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One Sentence Summary: A decade of measurements has revealed some surprising 

aspects of the Atlantic meridional overturning circulation (AMOC) 

 

Abstract: The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat 

transport for climate is well acknowledged. Climate models predict that the AMOC will 

slowdown under global warming, with significant impacts, but measurements of ocean 

circulation have been inadequate to evaluate these predictions. Observations over the past 

decade have changed that situation, providing a detailed picture of variations in the AMOC. 

These observations reveal a surprising degree of AMOC variability in terms of the intra-

annual range, the amplitude and phase of the seasonal cycle, the inter-annual changes in 

strength affecting the ocean heat content, and the decline of the AMOC over the decade, both 

the latter two exceeding the variations seen in climate models. 

 

Main Text:  

In 2002 the US National Research Council Committee on Abrupt Climate Change published 

its findings in a book entitled Abrupt Climate Change: Inevitable Surprises?(1) One process 

highlighted in that book, because it could possibly be subject to abrupt change in a warming 

climate, was the North Atlantic thermohaline circulation (THC). The work leading up to the 

publication of this book, together with the conclusions of the IPCC Working Group I Third 

Assessment Report (2) that most models showed a weakening of the THC over the 21st 

century, generated renewed efforts to make observations of the AMOC. In particular, it led to 

the establishment of the Rapid Climate Change program (RAPID) (3). A key element of 

RAPID was the proposal to monitor the Atlantic Meridional Overturning Circulation 

(AMOC) (4, 5) at 26.5˚N in the Atlantic. The observing system (see schematic in Fig. 1) was 

deployed in March 2004 and results from the first year of observations were published in 

2007 (6, 7). In 2014 the observing system reached a major milestone by completing a decade 
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of operation. Here we provide an updated description of what is known about the AMOC 

from recent observations and highlight some of the surprises that these observations have 

produced. 

 

Background 

The major characteristics of the AMOC are a near-surface, northward flow of warm water, 

and a colder southward return flow at depth. As the ocean loses heat to the atmosphere at 

high latitudes in the North Atlantic the northward-flowing surface waters become denser. 

These waters then sink and so form the deep return flow of the overturning circulation (Fig. 

1). The AMOC transports heat northwards across the equator, which makes the Atlantic 

different from the Indian and Pacific Oceans, where the ocean transports heat away from the 

equator towards the poles. The maximum northward oceanic heat transport in the Atlantic is 

1.3 PW (1PW = 1015 Watts) at 24˚-26˚N, which is ~25% of the total (atmosphere and ocean) 

poleward heat transport at these latitudes (8, 9). Further north, at mid-latitudes, the strong 

transfer of heat from the ocean to the atmosphere contributes to the temperate climate of 

northwest Europe (10-12). In addition, changes in sea level around the periphery of the North 

Atlantic are related to changes in the AMOC (13-15). Therefore, future changes in the 

AMOC could have significant impacts (16, 17). 

 

The importance of the AMOC for climate was highlighted by Broecker (18) with his “great 

ocean conveyor” picture, based on paleoclimatic evidence (19, 20). From the results of 

calculations using a simple two-box model, Stommel (21) suggested that the circulation could 

switch between “on” and “off’ states under appropriate forcing, such as the addition of 

freshwater at high latitudes (22, 23). While this picture of the circulation is now 

acknowledged to be too simple, the possibility that the AMOC could switch between 

different states has been shown to occur in more complex climate models (24, 25), so that the 

AMOC could be bi-stable. 

 

Given the importance of the AMOC, and its potential to decline and perhaps even switch off, 

the observing system deployed at 26.5˚N in the Atlantic became the first attempt to 

continuously measure the strength and vertical structure of the AMOC. The measurements 

began on the last day of March 2004 and have continued since then (26). The key 

components of the AMOC (Fig. 1) and the methods by which they are quantified are: the 

Gulf Stream transport through the Florida Straits measured by seabed cable; the Ekman 
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transport calculated from wind stress; and the mid-ocean transport measured by an array of 

moorings at the western and eastern boundaries and mid-Atlantic Ridge (27-29). The first 

year of measurements established that the system was able to accurately measure the AMOC 

(30) and subsequent studies have confirmed this initial assessment (31-33). It is important to 

note that the measurements provide information not only on the AMOC strength itself but 

also on the major components of the circulation: Gulf Stream, Ekman, upper mid-ocean 

recirculation, southward flow of the Upper and Lower North Atlantic Deep Water (UNADW 

and LNADW) and the northward flow of the Antarctic Intermediate Water (AAIW). In 

addition to RAPID, there have been other on-going measurements of the AMOC, but these 

capture only part of the AMOC, or are not continuous, or are of much shorter duration. They 

include the MOVE array at 16˚N (34), the Deep Western Boundary Current (DWBC) arrays 

at around 39˚N (35) and 53˚N (36), the 34.5˚S array (37, 38), the use of altimetry and Argo at 

around 41˚N (39, 40), and the OVIDE hydrographic sections (41). Recently, a new 

component of the AMOC, the so-called East Greenland spill jet, has been identified from a 

year of mooring observations (42), but its importance in the long-term for the overall AMOC 

remains to be confirmed.  

 

The focus of this review is on observations of the AMOC (43) as models still show 

considerable differences in their representations of the overturning circulation (44). Figure 2 

shows the full 10 year AMOC time series at 26.5˚N obtained to-date by RAPID. These 

measurements provide insights into the changes occurring in the AMOC, which include a 

number of surprises on all time scales: intra-annual, seasonal, inter-annual and multi-annual. 

 

Intra-annual and seasonal AMOC variability 

The first surprise was the range of values found for the strength of the AMOC during the 

initial year of RAPID observations. While the annual average strength of 18.7 Sv (45) was 

not unexpected, the range from a minimum of 4 Sv (February) to a maximum of 34.9 Sv 

(September) was a surprise (6). Prior to the deployment of the 26.5˚N observing system the 

five ship-based hydrographic measurements of the AMOC made at this latitude since the 

1950s had shown a range of ~15 to 23Sv (46), so the first year’s intra-annual variability 

exceeded the historical estimates of the AMOC. Subsequently a similar range of intra-annual 

variability (3 to 39 Sv) has been found in the 20 months of measurements of the AMOC 

made at 34.5˚S (37). 
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The next surprise came from the analysis of the AMOC seasonal cycle after 4 years of 

RAPID observations had been acquired (47). As the longer-term observations of the Gulf 

Stream (27, 48) had shown that it exhibited a seasonal cycle of ~4 Sv with a maximum in 

summer, the seasonal cycle of the AMOC of ~6.7 Sv, with a minimum in the spring and a 

maximum in the autumn, came as a surprise. In addition, the perceived wisdom was that the 

seasonality in the AMOC would be dominated by wind-driven northward Ekman transport, 

but this was found to be small. The result that the seasonal cycle was dominated by the wind 

stress curl forcing at the eastern boundary came as further surprise (47). Results from the 

OVIDE analysis (41) of the Portugal to Greenland hydrographic section similarly show, from 

1993 to 2010, a seasonal cycle with a peak-to-peak amplitude of 4.3Sv mostly due to the 

geostrophic component, with a much weaker Ekman component. The Argo and altimeter 

estimates of the AMOC upper limb at around 41˚N from 2002 to 2009 show a small and 

irregular seasonal cycle (39). 

 

Characterization of the seasonal cycle allowed the previous five ship-based hydrographic 

estimates of the AMOC strength at the RAPID latitude (46) to be corrected for seasonal 

sampling bias, as they had been acquired at different times of the year. This resulted in a re-

assessment of the apparent decline of the AMOC between 1957 and 2004 as partially being 

an artifact of the sampling (49). 

 

The first 4 years of RAPID observations also confirmed the average strength of the AMOC at 

26.5˚N to be 18.7±2.1 Sv, in agreement with the annual average for the first year. However, 

the result that the mean strength of the AMOC seemed to be unchanging, despite large 

seasonal and intra-annual fluctuations, seemed at odds with the expectation that the AMOC 

might decline, though the time series was acknowledged to be too short at that time to draw 

any strong conclusions. Nevertheless, the apparent stability of the seasonal cycle paved the 

way to the next surprise. 

 

Inter-annual AMOC variability 

After having observed 5 years of relatively stable seasonal cycles of the AMOC, when the 

data for 2009-10 were recovered from the 26.5˚N array another surprise was in store. From 

Spring 2009 through Spring 2010 the AMOC was found to have taken a large ~30% dip in 

strength, before recovering later in 2010 (Fig. 2) (50). For the previous 5 years the average 

strength of the AMOC had been 18.5 Sv, whereas in 2009-10 it was 12.8 Sv (years are taken 
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to run from April to March, due the initial deployment of the observing array being in late 

March 2004). This dip in strength was also seen in the Argo and altimetry observations of the 

upper limb of the AMOC at 41˚N but not in the 16˚N observations of the deep western basin 

return limb of the AMOC (51). This raises the question of the meridional coherence of 

changes in the AMOC, a point to be discussed below. 

 

The 2009-10 dip in strength can be partially attributed to an extreme negative North Atlantic 

Oscillation (NAO) winter which affected the wind field reducing, and for a period reversing 

(December 2009 – March 2010), the northward Ekman transport component of the AMOC. 

In addition, the upper mid-ocean recirculation component of the AMOC strengthened starting 

in Spring 2009 prior to the negative NAO winter, leading to a reduction in the AMOC. 

Finally, the AMOC deep southward return limb flow, the so-called Lower North Atlantic 

Deep Water (LNADW) at 3000-5000m depth, weakened in concert with the upper ocean 

northward flowing limb. This change in AMOC strength was found to lie well outside the 

range of inter-annual variability predicted by coupled atmosphere-ocean climate models (52). 

 

As the AMOC carries ~90% of the ocean heat transport at this latitude (with the gyre 

circulation carrying the remainder) (53), this AMOC reduction had a significant impact on 

the heat transport into, and the heat content of, the North Atlantic (54, 55). The heat 

transported north by the AMOC at 26.5˚N in previous years was around 1.3 PW (53), and this 

transport was reduced by 0.4 PW, resulting in cooler waters to the north and warmer waters 

to the south. Observations showed that there was an abrupt and sustained cooling of the 

subtropical North Atlantic in the upper 2000m between 2010 and 2012 primarily due to the 

reduction of the AMOC. From late 2009 over a 12 month period the ocean heat content, 

between the latitudes of 26.5˚ and 41˚N, reduced by ~1.3 x 1022 J (54, 56) and then increased 

again into 2011. Corresponding to this cooling of the subtropics was a warming of the tropics 

to the south of 26.5˚N in 2010 (Fig. 3). This warming of the region of the Atlantic associated 

with hurricane genesis coincided with the strongest Atlantic hurricane season since 2005 (as 

measured by Accumulated Cyclone Energy) (57). The links between changes in the AMOC, 

upper ocean heat content and atmospheric response represent an active area of research. For 

example, the ocean has been implicated in the re-emergence of sea surface temperature 

anomalies from the winter of 2009-10 during the following early winter season of 2010-11, 

which contributed to the persistence of the negative winter North Atlantic Oscillation (NAO) 
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and wintry conditions in northern Europe (58). Such behavior may lead to improved 

predictions of the NAO and winter conditions (59, 60). 

 

The origin of and explanation for the 2009-10 event remain uncertain. Various explanations 

have been proposed (61, 62), but so far have failed to explain the changes in LNADW (and 

the lack of change in the Upper North Atlantic Deep Water – UNADW – between 1000 and 

3000m depth) (50). This, together with the fact that the event lies well outside the range of 

inter-annual variability predicted by coupled atmosphere-ocean climate models, poses a 

significant research challenge. 

 

Multi-annual AMOC variability 

Although the 26.5˚N observing system has only just completed its first decade of observation 

and it is premature to comment on decadal change, there is one further surprise that the 

observations have provided on the multi-annual timescale over that decade. Analysis of the 

first eight and a half years of the observations has shown a decline in the AMOC over that 

period (April 2004 to October 2012; see also Fig. 2) (63). The estimated trend was a decline 

of ~0.5 Sv / year, which exceeds the decline predicted by IPCC-class climate models over the 

next 100 years, which is of the order of ~0.05 Sv / year (64, 65). This result is robust with 

respect to the inclusion / exclusion of the 2009-10 AMOC event described above (63). 

Although changes in the Gulf Stream and Ekman contribute to the decline the major 

components of the AMOC that are changing are increasing southward transport in the upper 

mid-ocean, that is a strengthening of the subtropical gyre recirculation, and a corresponding 

decrease in the southward transport of LNADW (63). Earlier observations from the MOVE 

array at 16˚N, which observes the deep western basin limb of the AMOC, found a decline in 

that flow of ~3 Sv over a decade (2000-2009) (34). In contrast, observations of the outflow 

from the Labrador Sea for 1997 to 2009 show no indication of a decline, but again these only 

measure one component of the AMOC (36). Another recent study, using a model and 

observations in the North Atlantic (though not direct measurements of AMOC) seems to 

confirm that the AMOC may be declining at the present time (66). Of course, it is possible 

that the decline may be part of a longer-term cycle such as the so-called Atlantic Multi-

decadal Oscillation (AMO) or Variability (AMV) (67), or simply decadal variability, rather 

than a response to climate change. This underlines the need for continuing observations of the 

AMOC in order to be able to distinguish between the different mechanisms that might be 

responsible for the observed changes (52). 
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Given the lack of direct observations over multi-annual and longer times scales researchers 

have generally resorted to the use of proxies to try to understand longer-term changes in the 

AMOC. Until such proxies can be validated against direct measurement of the AMOC there 

will always be a question regarding their ability to capture the true behavior of the AMOC. 

Nevertheless, here we describe two recent attempts to study the AMOC using proxies (68). 

First, consider the study based on the so-called OVIDE hydrographic section from Portugal 

to Greenland (41). This makes use of six hydrographic sections from 1997 to 2010 and a 

proxy based on radar altimeter and Argo measurements from 1993 to 2010 to span the gaps 

between the sections and extend back in time to 1993. The analysis was carried out in density 

coordinates and shows an average AMOC strength of 18.1Sv with an overall decline of 2.5Sv 

over 1993-2010. Second, consider another recent study (69) that uses the difference between 

the surface temperature in the North Atlantic subpolar gyre and the whole Northern 

Hemisphere as a proxy for the AMOC. Based on temperature reconstructions for the past 

1000 years, the study concludes that there has been an exceptional twentieth-century 

slowdown of the AMOC. Of course, how strong a conclusion this is depends crucially on the 

link between the proxy and the AMOC and over what timescales that link exists and whether 

it is robust. 

 

AMOC bi-stability? 

On a more speculative note, one possibility for future AMOC surprises is the issue of the bi-

stability of the AMOC noted earlier. This is related to the transport of freshwater in and out 

of the South Atlantic (70). Observations (71) suggest that the AMOC transports freshwater 

southward in the South Atlantic implying that the AMOC could be bi-stable with on and off 

modes (72). Most climate models exhibit northward freshwater transport, seemingly at odds 

with the observations, implying that the AMOC is stable (73). Some recent climate model 

results show that their freshwater transports can match the southward freshwater transport in 

the observations, but in such climate models the AMOC does not shut down under green 

house gas forcing (64). In point of fact, most climate models do not include a dynamically 

interactive Greenland ice sheet so they are unlikely to correctly account for freshwater input 

into the Atlantic from Greenland melting (74, 75). In addition, the Arctic Ocean supplies 

freshwater to the North Atlantic which would affect the stability of the AMOC (76). If the 

rate of freshwater input were to be greater than currently anticipated, that could lead to 

unexpected changes in the AMOC. Thus there is a possibility that the ocean might respond in 
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a way that most climate models cannot. This point has been made previously from a 

paleoclimate perspective (77, 78), as paleoclimatic evidence suggests that the AMOC can 

undergo rapid changes which climate models find difficult to reproduce. 

 

Recent impacts of AMOC variability 

The possible impacts of AMOC variability have been discussed in previous reviews (5, 16, 

43) so will not be detailed here. However, much recent work has focused on the impact of 

changes in the AMOC on sea levels on the eastern seaboard of the United States, so we will 

briefly discuss that work. As noted earlier, the AMOC affects the sea level around the 

periphery of the North Atlantic and specifically along the US east coast (13-15, 79), although 

this a point of some controversy (15, 80-83). A reduction in the AMOC leads to a rise in sea 

level along the east coast of North America. Recently, the major reduction in the AMOC in 

2009-10, combined with an negative NAO event, has been shown to lead to an extreme sea 

level rise on the northeast coast of North America (84). Within a 2 year period the sea level 

was found to rise by 128mm, a one-in-850 year event. The authors state that the event caused 

persistent and widespread coastal flooding and beach erosion almost on a level with that due 

to a hurricane. This suggests that a longer-term downturn in the AMOC, which might be in 

progress, could have important impacts on the US east coast. 

 

Another possible impact identified recently is the role that the AMOC may have in the 

present so-called “hiatus” in global warming (85). Here the AMOC is invoked to explain 

increased heat storage in the North Atlantic thus reducing the rate of global temperature rise. 

However, other explanations for the hiatus involving the oceans have been suggested (86), so 

the role of the AMOC in the hiatus is uncertain. 

 

Unanswered questions and future surprises? 

Despite the observational efforts over the last decade many questions remain unanswered. 

First, the AMOC is changing but will these changes persist or will the AMOC “bounce back” 

to its earlier strength? Second, are the changes being observed at 26.5˚N coherent 

latitudinally in the Atlantic? Third, was the 2009-10 decrease in the AMOC unusual or not? 

Fourth, is the AMOC bi-stable? Could it “flip” from one state to another? (87) Finally, and 

perhaps most importantly, what are the impacts of changes in the AMOC? 

 

The existence of the 26.5˚N AMOC observations is stimulating the development of further 
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AMOC observing systems both to the north in the North Atlantic Subpolar Gyre and to the 

south in the South Atlantic. This is an acknowledgment that the 26.5˚N observations, while 

providing many novel insights into the AMOC, cannot by themselves fully characterize the 

circulation from south to north in the Atlantic. As a result, in 2014 the Overturning in the 

Subpolar North Atlantic Program (OSNAP) (88) deployed instruments, along a line from 

Canada to Greenland to Scotland, to observe the AMOC in the subpolar gyre, complementing 

the 26.5˚N observations in the subtropical gyre. At the same time a South Atlantic MOC 

observing system is being deployed gradually at 34.5˚S. Known as the South Atlantic MOC 

Basin-wide Array (SAMBA) (89), this will observe the so-called Agulhas ring corridor 

(which is important for transfer of heat and salt from the Indian to the Atlantic Ocean) and 

the eastern and western boundary currents.  Another complementary measurement of the 

AMOC upper limb is that being made by combining data from Argo floats (which measure 

temperature and salinity down to 2000m) and radar altimeter sea surface height data (39-41). 

This approach is limited to regions where the main upper ocean flows are in water depths of 

2000m or greater, thus allowing use of Argo.  

 

Studies are beginning to be made to try to link observations of the AMOC at different 

latitudes, in order to understand its meridional coherence and so obtain a holistic picture of 

the circulation (90-92). For example, these suggest coherence between measurement of the 

AMOC between 26.5˚N and 41˚N on near-annual timescales, with 41˚N leading 26.5˚N by 

approximately a quarter of an annual cycle. 

 

Each additional year of observations made by the AMOC observing systems contributes to a 

better understanding of climate variability and the ocean’s role in that variability. Irrespective 

of whether the present decline in the AMOC continues, ends or reverses, the observations 

will provide a stringent test of different climate models’ abilities and whether their 

projections will prove valid. Likewise another event similar to that which occurred in 2009-

10, leading to ocean heat content changes with possible links to NAO winter weather, 

tropical hurricanes, or sea level rise could stimulate further advances in seasonal forecasting. 

 

The AMOC observations over the last decade have provided both surprises and insights into 

the Atlantic circulation, but many questions remain unanswered. Perhaps it is not too much to 

expect that, together with the new observations being made at various latitudes, there are 
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likely to be further “inevitable surprises.” What these will be remains to be seen and we await 

them with interest. 
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FIGURES 

Fig. 1: Schematic showing the components of the RAPID AMOC observing array at 26.5˚N 

in the Atlantic. The flow through the Florida Straits is measured by underwater cable, the 

mid-ocean flow by the array of moorings at the eastern and western boundaries and the mid-

Atlantic Ridge (using geostrophy), and the surface Ekman flow is obtained from ocean 

surface winds (28, 29). 
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Fig. 2: The 10 year time series of the AMOC measured at 26.5˚N (courtesy of David Smeed, 

NOC). The gray line represents the 10 day filtered measurements, while the red line is the 

180 day filtered time series. Clearly visible are the low AMOC event in 2009-10 and the 

overall decrease in strength over the ten years. 
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Fig. 3: North Atlantic temperature anomaly (˚C) at 50m depth averaged for May-July 2010 at 

the end of the 2009-10 AMOC slowdown event (93). Temperature data are from Argo floats 

and the anomaly is calculated relative to the Hydrobase seasonal climatology. Note the 

cooling (blue contours) of the upper ocean to the north and warming (red contours) to the 

south of 26.5˚N, the latitude of the RAPID observations and of the maximum northward heat 

transport by the Atlantic. 
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