an interval of high 4 

sedimentation rates and improved temporal resolution where oscillatory trends can be 5 

identified until 2679 yr BP. The grey dashed lines indicate the interval of early Holocene-like 6 

conditions at the transition from mid to Late Holocene. 7 

 8 

Fig. 6. Schematic diagram of factors affecting surface and benthic proxy records at TPC522, 9 

Marguerite Bay through the Holocene. (A) Early Holocene. Initial incursion of UCDW 10 

associated with retreat of the Marguerite Bay ice stream past TPC522, (B) Early Holocene. 11 

Persistent incursions of UCDW penetrate inner Marguerite Bay and mix through the 12 

pycnocline, limiting sea ice and promoting glacial melt and primary productivity. High 13 

phytodetritus fluxes to sea floor, (C) Mid Holocene. UCDW continues to penetrate inner 14 

Marguerite Bay but does not mix through the pycnocline as vigorously as in the early 15 

Holocene. Lengthening sea ice season and decreased glacial melt causes productivity to fall 16 

resulting in a reduced flux of phytodetritus to the sea floor, (D) Late Holocene. Episodic 17 

oscillation between UCDW incursions opening up sea ice and promoting pulses of 18 

productivity and, generation of cold, dense brines as sea ice reforms which displace UDCW 19 

as they sink to the seafloor. Relative size of red arrows represents the relative intensity of 20 

UCDW incursions and mixing. Blue arrows indicate cold, dense saline waters produced 21 

during sea ice formation. Site TPC522 indicted with yellow circle in (A). (E) Marguerite Bay 22 

today (after Moffat et al., 2009). UCDW incursions into Marguerite Bay are associated with 23 

reduced sea ice and enhanced glacier melt relative to the late Holocene. Given that there is no 24 

evidence for major glacier readvance within Neny Fjord through the Holocene (Allen et al., 25 
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2010) the glacial margin around Marguerite Bay is illustrated as being fixed through the last 1 

9707 yr within these schematics. 2 

 3 

Fig. 7. Holocene record of UCDW upwelling at Marguerite Bay compared with  4 

 (A) Relative frequency of ENSO events inferred from sand % within El Junco crater lake 5 

sediments, Galapagos Islands (Conroy et al., 2008). (B), relative SST within Marguerite Bay 6 

inferred from the ratio of asymmetrical:symmetrical forms of E. Antarctica, (C) Taylor Dome 7 

D that documents the relative atmospheric temperature in the Ross Sea Embayment  (Steig 8 

et al., 1998; 5 point-running average), (D) James Ross Island ice core temperature anomaly 9 

that records temperatures in the NW Weddell Sea (Mulvaney et al., 2012), (E) Diatom 18O 10 

from ODP Site 1098 (Pike et al., 2013), (F) relative glacial meltwater flux within Marguerite 11 

Bay inferred from the relative abundance of E. antarctica in TPC522, (G) opal fluxes south 12 

of the Polar Front at  TN057-13, SE Atlantic and E27-23, SW Pacific (Anderson et al., 2009). 13 

Coloured horizontal bars as Fig. 5 (lower panel) with the addition of an outlined green bar 14 

indicating the transition of non-cyclic to cyclic forcing observed at Palmer Deep (Pike et al., 15 

2013). Panel to the right summarises our interpretation of UCDW influence in inner 16 

Marguerite Bay. 17 

 18 
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 1 

Table 1. Radiocarbon dates from TPC522 and box core surface samples from BC521 2 

and BC523.  3 
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Figure 2
Click here to download high resolution image
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Figure 5
Click here to download high resolution image
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