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Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic
organisms have led to a fundamental paradigm shift in understanding of the controls
and history of life on land in Antarctica, and its interactions over the long term with the
glaciological and geological processes that have shaped the continent. However, while
it has long been recognized that the terrestrial ecosystems of Antarctica are dominated
by microbes and their processes, knowledge of microbial diversity and distributions
has lagged far behind that of the macroscopic eukaryote organisms. Increasing human
contact with and activity in the continent is leading to risks of biological contamination
and change in a region whose isolation has protected it for millions of years at least;
these risks may be particularly acute for microbial communities which have, as yet,
received scant recognition and attention. Even a matter apparently as straightforward
as Protected Area designation in Antarctica requires robust biodiversity data which,
in most parts of the continent, remain almost completely unavailable. A range of
important contributing factors mean that it is now timely to reconsider the state of
knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological
approaches are increasingly demonstrating that bacterial diversity in Antarctica may
be far greater than previously thought, and that there is overlap in the environmental
controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial
dispersal mechanisms and colonization patterns remain largely unaddressed, although
evidence for regional evolutionary differentiation is rapidly accruing and, with this, there
is increasing appreciation of patterns in regional bacterial biogeography in this large
part of the globe. In this review, we set out to describe the state of knowledge of
Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups
where appropriate. Based on our synthesis, it is clear that spatial patterns of Antarctic
prokaryotes can be unique at local scales, while the limited evidence available to
date supports the group exhibiting overall regional biogeographical patterns similar
to the eukaryotes. We further consider the applicability of the concept of “functional
redundancy” for the Antarctic microbial community and highlight the requirements
for proper consideration of their important and distinctive roles in Antarctic terrestrial
ecosystems.
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Introduction

Due to their importance to the fundamental assembly of
ecosystems, considerable effort has been devoted to study
of the interactions of spatial scale, external physicochemical
parameters and species distributions (e.g., King et al., 2010;
Nemergut et al., 2011; Westgate et al., 2014). Spatial patterns of
species distribution arise from the interactions between physical,
chemical, and biological drivers (Legendre and Fortin, 1989;
Prosser et al., 2007), placed in the context of the past regional
colonization and evolutionary history of any given region
(Convey et al., 2014). From the physical environment perspective,
environmental gradients clearly influence the establishment and
maintenance of viable populations; however, the spatial scale
considered is also important in defining these environmental
gradients (Wiens, 1989). For instance, in soils, environmental
parameters at micro-scale are strongly correlated with the soil
texture, pore space, and local topography (e.g., Tromp-Van
Meerveld and Mcdonnell, 2006). Nevertheless, climatic features
such as precipitation, solar radiation and temperature, acting
at far larger spatial scale, also have an important influence
(Grundmann, 2004; Griffiths et al., 2011; Convey et al., 2014).
In addition to physical and chemical environmental influences,
community assembly is also controlled by biological features such
as dispersal, interaction (e.g., competition, predation), motility
and reproduction (Ettema and Wardle, 2002; Webb et al.,
2002).

Among exceptional ecosystems of the planet, Antarctic
terrestrial environments are characterized by high winds, intense
UV radiation, desiccation, and low temperatures. These physical
stressors challenge Antarctic life (Kennedy, 1993; Convey, 1996;
Wall and Virginia, 1999; Hogg et al., 2006; Cary et al., 2010)
and, combined with physical isolation and geographical barriers
(e.g., circumpolar oceanic and atmospheric currents), limit inter-
and intra-continental connectivity and underlie the level of
endemicity present in Antarctica today (Franzmann, 1996; Clarke
et al., 2005; Adams et al., 2006; Barnes et al., 2006; Taton et al.,
2006; Convey et al., 2008, 2009, 2014; Vyverman et al., 2010).
Given the many differences in physical setting and adaptive
requirements, as well as the scales of biological organization
involved (e.g., Figure 2 in Peck, 2011), researchers have sought
to understand the links between spatial diversity and functioning
of Antarctic communities and the differences in comparison to
other ecosystems (see Convey et al., 2014 for discussion). Detailed
and spatially explicit knowledge of Antarctic biodiversity is
essential to enable construction of a comprehensive framework
for conservation planning (Hughes and Convey, 2010, 2012;
Terauds et al., 2012; Convey et al., 2014; Chown et al., 2015), and
to provide baseline data for ecological modeling and prediction
(Gutt et al., 2012); however, our knowledge of microbial systems
and functions is, at best, fragmented, both globally and in the
Antarctic specifically (Tindall, 2004; Cary et al., 2010; Chong
et al., 2013).

In this review, we collate current knowledge of Antarctic
microbial diversity and biogeography. Adopting a similar
approach to that of Martiny et al. (2006), we focus our discussion
primarily on Antarctic prokaryotic spatial patterning, making

reference to patterns inferred in Antarctic eukaryotic studies
where appropriate. We do not assume that the prokaryotes
exhibit the same ecological patterns as the eukaryotes, however,
the latter have been relatively well-studied and provide a
useful comparison. We identify gaps in current knowledge,
along with limitations in the methodologies available. Our
synthesis leads to the proposition of a new conceptual
model to explain the mechanisms underlying species-function
relationships in Antarctica, and the experimental framework
required to provide such mechanistic insight based on empirical
data.

Macroecological Patterns in Antarctica

Antarctica has traditionally and pragmatically been divided
into three biogeographic zones, the sub-Antarctic, maritime
Antarctic, and continental Antarctic (Convey, 2013). The sub-
Antarctic includes a ring of oceanic islands located between
c. 45◦ and 55◦S, close to the Antarctic Polar Frontal Zone
(Convey, 2007b; Selkirk, 2007). These experience relatively higher
precipitation and milder and much less variable temperatures
in comparison to the maritime and continental zones, and
host the most complex Antarctic terrestrial ecosystems. The
maritime Antarctic includes the Scotia Arc archipelagos of the
South Sandwich, South Orkney and South Shetland Islands
and the majority of the Antarctic Peninsula southward to
Alexander Island. Crytogamic fellfield is the most typical
vegetated habitat along the coastline and associated low lying
islands. In addition, vegetation “hotspots” can be found on the
nitrogen-rich ornithogenic gelisols formed near seabird colonies
or seal haul-out areas (Michel et al., 2006; Bokhorst et al.,
2007). Finally, continental Antarctica comprises the eastern and
southern parts of the Antarctic Peninsula, and the remainder of
Antarctic continent. Terrestrial ecosystems within this region are
restricted to small isolated “islands” of ice-free ground located
mainly either in the low-lying coastal zones, or in the form of
isolated nunataks and the higher altitudes of inland mountain
ranges, with the striking exception of the McMurdo Dry
Valleys in Victoria Land which cover an area of approximately
40,000 km2.

In recent years, large-scale spatial comparisons have refined
our understanding and revealed a far greater complexity in the
patterns of biogeography present in the terrestrial ecosystems
of Antarctica than previously appreciated (Chown and Convey,
2007; Convey et al., 2008; Terauds et al., 2012). For instance,
studies across a range of terrestrial macro- and micro- eukaryotic
organisms (plants, algae, insects, springtails, mites, nematodes,
tardigrades, rotifers) have revealed a strong division between the
Antarctic Peninsula and the remainder of the continent (e.g.,
Maslen and Convey, 2006; Peat et al., 2007; Pugh and Convey,
2008; De Wever et al., 2009; Iakovenko et al., in press). Chown
and Convey (2007) proposed that this distinction represented an
ancient boundary analogous to the Wallace Line of south-east
Asia, reflecting Antarctic historical contingency (the “Gressitt
Line”). Separately, a strong localized diversity was also detected
when comparing the genetic lineages of Antarctic microbial
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eukaryotic organisms across different locations (Lawley et al.,
2004; Namsaraev et al., 2010). More recently, a spatial analysis
of 38,854 entries and 1823 eukaryote taxa recorded in the
Antarctic Biodiveristy Database (ABD)1 revealed 15 distinct
‘Antarctic Conservation Biogeographic Regions’ across Antarctic
terrestrial environments (five within the classical maritime
Antarctic region and 10 from the continental Antarctic; Terauds
et al., 2012).

Spatial Patterns of Prokaryotic Diversity

The elucidation of spatial patterns of organization in Antarctic
eukaryotes provides an excellent opportunity for microbiologists
to evaluate the degree to which prokaryotic biogeography in
the Antarctic mirrors or differs from that of the eukaryotes,
and to shed new light onto the functioning of Antarctic
terrestrial ecosystems. If biogeographic processes in both major
groups operate at similar spatial scales, then a homogenous
set of mechanisms can be hypothesized to govern these
processes, and a consistent response to environmental changes
can be predicted. In contrast, the finding of distinct spatial
patterns would be indicative of fundamental differences in, for
instance, life history, survival strategies, or dispersal limitation.
The latter would, further, have important implications for
the planning of biosecurity and biodiversity management in
Antarctica, including in the application of guidelines and
protocols developed under the Environmental Protocol to the
Antarctic Treaty and the definition of Antarctic Specially
Protected Areas (ASPAs), as current practice has almost
completely been built upon knowledge of macro-organisms
such as vertebrates, invertebrates, and plants (Hughes et al.,
2015).

Over the last decade, encouraged by improved technical and
methodological capabilities, knowledge of the spatial scaling and
the functional capabilities of Antarctic prokaryotic communities
has started to increase. It is thus timely to review our knowledge
of bacterial biogeography in Antarctica and to ask how
spatial patterns influence ecological functions in the microbial
communities of Antarctica.

Site-specific Bacterial Diversity

Airborne Diversity
Antarctica is an extremely windy place. Long distance inter-
continental air mass movement has been shown to be a viable
route for non-native propagules from Australia, South America,
and South Africa to reach and potentially establish in Antarctica
(Linskens et al., 1993; Marshall and Convey, 1997; Greenslade
et al., 1999; Convey, 2005; Pearce et al., 2009). Locally, the
magnitude and direction of air movement vary widely across
Antarctica. However, strong and complex networks of aeolian
exchange and interaction are apparent. For instance, the low-
lying coastal regions of the Antarctic continent and Antarctic

1http://data.aad.gov.au/aadc/biodiversity/

Peninsula periodically experience high velocity katabatic winds
which may bring mineral dust from the continental interior
(Turner et al., 2009; Pearce et al., 2010). It is not clear if this
enables the transfer of viable propagules from the polar plateau
to the coastal region, however, similar air movements have been
documented in back trajectory analyses of air parcels studied
microbiologically (Marshall, 1996; Hughes et al., 2004; Pearce
et al., 2010; Bottos et al., 2014b). Additionally, the circumpolar
coastal winds (circulating west to east) increase the mixing of
air masses between the interior and coastal areas, and further
facilitate inter-regional aeolian movement between different ice-
free regions in Antarctica (Wynn-Williams, 1991; Reijmer et al.,
2002; Parish and Bromwich, 2007).

The very limited aerobiological survey data currently available
from the Antarctic Peninsula and continental Antarctic generally
suggested low airborne bacterial diversity and a minimal
contribution of local propagules into the aerosol (Hughes et al.,
2004; Pearce et al., 2010; Bottos et al., 2014b). For instance,
marine-related sequences constituted <10% of the airborne
bacterial diversity detected at Halley V Research station on the
Brunt Ice Shelf at the base of the Weddell Sea and at Rothera
Point, to the west of the Antarctic Peninsula, despite substantial
sea-spray influence in both locations. Separately, Bottos et al.
(2014b) observed little overlap between the aerosol and soil
bacterial diversity in the McMurdo Dry Valleys.

Overall, there was little similarity in bacterial diversity in
the studies reported by Hughes et al. (2004), Pearce et al.
(2010), and Bottos et al. (2014b). Although this might relate
to differences in methodologies employed in each study, the
differences might also be underlain by the environmental stresses
faced in long duration airborne dispersal (e.g., Hughes et al., 2004;
see also review by Pearce et al., 2009). High community variation
was also detected when comparing the microbiota of aerosols
collected in close proximity (e.g., ∼2 km apart, Bottos et al.,
2014b), further supporting strong spatial variation in Antarctic
aerosols. However, a number of cyst forming and desiccation
resistant genera such as Frankia,Rubrobacter, Sphingomonas, and
Paenibacilluswere found. These genera might form the core of an
airborne bacterial community that is universal across Antarctica
(Pearce et al., 2010; Bottos et al., 2014b).

Soil Microbial Diversity
Recent Antarctic terrestrial microbiological studies using
molecular approaches generally support the occurrence of highly
specific community membership across space. For instance,
in bacterial culture collections developed from nine distinct
sites in the Antarctic Peninsula, and the Ronne, Maud, and
Enderby sectors of continental Antarctica (Peeters et al., 2012),
only 3.4% of the total isolates were common to more than
one site. More generally, it has been estimated that <1% of
total bacterial diversity is culturable in temperate environments
(Hugenholtz, 2002), so these common isolates may represent
an even smaller percentage of the overall diversity. In a similar
report of highly localized bacterial distribution patterns derived
using a culture-independent technique, Lee et al. (2012)
reported that, in four cold desert habitats located within an
80 km radius in the McMurdo Dry Valleys, the proportion
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of rare phylotypes specific to only one site ranged between
48 and 72%.

At higher phylogenetic levels, such as phylum or class, the
dominant membership of Antarctic soil bacterial communities is
relatively consistent (e.g., Yergeau et al., 2007b; Pointing et al.,
2009; Chong et al., 2012b), including common groups found in
soil ecosystems globally such as Acidobacteria, Proteobacteria,
Firmicutes, and Bacteroidetes (Janssen, 2006; Youssef and
Elshahed, 2008). Nevertheless, in comparisons across different
Antarctic regions, strong compositional differences become
apparent. For example, soil from Antarctic Peninsula sites was
dominated by taxa affiliated with Alpha-proteobacteria and
Actinobacteria and had low representation of Bacteriodetes,
while the reverse pattern was apparent in soil from the Ellsworth
Mountains (Yergeau et al., 2007b). Separately, Actinobacteria
contributed the largest proportion of the overall soil bacterial
community in Victoria Land, more than double that detected
in the former two locations (Bottos et al., 2014a, and references
therein). Again, methodological differences may contribute to
such observations, although it is notable that diversity variations
are also apparent in comparisons of regional samples using
standardized methodology (Yergeau et al., 2007b; Sokol et al.,
2013).

Even greater variation was apparent in the ‘rare’ members
of the community – those which make up less than 0.05%
of the community composition. For instance, members of
Verrucomicrobia and Spirochaetes were detected rarely in
rhizosphere soil in the Antarctic Peninsula but were completely
absent from mineral soils in the Antarctic Dry Valleys (Teixeira
et al., 2010; Lee et al., 2012). Both these studies employed
massively parallel next generation sequencing (NGS) techniques
targeting similar 16S regions (V4–V5 vs. V3–V5) and reported
high average sequence coverage at 90%. Assuming that the
disparity in the community assembly between locations is not
due to methodological variation, it might be a reflection of
the different requirements and life history strategies of various
microbial lineages.

Environmental Selection vs.
Geographical Isolation

Syntheses of studies of physiological adaptation and life history
strategies of Antarctic organisms have suggested that the
distribution of Antarctic terrestrial life is generally driven
by abiotic environmental gradients in variables such as the
availability of water or specific nutrients (Kennedy, 1993; Convey,
1996; Barrett et al., 2006a; Hogg et al., 2006; Convey et al.,
2014). For example, the water gradient at Mars Oasis (Alexander
Island, Antarctic Peninsula) leads to a clear separation between
populations of Mortierella and Serendipita-like Sebacinales,
Tetracladium, Helotialian fungi and black yeasts (Bridge and
Newsham, 2009). Similar trends have also been observed
in studies of soil arthropods, for instance with some mite
species such as Gamasellus racovitzai and Alaskozetes antarcticus
showing a stronger resistance to desiccation stress than others
such as Stereotydeus villosus, while the length of the active season

appears to be more strongly influenced by the moisture available
in the environment for some species than others (Convey et al.,
2003). Green algae including Nostoc spp. and Gloeocapsa spp.
are sensitive to salinity and hence are usually absent from areas
subjected to frequent windblown sea-spray (Broady, 1996). In
addition, heavy metals including copper are detrimental to the
growth and the cell wall structure of cyanobacteria and might
thereby inhibit the distribution of the photosynthetic microbes
in the Dry Valleys (Wood et al., 2008).

Although most such syntheses have been based on studies
of Antarctic invertebrates and plants, similar findings are
apparent in recent molecular studies of Antarctic soil bacterial
communities (Table 1). For instance, in the Ross Sea region
of continental Antarctica, Aislabie et al. (2008) found strong
positive correlation between bacterial community diversity and
soil pH and nutrient content. In the Dry Valleys of the same
region, Lee et al. (2012) proposed that salt and copper content
in the soil, along with altitude, were the major drivers of
microbial community composition. Over a spatial gradient of a
few kilometers in a coastal area of maritime Antarctica, Chong
et al. (2012a) similarly reported that community structure was
largely determined by pH and altitude. Magalhães et al. (2012)
working near Darwin Mountain (Transantarctic Mountains)
found different ion concentrations were the main driver of
diversity. It is striking that none of these studies established
strong distance decay or occupancy-distance relationships in
bacterial community composition, consistent with the findings
of a recent large-scale spatial study within the Transantarctic
Mountains (Sokol et al., 2013). Based on spatially stratified
sampling that spanned seven degrees of latitude, Sokol et al.
(2013) showed that local edaphic gradients (e.g., pH and
moisture) exerted stronger control over the bacterial community
composition than was explained by spatial scaling alone. In
comparison, however, spatial partitioning was prominent in the
cyanobacterial community, potentially indicating differences in
dispersal controls between cyanobacteria and the soil bacterial
community.

A large-scale compilation of bacterial 16S rRNA gene
sequence data retrieved from Antarctic soil habitats ranging
from 45 to 78◦S revealed that majority of the Antarctic soil
habitats included were phylogenetically clustered (genetically
closely related, see Webb et al., 2002), implying strong
habitat filtering in the Antarctic terrestrial environment
(Chong et al., 2012b). Souza et al. (2008) hypothesized that
bacterial community homogenization in nutrient-depleted
environments might be obstructed by low cell density, which
could reduce the likelihood of horizontal gene transfer across the
community. Additionally, environmental stress might further
exert sympatric selective pressure in different micro-niches
in the soil, promoting the prevalence of specialists in each
ecotype. Such factors might underlie the detection of the highly
specialized communities reported in various studies (Lee et al.,
2012; Peeters et al., 2012). In a separate large-scale latitudinal
survey in the Antarctic Peninsula/Scotia Arc region, Yergeau
et al. (2007b) showed a significant latitudinal influence on
the bacterial community composition of bare ground sites.
However, for locations with moss/lichen cover, the effect of local

Frontiers in Microbiology | www.frontiersin.org 4 September 2015 | Volume 6 | Article 1058

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Chong et al. Spatial pattern of Antarctic prokaryotes

TABLE 1 | Major environmental parameters influencing terrestrial bacterial community composition.

Major environmental parametersa Correlate
withb

Microbiological approach Region Spatial range Reference

pH BCS DGGE Signy Island <10 km Chong et al., 2010

pH BCS NGS Windmill Island <100 km Siciliano et al., 2014

pH BCS NGS McMurdo Dry Valleys <100 km Van Horn et al., 2013

pH BR and CS TRFLP Antarctic Peninsula <10 km Chong et al., 2012b

pH and EC BCS TRFLP Scott Base <1 km O’Neill et al., 2013

pH and EC BCS Cloning Ross Sea region <100 km Aislabie et al., 2008

pH and EC BCS TRFLP McMurdo Dry Valleys <100 km Geyer et al., 2013

pH and copper BCS DGGE, TRFLP and Cloning Alexander Island <10 km Chong et al., 2012a

pH and moisture BCS ARISA Victoria Land >100 km Smith et al., 2010

pH, nitrate, temperature BCS DGGE Cross regional study >100 km Yergeau et al., 2007c

Altitude and EC BCS ARISA McMurdo Dry Valleys <100 km Lee et al., 2012

Carbon content BR TRFLP McMurdo Dry Valleys <100 km Geyer et al., 2013

Carbon, nitrogen, and EC BR ARISA Darwin Mountain <5 km Magalhães et al., 2012

Carbon, nitrogen, and moisture BCS DGGE South Shetland Archipelago <5 km Ganzert et al., 2011

Carbon, nitrogen, and moisture Microbial
abundance

CFU counts Cross regional study >100 km Yergeau et al., 2007c

Carbon, nitrogen, and chloride BR NGS Windmill Island, Eastern Antarctica <100 km Siciliano et al., 2014

aEC, electrical conductivity; bBCS, bacterial community structure; BR, bacterial richness.

vegetation cover far outweighed any influence of geographical
isolation.

If a combination of soil edaphic parameters and nutrient
availability is the main driving force for prokaryotic community
assembly in harsh Antarctic environments, it is perhaps justifiable
to postulate that taxonomic diversity in Antarctica should
be lower in comparison to those of temperate and tropical
regions. Additionally, the Antarctic bacterial community might
resemble those of other cold desert habitats such as parts of the
Arctic and high altitude montane regions. Detailed molecular
microbial assessments of Antarctic terrestrial ecosystems have,
in contrast, demonstrated that Antarctic soil environments,
including those from true frigid desert soils, harbor broad
lineages with flexible functions that are comparable to other
ecosystems globally (Cowan et al., 2002, 2014; Cary et al.,
2010). In comparison, strong regional variation in Cyanobacteria
and Archaea distribution was observed when comparing the
distributions of these taxa across different desert habitats
(Bahl et al., 2011; Bates et al., 2011). Separately, examination
of the global distribution of cold-adapted genera including
Polaromonas, Psychrobacter, and Exiguobacterium suggested that
the Antarctic species formed distinct mono- and/or paraphyletic
clusters specific to Antarctica when compared with close
representatives from other regions (Rodrigues et al., 2009; Darcy
et al., 2011).

At a regional scale, geographical isolation clearly contributes
to Antarctic microbial community diversification (Papke and
Ward, 2004; Bahl et al., 2011). Indeed, simply by using the
pragmatic and non-scientifically established geographical sectors
of Antarctica outlined by Pugh and Convey (2008), Chong
et al. (2012b) showed significant genetic separation in 16S rRNA
gene sequences between soil bacterial communities obtained
from the different sectors, a separation that was particularly
apparent in Flavobacterium and Arthrobacter (Figure 1)

although, again, such conclusions may be influenced by the
application of inconsistent methodologies. However, the pattern
found was also consistent with the Gressitt Line of Chown
and Convey (2007), potentially suggesting the presence of a
“universal” spatial constraint for both Antarctic higher and lower
organisms.

Overall, we suggest that the spatial organization of Antarctic
prokaryotic communities is highly dependent on the spatial scale
studied. At small to moderate spatial scales (100 m–1000 km),
community assembly is highly sensitive to the heterogeneity in
local physicochemical parameters. At regional scale (>1000 km),
however, the disparity in membership may reflect stronger
influence of historical contingency (sympatric speciation) and
dispersal limitations than geomorphological variation per se.

Issues and Limitations of Antarctic
Prokaryotic Biogeography

Various limitations currently hamper the interpretation of spatial
patterns in Antarctic prokaryotic communities. We highlight
some of the major hurdles faced here.

Species Conundrum
Clear definition of species or taxonomic unit is a major
prerequisite of efforts to characterize spatial patterns of
distribution. As prokaryotic microorganisms, along with
many algae and fungi, are generally cryptic (morphologically
indistinguishable) and metabolically flexible, the distinction
between different “species” is commonly based on variation in
a phylogenetic marker (e.g., the 16S rRNA gene). The use of
the phylogenetic markers has several advantages (e.g., they are
evolutionarily conserved in all prokaryotes, lateral transfers of
the genes are rarely reported, large databases are available, and
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FIGURE 1 | Regional bacterial biogeography pattern based on the 16S rRNA gene data information. A strong genetic separation was detected in the
overall soil bacterial community composition and Bacteroidetes assemblages retrieved between zone A (yellow) and zone B (purple; Chong et al., 2012b),
representing different sides of the “Gressitt Line” (dotted line). A similar pattern was observed in bacterial isolates affiliated with the genera Flavobacterium and
Arthrobacter (Chong et al., 2013).

the need for pure isolates is removed; Hugenholtz, 2002; Cole
et al., 2009; Fierer and Lennon, 2011), although the inference of
ecological role using phylogenetic markers alone is not always
straightforward. For instance, variability between bacterial
genotype and phenotype is well-documented (Fuhrman, 2009;
Priest et al., 2012). Indeed, the level of variability in phylogenetic
markers is itself variable across taxa (De Wever et al., 2009;
Fraser et al., 2009), raising the often ignored problem that
there is no clear or universally accepted level of variation
required for the definition of a distinct species (Green and
Bohannan, 2006), either within a particular lineage or across
groups more generally. In Antarctic bacterial studies to date,
a range of 97–99% cut-off points in sequence homology in
the 16S rRNA gene has been applied (Aislabie et al., 2008;
Newsham et al., 2010; Pearce et al., 2010; Peeters et al., 2011a).
One alternative approach to overcome this problem is to define
the phylogenetic relationship using the “metagenomics binning”
strategy of Sharon et al. (2013). However, the assembly of short
metagenomic fragments can itself be erroneous as it is sensitive
to the occurrence of dispersed repeats. This is further exacerbated
by the presence of closely related but heterogeneous genomes
common in natural microbial populations. Nevertheless,
these issues are being addressed through improvement in
sequencing platforms and chemistry (e.g., Illumina TruSeq,
Pacific Biosciences sequencing) that permit the generation of

long and structurally explicit reads (Quail et al., 2012; Sharon
et al., 2015).

Technical Limitations
Over the past century, considerable progress has been made in
the understanding of prokaryotic diversity in Antarctica. In the
early 1900s the isolation of microorganisms quickly disproved
the general perception that Antarctica is “sterile and devoid
of life,” and it was already observed that the isolates were
phenotypically similar to those from tropical and temperate
regions. In the 1990s, by comparing Antarctic isolates with
their closest relatives from elsewhere, a few studies started to
suggest that the former were genetically distinct (Franzmann and
Dobson, 1993; Franzmann, 1996). However, the true spectrum
of prokaryotic life in Antarctica still lay beyond the reach of
scientific study owing to the lack of isolates and ability to develop
cultures.

This started to change when molecular microbiological
profiling and cloning techniques came into play (Nocker et al.,
2007). Antarctic soil profiling is now typically revealing a high
diversity of microbial life, including in less studied habitats
such as hypolithic and endolithic environments (Pointing et al.,
2009; Cowan et al., 2010). Relatively recently, the advent of
massively parallel NGS is further improving our knowledge of the
functionality and diversity of Antarctic prokaryotic communities
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(Bates et al., 2011; Pearce et al., 2012; Tytgat et al., 2014; Kim et al.,
2015). It is important to highlight that interpretation of NGS
data is highly dependent on the quality of sequence assembly,
OTU assignment and annotation. As suggested earlier, the key
issue is to produce high quality long reads for downstream
bioinformatics analysis.

The wealth of new data has improved the interpretation of
ecological dynamics and diversity in Antarctic ecosystems (Cary
et al., 2010; Cowan et al., 2014). It is, however, important to
realize that diversity patterns have commonly been inferred
by comparing preceding reports from similar habitats, or the
collation of a series of local data for regional interpretation.
Such approaches have usually involved studies with inconsistent
methodologies and hence need to be handled with care.

Our understanding of the distribution of the rare members
(contributing <0.05% overall diversity – for the purposes of this
paper we consider 0.05% as ‘rare,’ although there appears to be no
accepted definition in microbiological studies) of the Antarctic
biosphere remains particularly weak. Although high-throughput
NGS approaches provide a better option for capturing these rare
community members than clone library and profiling methods,
their short-read length is only suitable for informing on the
presence of rare species and provides little information about
their ecological role and functions (Sharon et al., 2015; Youssef
et al., 2015).

Further, it is known that DNA/RNA extraction techniques
may be selective toward purifying the genetic signature of taxa
with weak cell walls (Hirsch et al., 2010). It is also unclear how
representative the extracted DNA/RNA is, as the mechanism of
interaction between soil, DNA and RNA is poorly understood
(Lombard et al., 2011). For example, legacy DNA and RNA may
contribute a substantial fraction of the detected gene signature
in Antarctic soil due to enhanced preservation under the cold
and arid environmental conditions (Chong et al., 2013; Cowan
et al., 2014). The requirement for application of PCR, especially in
cloning, DNA profiling and targeted metagenomics approaches,
also introduces potential bias into the downstream interpretation,
as sequences with high affinity to the primer sequences may be
preferentially amplified in this process (Taberlet et al., 2012).

It is intuitively obvious that the application of one approach
will not be sufficient to provide a complete picture of
the prokaryotic community in Antarctica (or elsewhere).
As the available technology advances, detailed systems
biology approaches linking the diversity, RNA transcript
(metatranscriptomics), metabolite (metabolomics), and protein
(metaproteomics) signatures will be required to examine the
contribution of richness and diversity to the ecological services
provided by Antarctic prokaryote communities (Zengler and
Palsson, 2012).

Lack of Spatial Coverage
Microbiological studies in Antarctica have taken place since
the earliest expeditions exploring the continent (Ekelöf, 1908).
Until recent decades, studies have been culture-based and
focused on describing the novelty of isolated strains, and to
relating apparent diversity to local environmental features (e.g.,
Holdgate, 1977; Franzmann and Dobson, 1993). Historically

such studies, which generally do not require elaborate systematic
spatial sampling methodologies, have often been opportunistic
in nature, depending on the presence of particular researchers
with appropriate specialist skills at any given location and
season (Chown and Convey, 2007). Consequently, historical
microbiological work has been heavily spatially biased to areas
accessible from particular research stations and, in particular,
to a few relatively well-sampled regions in the Scotia Arc, west
Antarctic Peninsula, McMurdoDry Valleys and the coastal region
of Wilkes Land (Smith et al., 2006; Aislabie et al., 2008; Chong
et al., 2012b, 2013; Dennis et al., 2013).

The global ubiquity theory postulates that the dispersal
potential of microbes (including prokaryotes) is less confined by
geographical barriers than is the case for larger organisms (Baas
Becking, 1934; Finlay, 2002). While the universal applicability
of this theory is increasingly questioned (Martiny et al., 2006;
Woodcock et al., 2007), studies such as DeWever et al. (2009) and
Bahl et al. (2011) do appear to suggest strongly that the Antarctic
microbiota is more distinct than that of the other continents
globally, supporting the effectiveness of the barriers isolating the
Antarctic continent.

There is a general consensus that the influence of abiotic
factors in population selection is expected to be amplified under
harsh Antarctic conditions (Barrett et al., 2006a; Hogg et al.,
2006). Perhaps as a result, most microbial biogeographical studies
to date in Antarctica have given strong emphasis to the role of
local environmental drivers in defining community composition
and structure (Barrett et al., 2006b; Chong et al., 2010; Ganzert
et al., 2011; Magalhães et al., 2012), and few have considered the
spatial patterns, controls and functions that might be apparent at
a larger sampling scale in Antarctica.

While lack of spatial coverage is a limitation that has
been identified as being common to all other major Antarctic
taxonomic groups (Chown and Convey, 2007, 2012; Peat et al.,
2007; Convey et al., 2012; Terauds et al., 2012), the limitation
is more severe in the prokaryotes than in eukaryotic groups.
Placed this in context, at present bacteria and archaea together
contribute less than 6% of the total records available in the
ABD2 (accessed 9 August, 2015). However, spatial issues are now
gaining increasing attention, and have formed an integral part
of recent scientific initiatives of several national operators such
as the United Kingdom (Ecosystems Programme3), Australia
(Terrestrial and Nearshore Ecosystem programme4) and New
Zealand (New Zealand Terrestrial Antarctic Biocomplexity
Survey5). The need for increasingly close cooperation in the
form data of sharing, sampling coordination and field support
has been identified clearly in the recent Scientific Committee
on Antarctic Research ‘Antarctic and Southern Ocean Horizon
Scan’ (Kennicutt et al., 2014a,b). With the ever-increasing data
becoming available, more light will be shed on the effect of spatial
scaling on Antarctic biotas.

2https://www1.data.antarctica.gov.au/aadc/biodiversity/taxon_drilldown.cfm
3http://www.antarctica.ac.uk/bas_research/our_research/current/programmes/
ecosystems/
4http://www.antarctica.gov.au/science/terrestrial-and-nearshore-ecosystems-
environmental-change-and-conservation
5http://www.ictar.aq/nztabs.cfm
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Ecological Functions and Biogeography
of Antarctic Bacterial Communities

There is general agreement on there being a positive correlation
between species diversity and functional richness: the greater
the number of species, the greater the functional richness of a
community, or alternatively, fewer species being present leads
to a lack of functional redundancy (Peterson et al., 1998). In a
highly diverse ecosystem, the likelihood of overlapping ecological
function between species increases, creating communities
that may be functionally similar despite involving different
combinations and proportions of individual species.

Due largely to the absence of the major soil eukaryotic groups
and the lack of biotic interactions (Hogg et al., 2006), functional
redundancy is often assumed and predicted to be low in Antarctic
soil (Convey, 2007a). If so, then each species in a given Antarctic
community might be responsible for the provision of a distinct
and irreplaceable ecological function. This idea is in congruent
with the observation of low nematode species count and low
cross-biome functional diversity in Antarctic Dry Valley soils
(Wall and Virginia, 1999; Fierer et al., 2012). As ecological
resilience is built upon the functional diversity of the ecosystem,
habitats hosting extremely low biodiversity, as has been suggested
for some inland dry valley ecosystems in Antarctica (Wall and
Virginia, 1999; Hodgson et al., 2010; Fernandez-Carazo et al.,
2011; Peeters et al., 2011b), might be particularly vulnerable to
environmental disturbance (Tiao et al., 2012). Combining the
concepts of low biodiversity and limited function, the detection of
regional bacterial biogeography within Antarctica may also imply
the presence of regional-specific variation in functional capability
in the continent’s soils.

Yergeau et al. (2007a, 2009) provided evidence of a close
relationship between phylogenetic diversity and functional gene
distribution in Antarctic soil. Using a combination of Geochip
microarray and real-time PCR approaches, they suggested that
a significant proportion of the variation in functional diversity
observed along a latitudinal transect in fellfield soils between
the Falkland Islands (51◦S), Signy Island (60◦S), and Anchorage
Island (67◦S) could be explained by geographical location,
with the three locations harboring phylogenetically distinct soil
bacterial communities (Yergeau et al., 2007b).

Chan et al. (2013) assessed the functional diversity of the
McKelvey Valley in the McMurdo Dry Valleys, using a much
updated Geochip microarray. They established, in contrast to
the previous study, that Antarctic hypoliths, chasmoendoliths
and bare soil hosted significantly different functional diversity,
with the former including a greater range of stress-response
related genes, and the latter including specific genes affiliated
with hydrocarbon transformation and lignin-like degradation
pathways. However, little functional variation was detected
between the five bare soil samples examined, despite the
samples having previously been shown to support heterogeneous
phylogenetic diversity (Pointing et al., 2009). Similarly, Yergeau
et al. (2012) showed that the majority of members of the
Antarctic Peninsula soil community were functionally similar
(functional generalists) despite apparent differences in microbial
diversity particularly between vegetated and non-vegetated sites

(Yergeau et al., 2007b), potentially indicating some level of
redundancy in the Antarctic soil system. The number of
functional genes detected in these soils was also surprisingly
high in absolute terms, with some sites in the McMurdo Dry
Valleys harboring functional richness comparable to temperate
and tropical forests (Fierer et al., 2012).

Several recent studies applying newly available molecular
approaches have drawn conclusions relating to microbial
diversity that are contrary to the common belief that reduced
biodiversity in Antarctica equates to a functionally challenged
ecosystem (Cowan et al., 2002; Pearce et al., 2012; Stomeo et al.,
2012). This highlights the need to develop studies examining
microbial interactions, such as communication (e.g., quorum
sensing and quenching) and competition in these systems.
For instance, Clostridium and Flavobacterium, which usually
dominate nutrient-rich habitats such as penguin rookeries
(Aislabie et al., 2009), penguin guano (Zdanowski et al., 2005)
and the rhizosphere (Teixeira et al., 2010) were also part of the
core phyla detected in extremely arid mineral soils (Tiao et al.,
2012). These lineages may play a pivotal role in nutrient release
in the event of chance deposition of nutrients (e.g., in the form
bird perches or seal carcasses) in the Dry Valleys (Cary et al.,
2010; Tiao et al., 2012). In parallel, Hughes and Lawley (2003)
detected the fungal genus Verticillium, rarely found in saline
habitats, in gypsum encrusting rocks on Alexander Island in
the maritime Antarctic. One explanation for the detection of
such “unusual” taxa might be that the low competition in these
less diverse environments facilitated greater success of “chance
colonization” for rare species, allowing them to develop greater
flexibility and occupy niches that would typically be occupied
by other specialists in more diverse systems (Chase and Myers,
2011). In addition, Székely et al. (2013) suggested that species
sorting is more prominent in competitive environments.

A meta-analysis of studies examining diversity–function
relationships (Nielsen et al., 2011) concluded that species
diversity and functional properties in soil systems did not have
a simple linear relationship, rather often showing idiosyncratic
patterns. They further concluded that species traits were more
important in controlling functionality in the ecosystem than
richness per se. This would suggest both that loss of an individual
species may not always translate into a detrimental effect on
ecological function, and that the absence of a species with an
important trait will be catastrophic to the maintenance of the
ecosystem. This is consistent with the argument of Konopka
et al. (2014) that, while microbial community composition is
in constant flux, functionality can remain steady as long as the
function is maintained by populations within the community.

Developing this concept further, and integrating the
increasing reports of bacterial regionalization within the
Antarctic (Yergeau et al., 2007b; Chong et al., 2013; Sokol et al.,
2013), we propose here a new conceptual model to explain
the mechanism underlying species-function relationships in
Antarctica. The Antarctic soil ecosystem is supported by a highly
diverse but region-specific bacterial community. For instance,
nutrient-rich (e.g., penguin rookeries) and nutrient-poor (e.g.,
barren soil) environments from different Antarctic regions
contain both copiotrophs (high nutrient requirement, e.g.,
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FIGURE 2 | A representation of Antarctic bacterial community dynamics in response to external environmental perturbation. We believe that the
Antarctic soil system harbors diverse functional traits that are preferentially selected based on suitability for the contemporary environmental conditions. Major
environmental alteration may result in currently rare species being selected for and a major community compositional shift occurring. Note that habitats from different
Antarctic regions may harbor different species with similar traits (upper vs. lower row).

Flavobacterium spp.) and oligotrophs (low nutrient requirement,
e.g., Acidobacterium spp.; Fierer et al., 2007; Aislabie et al., 2008;
Chong et al., 2010; Bottos et al., 2014a). Soil samples obtained
across different regions exhibit distinct community memberships
with reference to these groups, but the phylogenetic similarity
of their members is greater within the same biogeographic
region than it is between regions (Figure 2, comparing upper
and lower panels). In any particular system, the biomass of the
copiotrophs and oligotrophs is dependent on the ecological
characteristics of the habitat present. Nutrient-poor habitats
host a greater percentage of oligotrophs such as Acidobacteria
that convert recalcitrant carbon such as xylan (from autotrophs)
and pectin (from wind-blown plant materials) into labile carbon
(Bokhorst et al., 2007; Ward et al., 2009), while copiotrophs such
as some Bacteroidetes dominate nutrient-rich sites, degrading
the available high molecular weight organic carbon (Zdanowski
et al., 2005; Aislabie et al., 2008; Chong et al., 2010). Changes
in local environmental conditions, such as deposition of
nutrients through aeolian transfer, or loss through leaching, can
trigger rapid community turnover to match the new functional
requirement (Saul et al., 2005; Barrett et al., 2006a; Tiao
et al., 2012; Dennis et al., 2013; Figure 2). If such community
compositional shifts involve specialists (rare species with unique
traits) being lost or reduced below a critical biomass level, this
may become a limiting factor in responding to subsequent
changes (Figure 3).

We acknowledge that this hypothesis could be difficult to test
under normal field conditions due to the technical limitations
applying to currently available molecular microbiology
approaches, such as detection limits (for rare biosphere <0.05%)
for both diversity and function and problems in discriminating
the functions of individuals from various populations of the
same community. Nevertheless, it was evident from a field study
by Tiao et al. (2012) that rapid compositional shift in in response
to nutrient enrichment by a seal carcass was detectable in the
McMurdo Dry Valleys. One practicable approach to testing
this would be to conduct detailed functional quantification in a
series of microcosm experiments (cf. Newsham and Garstecki,
2007), analyzing the outcomes using long metagenomic reads
(Sharon et al., 2015). Eachmicrocosm would encompass different
combinations of phylogenetically distinct microbial isolates with
known function in order to represent a diversity gradient.
Ecological thresholds could then be determined by comparing
the minimum biomass of any given specialist required before a
drop (‘step change’) in any ecological function is detected when
growth conditions are altered.

Conclusion

Over the last decade, rapid advances in molecular methodologies
and progressive improvement in sampling strategies have started
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FIGURE 3 | Schematic illustration of an oligotroph’s response to
alteration in local nutrient content. The oligotroph is suppressed
periodically when large amounts of nutrients are available. Biomass then
returns to the original level when the nutrients become depleted by the
copiotroph, promoted by environmental change. In the event of prolonged
nutrient alteration oligotrophs may drop below the biomass threshold (lower
graph), and it will not recover even if nutrient levels returns to the original state.

to realize some of the vast potential of Antarctic microbiology.
Despite continuing restrictions in spatial coverage, Antarctic
microbiologists are now increasingly confident that Antarctic
soil ecosystems harbor a rich bacterial community performing
versatile ecological functions (Cowan et al., 2002; Pearce et al.,
2012; Chan et al., 2013). Based on recent molecular studies, it is
clear that the functional capability of Antarctic soil communities
is not simply linearly related to species richness, and considerable
functional overlap has been observed between species (Yergeau
et al., 2012; Chan et al., 2013). This is an important paradigm
shift from the long-held view of simple ecosystems with low
functional redundancy typifying Antarctica (Wall and Virginia,
1999).

Recent studies also demonstrate that the Antarctic soil
microbial ecosystem is flexible and capable of rapid community
adjustment in response to external environmental fluctuation
(Tiao et al., 2012; Dennis et al., 2013). Such functional resilience
may be a result of phenotypic plasticity of Antarctic biota and
millions of years of adaptive selection. Nevertheless, we propose

that community organizational shifts in response to perturbation
are limited by the threshold biomass of the often rarer species
that provide important functions required under contemporary
environmental conditions (Figure 3). This, however, does not
mean that the generalists forming the dominant biosphere
are unresponsive to the environmental changes. For instance,
rapid ecological drift was found to affect both prevalent and
rare phyla in a multi-year mummified seal transplantation
experiment conducted in the McMurdo Dry Valleys (Tiao et al.,
2012).

Building on the observation of highly specific and localized
patterns of bacterial biodiversity in community membership,
and the presence of bacterial zonation or regionalization
within Antarctica we suggest that, under comparable
environmental conditions, the “limiting species” for ecological
function will not be the same across different Antarctic
regions.

Our model has important implications both to the direction
of future research and to biosecurity management of Antarctic
microbial ecosystems. First, it is important to understand
how cross-trophic interactions are maintained under relevant
spatial scales for both the prokaryotic and eukaryotic elements
of the Antarctic terrestrial ecosystem. For instance, we now
understand that, at a superficial scale, the Gressitt Line
boundary may be applicable to both Antarctic macro- and
microbiotas, but it is not clear whether parallel ecosystems
across this boundary display similar or different trophic
networks.

Second, acknowledging that each biogeographical region
comprises phylogenetically distinct communities, it is
imperative to identify the different key limiting species that
determine functional resilience at different scales of spatial
organization. However, given that functionally limiting
species are often minority community elements, it can be
challenging to detect their presence. As a further complication,
the molecular signature of target species can potentially be
masked by legacy DNA or RNA preserved under cold and
arid Antarctic conditions. There is also currently a lack of
knowledge of biomass or abundance thresholds required to
sustain “specialist” populations. In order to generate greater
understanding, there is a pressing need to extend the spatial
coverage of microbial research across Antarctica, and the
temporal sampling of field manipulation studies similar
to those performed by Yergeau et al. (2012) and Dennis
et al. (2013). Additionally, research should also focus on the
evaluation of varying responses of communities in each distinct
Antarctic biogeographic region to environmental variability
and change, the introduction of non-native microbiota, and
other anthropogenic impacts (Tin et al., 2009; Cowan et al.,
2011; Chown et al., 2012). In conclusion, currently available
evidence generally supports the proposition that Antarctic
prokaryotes display large-scale regional biogeography similar
to the patterns detected in eukaryotic groups. This allows
a pragmatic comparison of the prokaryote and eukaryote
spatial scaling and spatial patterns. Current functional
assessments also point to the likelihood of functional
redundancy existing in Antarctic prokaryotic communities.
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Nevertheless, it is clear that several key pieces of the puzzle
are still missing, including the lack of spatially explicit
information, and data on the genetics and functions of the
rarer members of the Antarctic microbial communities. These
gaps can be addressed in part through developing coordinated
fundamental microbiology surveys across Antarctica, and
complementary functional assessments through mesocosm
studies.
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