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Abstract. Land–atmosphere exchange of carbon dioxide

(CO2) in peatlands exhibits marked seasonal and inter-

annual variability, which subsequently affects the carbon (C)

sink strength of catchments across multiple temporal scales.

Long-term studies are needed to fully capture the natural

variability and therefore identify the key hydrometeorolog-

ical drivers in the net ecosystem exchange (NEE) of CO2.

Since 2002, NEE has been measured continuously by eddy-

covariance at Auchencorth Moss, a temperate lowland peat-

land in central Scotland. Hence this is one of the longest peat-

land NEE studies to date. For 11 years, the site was a consis-

tent, yet variable, atmospheric CO2 sink ranging from −5.2

to −135.9 g CO2-C m−2 yr−1 (mean of −64.1± 33.6 g CO2-

C m−2 yr−1). Inter-annual variability in NEE was positively

correlated to the length of the growing season. Mean winter

air temperature explained 87 % of the inter-annual variabil-

ity in the sink strength of the following summer, indicating

an effect of winter climate on local phenology. Ecosystem

respiration (Reco) was enhanced by drought, which also de-

pressed gross primary productivity (GPP). The CO2 uptake

rate during the growing season was comparable to three other

sites with long-term NEE records; however, the emission rate

during the dormant season was significantly higher. To sum-

marise, the NEE of the peatland studied is modulated by two

dominant factors:

– phenology of the plant community, which is driven by

winter air temperature and impacts photosynthetic po-

tential and net CO2 uptake during the growing season

(colder winters are linked to lower summer NEE),

– water table level, which enhanced soil respiration and

decreased GPP during dry spells.

Although summer dry spells were sporadic during the study

period, the positive effects of the current climatic trend to-

wards milder winters on the site’s CO2 sink strength could

be offset by changes in precipitation patterns especially dur-

ing the growing season.

1 Introduction

Northern peatlands are one of the most important global

sinks of atmospheric CO2; with their ability to sequester C

controlled by hydrometeorological variables such as precip-

itation, temperature, length of growing season and period of

snow cover, they also potentially represent an important cli-

matic feedback mechanism (Aurela et al., 2001; Frolking et

al., 2001; Lafleur et al., 2003). Peatland carbon models gen-

erally suggest a decline in net sink strength in a warming

climate, although the magnitude of the decline predicted by

individual models is variable (Clark et al., 2010). UK peat-

lands are predicted to become a net source of carbon in re-

sponse to climate change (Worrall et al., 2007), with climate

models predicting a rise in global temperature of ca. 3 ◦C

between 1980–1999 and 2100 (IPCC, 2007; scenario A1B

which considers a balanced distribution between fossil fuel

intensive and non-fossil fuel energy sources). A greater un-

derstanding of drivers and feedback mechanisms, across a

range of temporal scales, is therefore a current research pri-

ority.
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Eddy covariance measurements using fixed flux towers

provide the best method for assessing inter-annual changes

in land–atmosphere exchange of CO2 at the catchment scale

(Dinsmore et al., 2010; Nilsson et al., 2008; Roulet et al.,

2007). In most years and in most peatlands, net ecosystem

exchange (NEE) is the largest and most variable of the C

flux terms (Roulet et al., 2007). In combination with aquatic

fluxes (downstream and evasive losses) and CH4 emissions,

it is a key component of C and greenhouse gas (GHG) bud-

gets for peatland systems (Billett et al., 2010; Dinsmore et al.,

2010). Although more sites are now being established glob-

ally, there are still relatively few peatland sites (< 10) with

published NEE measurements for periods of 3 years or more.

Including the Auchencorth Moss site, there are to our

knowledge only six peatland sites in the Northern Hemi-

sphere for which long-term (≥ 3 years) data sets of NEE

are now available and all show that peatlands operate as a

sink for atmospheric CO2, albeit with different annual sink

strengths. The 6-year mean NEE for Mer Bleue peatland

(Ontario, Canada) was −40.2 g C m−2 yr−1 (negative values

signify uptake), varying year-to-year from a minor (−2) to

a major (−112) CO2 sink (Roulet et al., 2007). Similarly,

McVeigh et al. (2014) found that a blanket bog in south-

west Ireland had a mean 9-year NEE of −55.7 g C m−2 yr−1

and exhibited significant inter-annual variability (−32.1 to

−79.2 g C m−2 yr−1). Degerö Stormyr in northern Sweden

showed consistent yet variable CO2 uptake over 12 consecu-

tive years (12-year mean −58± 21 g C m−2 yr−1, range −18

to −105 g C m−2 yr−1) (Peichl et al., 2014). Eddy covari-

ance measurements at Lompolojänkkä, a nutrient-rich fen in

northern Finland, again showed that the site operated as a

weak (−3 g C m−2 yr−1) to strong (−59 g C m−2 yr−1) CO2

sink over a 3-year period (Aurela et al., 2009). In contrast

to the variability exhibited by these sites, a sub-arctic per-

mafrost mire in Northern Sweden was relatively stable over

the period 2001–2008 (−46 g C m−2 yr−1) (Christensen et

al., 2012).

Quantifying inter-annual variability in NEE is a prereq-

uisite for detecting longer term trends or step changes in

flux magnitude in response to climatic or anthropogenic in-

fluences and identifying its drivers. In the UK, there have

been significant regional changes in precipitation and tem-

perature since the beginning on the 20th century, with the

most rapid changes occurring over the last 50 years (Jenk-

ins et al., 2009). During the period 1961–2006 annual pre-

cipitation increased by 2.5–23.2 %, with the largest increases

occurring in the winter (particularly in Scotland and north-

ern England); summer months were typically characterised

by a decrease in precipitation. Mean annual temperature dur-

ing the same period increased in parts of the UK by 1.05–

1.64 ◦C (Jenkins et al., 2009), with winter months (January–

February) warming much faster than the other months of the

year in some parts (Holden and Rose, 2011). These data show

that significant changes are taking place in seasonal climatic

patterns, which are likely to have a major impact on annual

net CO2 uptake by peatland systems.

Meteorological conditions such as rainfall, temperature

and levels of photosynthetic active radiation (PAR) control

NEE and its components, total ecosystem respiration (Reco)

and gross primary productivity (GPP). Reco is composed of

a plant respiration term (autotrophic respiration, RA), which

quantifies metabolic respiration from both above- and below-

ground biomass, and a heterotrophic respiration term (RH)

resulting from microbial decomposition of organic matter in

the soil. Autotrophic respiration can account for up to 60 %

or Reco whilst total belowground respiration can account for

up to 70 % (van der Molen et al., 2011). Reco and GPP have

been shown to be tightly linked in a range of ecosystems on

both short-term and annual timescales (Irvine et al., 2008;

Law, 2005; Ryan and Law, 2005) and respond similarly, al-

though not necessarily with the same magnitude, to extreme

events such as drought. For example, short-term dynamics

of Reco can be more sensitive to the availability of labile C

compounds produced by photosynthesis than to the effects of

varying soil moisture on soil microbial activity (Irvine et al.,

2008). On a global scale, drought is the main cause of de-

creased GPP alongside continent-specific secondary drivers

such as cold spells and precipitation (Zscheischler et al.,

2014a, b). Although less well understood and modelled than

GPP, Reco plays a major role in ecosystem C exchange dy-

namics, and increases in Reco have been shown to turn a sink

of C into a source (Lund et al., 2012). In order to interpret

inter-annual variability in NEE, it is therefore crucial to par-

tition NEE into GPP and Reco and study their dynamics with

respect to meteorology. We have done this on Auchencorth

Moss, an ombrotrophic peatland in south-east Scotland.

The first eddy covariance measurements of CO2 exchange

at Auchencorth Moss took place in 1995–1996 (Hargreaves

et al., 2003), with continuous measurements starting in 2002.

Previous measurements of NEE have been published for spe-

cific 2–3 year time periods and suggest that inter-annual

variability is high. Dinsmore et al. (2010) and Drewer et

al. (2010) reported that over a 3-year period (2006–2008)

the peatland acted as a very strong CO2 sink (−88 to

−136 g C m−2 yr−1), whereas Billett et al. (2004) reported

that between 1995–1996 it was acting as a weaker CO2

sink (−36 and −8 g C m−2 yr−1). In comparison to NEE,

CH4 emissions at Auchencorth Moss are small (average of

0.32 g CH4-C m−2 yr−1 in 2007 and 2008; Dinsmore et al.,

2010). Although these individual studies highlight signifi-

cant inter-annual variability at Auchencorth Moss, they are

for relatively short periods of time and are insufficient to in-

vestigate the drivers of inter-annual variability in NEE. Here

we present the first complete analysis of the 2002–2013 data

set in terms of monthly, seasonal and annual fluxes and ex-

plore the drivers of temporal variability in NEE. We use our

data to test the following hypotheses:

Biogeosciences, 12, 1799–1811, 2015 www.biogeosciences.net/12/1799/2015/



C. Helfter et al.: Drivers of long-term variability in CO2 net ecosystem exchange 1801

– Colder than average winter temperatures affect the

ecosystem’s phenology and reduce summer GPP and

NEE.

– Ecosystem respiration is related to water table depth and

the peatland releases more CO2 to the atmosphere dur-

ing dry spells.

– Annual NEE is positively correlated with the length of

the growing season.

2 Materials and methods

2.1 Site description

Auchencorth Moss (55◦47′32′′ N, 3◦14′35′′W; 267 m a.s.l.)

is a low-lying ombrotrophic peatland situated 17 km south-

west of Edinburgh (Scotland, UK). Parent material com-

prises Upper Carboniferous/Lower Devonian sedimentary

rocks overlain by fluvio-glacial till; peat depth range from

< 0.5 to > 5 m. Long-term research (e.g. Billett et al., 2004;

Dinsmore et al., 2010) on C fluxes is focussed on the 3.4 km2

upper part of the catchment (elevation range 249–300 m)

where the soils comprise peats (85 %), Gleysols (9 %), Hu-

mic Gleysols (3 %) and Cambisols (3 %). The open moor-

land site has an extensive uniform fetch over blanket bog

to the south, west and north with a dominant wind direc-

tion from the south-west; winds from the north-east are the

second most important wind direction. The terrain is rela-

tively flat with a complex micro-topography consisting of

hummocks and hollows. Hummocks are relatively small in

size (typically 40 cm in diameter and ∼ 30 cm in height) and

covered by either a mix of Deschampsia flexuosa and Erio-

phorum vaginatum, or Juncus effusus. In contrast, hollows

are dominated by mosses (Sphagnum papillosum and Poly-

trichum commune) and a layer of grasses (Dinsmore et al.,

2009).

The site was drained more than 100 years ago (Leith et al.,

2014); the drains have become progressively less effective

and re-vegetated over time, leading to slow and progressive

rewetting of the site. Over the last 20 years the site has been

used for seasonal low intensity sheep grazing; areas of peat

extraction occur at the margins of the catchment outside the

footprint of the flux tower measurements.

2.2 Instrumentation and data processing

Fluxes of carbon dioxide (CO2) have been measured contin-

uously by eddy covariance (EC) at Auchencorth Moss since

May 2002. The principles of operation and flux calculation

methods using the eddy-covariance technique have been ex-

tensively discussed elsewhere (Aubinet et al., 2000; Baldoc-

chi et al., 2001). The EC system at Auchencorth Moss con-

sists of a LI-COR 7000 closed-path infrared gas analyser op-

erating at 10 Hz for the simultaneous measurement of carbon

dioxide and water vapour. Turbulence measurements were

made with an ultrasonic anemometer (initially model Solent

R1012A R2 operating at 20.8 Hz; from 2009 Gill Windmas-

ter Pro operating at 20 Hz; both Gill Instruments, Lymington,

UK), mounted atop a 3 m mast. The effective measurement

height is 3.5 m with a vertical separation of 20 cm between

the anemometer and the inlet of the sampling line. Air is sam-

pled at 20 L min−1 through a 40 m long Dekabon line (inter-

nal diameter 4 mm). In addition to eddy-covariance measure-

ments, the site is equipped with a Campbell Scientific 23X

data logger for the automated acquisition of a comprehensive

suite of meteorological parameters which include net radia-

tion (Skye instruments SKS1110), PAR (Skye instruments

SKP215), air temperature (fine wire type-E thermocouple),

air pressure (Vaisala PTB101C), wind speed and direction

(Gill Instruments WindSonic), soil water content (Campbell

Scientific CS616 TDR probes), soil temperature (Campbell

Scientific 107 thermistors at 10, 20, 30, and 40 cm), rainfall

(tipping bucket rain gauge) and, since April 2007, water table

depth (Druck PDCR 1830).

High-frequency eddy-covariance data is acquired by in-

house software written in LabView (National Instruments)

and processed offline into half-hourly fluxes.

Half-hourly data points were excluded from further analy-

sis if any of the criteria listed below were not met:

– The total number of “raw” (high-frequency) data points

per notional half-hour period was less than 90 % of the

maximum possible number of points (36 000), i.e. be-

low a minimum averaging period of 27 min.

– The number of spikes in raw w (vertical wind velocity

component), CO2 (CO2 mole fraction) and H2O mole

fraction exceeded 1 % of the total number of points per

half-hour period.

– The stationarity test devised by Foken and

Wichura (1996), which compares half-hourly fluxes to

the average of six 5 min averaging periods within the

half hour, did not fulfil the quality criterion.

– Turbulence was insufficient for reliable EC measure-

ments (u∗ < 0.1 m s−1).

– CO2 mole fractions < 330 ppm.

– Half-hourly CO2 fluxes (FCO2) fell outside the

(−50 µmol m−2 s−1, +120 µmol m−2 s−1) interval.

– Half-hourly latent fluxes (LE) fell outside the

(−250 W m−2, +600 W m−2) interval.

After quality control, the number of good data points ranged

from 45 % (in 2005) to 78 % (in both 2004 and 2008), with

an annual mean of 65± 11 %.

Due to technical difficulties with the sampling pump

(gradual decline in pumping performance), which were not

detected immediately, most of the flux data for the summer

period of 2011 were discarded as a precautionary measure.

www.biogeosciences.net/12/1799/2015/ Biogeosciences, 12, 1799–1811, 2015



1802 C. Helfter et al.: Drivers of long-term variability in CO2 net ecosystem exchange

2.3 Calculations of ecosystem respiration, Q10 and

GPP

Gap filling of net ecosystem exchange (NEE) measured

by eddy-covariance and partitioning of the gap-filled half-

hourly fluxes into ecosystem respiration (Reco) and gross pri-

mary production (GPP) was achieved using an online tool

developed at the Max Planck Institute for Biogeochemistry,

Jena, Germany1 (Reichstein et al., 2005). In this flux parti-

tioning approach, daytime Reco is obtained by extrapolation

of the night time parameterisation of NEE on air tempera-

ture (using an exponential relationship of the form given in

Eq. 1).

Reco = a exp(bT ) (1)

where T is air temperature and a and b are fitting coefficients.

GPP was then calculated as the difference between Reco and

measured NEE.

The growth rate (Q10) for ecosystem respiration for a

change of 10 ◦C was determined using the relationship:

Q10 =

(
R2

R1

) 10
(T2−T1)

. (2)

T1 and T2 are reference temperatures (5 and 15 ◦C, re-

spectively), and R1 and R2 are the corresponding respiration

rates. R1 and R2 for each calendar year of the study were cal-

culated from Eq. (1) using 24 h averages of measured night

time Tair and NEE (see Supplement for non-linear regression

statistics).

GPP was parameterised with respect to PAR using the fol-

lowing rectangular hyperbolic regression function:

GPP=
α×GPPsat×PAR

GPPsat+α×PAR
(3)

where GPPsat (GPP at light saturation) and α (quantum effi-

ciency) are fitting parameters.

2.4 Statistical tests

Statistical dependence between ecosystem response and

hydro-meteorological variables was tested using Spearman’s

rank correlation. This allows testing for monotony between

pairs of variables without making assumptions as to the na-

ture of the function linking them. The independent variables

winter air temperature, length of growing season (LGS) and

annual water table depth (WTD), were tested for rank cor-

relation against the dependent variables summertime NEE,

Reco, GPP, α and GPPsat, annual NEE and annual GPPsat.

The Spearman’s correlation coefficient (ρ) is calculated

using Eq. (4):

ρ = 1−
6
∑
d2
i

n
(
n2− 1

) . (4)

1http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/upload.php

In Eq. (4), di is the difference between ranked variables

and n the sample size.

Potential dependence between daily growing season

(March–September) water table depth and ecosystem re-

sponse (Reco, GPP and NEE) was further investigated using

one-way analysis of variance (ANOVA). The assumptions

made were that (a) the 10 WTD classes (> 0 cm to <−45 cm

in increments of 5 cm) constitute different treatments and (b)

that the plant community has reached a steady state in terms

of growth. The null hypothesis tested using this ANOVA is

that WTD has no influence on ecosystem response.

3 Results

3.1 Site meteorology

During the study period (2002–2013) the site received a

mean annual precipitation of 1018± 166 mm (± values de-

note standard deviation). Autumn (September–November)

was the wettest season with 96± 11 mm of rain per month,

and spring (March–May) was the driest with 64± 17 mm per

month. Rainfall is highly variable year on year but records

from a weather station of the UK Met Office (UK Meteoro-

logical Office, 2013) located 3.5 km north of the study site

indicated a slight upward trend since the early 1970s (aver-

age annual precipitation 899± 166 mm for the period 1961–

2001).

Mean annual air temperatures were 8.3± 4.6 ◦C for the

study period 2002–2013 compared to 7.7± 4.5 ◦C for 1961–

2001. Despite year-on-year variability there are indications

of a steady increase of the order of 0.019 ◦C yr−1 since

records began in 1961 at the nearby Met Office station,

which is consistent with UK and global trends (Jenkins et

al., 2009). All seasons were warmer in 2002–2013 than in

1961–2001, albeit not significantly. Summer (June–August)

was the warmest season with an average temperature of

13.6± 1.1 ◦C, and winter (December–February) the coldest

with 3.7± 1.0 ◦C (Fig. 1).

Over the period April 2007–December 2013, water table

depth (WTD) was within 4 cm of the peat surface for 50 out

of 81 months (62 %). During dry periods, however, the water

table could fall quickly to depths <−35 cm (Table 2).

3.2 Seasonal and inter-annual variability of Reco, GPP

and NEE

Ecosystem respiration typically peaked in July/August

and was distributed asymmetrically around its peak value

(Fig. 2), following the annual cycle of temperature. Plotting

monthly GPP as a function of photosynthetically active radi-

ation (PAR) reveals two separate plant productivity regimes

culminating around mid-summer (Fig. 3). The hysteresis of

GPP vs. PAR is characterised by an exponential growth phase

from March to June/July followed by a logarithmic decline in

photosynthetic efficiency. The ratio of GPP to Reco showed

Biogeosciences, 12, 1799–1811, 2015 www.biogeosciences.net/12/1799/2015/
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Figure 1. Monthly air temperature, rainfall and photosynthetically active radiation (PAR) for the study period 2002–2013.

Figure 2. 10-year monthly averages of ecosystem respiration and, inset, ratio of gross primary production (GPP) to ecosystem respiration

(horizontal dashed lines are 10-year annual mean, and error bars are the standard deviations).

that on average carbon uptake by vegetative growth exceeded

losses to the atmosphere through respiration for six months

of the year, from April to September (Fig. 2, inset).

A negative correlation was established between mean an-

nual values of GPPsat (GPP at light saturation, Eq. 3) and WT

(Spearman ρ =−0.63, p < 0.05, Table 1) indicating that the

photosynthetic capacity of the plant community tended to de-

crease as WT deepened. Furthermore, GPPsat was positively

correlated to the average temperature during the preceding

winter (ρ = 0.73, p < 0.01, Table 1).

Both GPP and Reco exhibited significant inter-annual vari-

ability with peak summer time values ranging from 96 to

245 g CO2-C m−2 month−1 for GPP and 76 to 198 g CO2-

C m−2 month−1 for Reco (August 2010 and July 2006, for

minima and maxima, respectively). The site was consistently

a sink for CO2, however inter-annual variability was large.

NEE (mean −64.1± 33.6 g CO2-C m−2) ranged from −5.2

to −135.9 g CO2-C m−2 yr−1 with minimum and maximum

CO2 uptake in 2013 and 2007, respectively (Fig. 4). As ob-

served at other sites (Christensen et al., 2012), annual values

of NEE were well correlated to the length of the growing sea-

sons (LGS from here onward; R2
= 0.64; Fig. 5). Further-

more, whilst mean spring/summer (April–September) NEE

(NEESS) at Auchencorth Moss was not significantly corre-

www.biogeosciences.net/12/1799/2015/ Biogeosciences, 12, 1799–1811, 2015
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Figure 3. Hysteresis in gross primary production (GPP) as a func-

tion of photosynthetically active radiation (PAR) (10-year monthly

means).

Table 1. Spearman’s rank correlation coefficients (ρ) and associ-

ated p values for all statistically significant inter-annual correlations

between ecosystem response and hydro-meteorological parameters

observed at Auchencorth Moss during the study period 2003–2013.

The suffix SS denotes spring/summer means and LGS is the length

of the growing season. GPPsat and α are GPP at light saturation and

quantum efficiency, respectively, obtained by non-linear regression

between GPP and PAR using Eq. (3).

Ecosystem response Parameter ρ p value

NEESS Winter Tair −0.96 < 0.01

NEE (annual) LGS −0.80 < 0.01

GPPSS Winter Tair 0.73 < 0.01

RecoSS Winter Tair 0.61 0.02

GPPsat Winter Tair 0.68 0.02

α Winter Tair 0.68 0.02

GPPsat (annual) WT (annual) −0.63 < 0.05

lated to summer temperature, a strong negative correlation

(i.e. net uptake increased with increasing winter Tair) was

observed between mean NEESS and the mean air tempera-

ture of the preceding winter (December–March) (R2
= 0.87,

Fig. 6; p < 0.01). Comparable correlations to winter Tair were

observed for GPPSS and RecoSS (R2
= 0.43, p < 0.01; R2

=

0.28, p = 0.02, respectively, Fig. 6).

3.3 Effects of dry periods on CO2 exchange

Throughout most years and most seasons Auchencorth Moss

can be considered a wet site, with mean water table depth

(WTD) −3.5± 6.8 cm and monthly range +3.8 cm (flooded;

positive values denote water table levels above the peat

surface) to −36 cm (WTD measurements commenced in

Figure 4. Annual NEE for 2003–2013 (no data for 2011 due to

instrument failure during the growing season); the horizontal line is

the mean NEE for the study period.

Figure 5. Annual NEE as a function of the length of the growing

season.

April 2007). The site was generally waterlogged during the

autumn and winter months. During dry spells, which we ar-

bitrarily define as any period lasting 1 week or longer with

WTD <−5 cm, the water table can drop quickly at rates up

to 3 cm day−1 (Table 2).

Three notable dry spells occurred during the summer of

2010 and two during the summer of 2008, characterised

by cycles of rapid fall and rise of the water table. Mean-

while, air temperatures exhibited little variation. Details of

the drainage rates (water table drawdown) and minimum wa-

ter table depths are given in Table 2. Under normal hydro-

logical conditions (water table typically within 3–5 cm of the

peat surface), Reco at Auchencorth Moss did not exhibit a

significant correlation with WTD. In contrast, during the dry

spells of 2008 and 2010, daily Reco was non-linearly corre-

lated to WTD (Fig. 7). The response of Reco to changes in

WTD occurred with time lags ranging from 0 to 5 days (Ta-

ble 2).

Biogeosciences, 12, 1799–1811, 2015 www.biogeosciences.net/12/1799/2015/
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Table 2. Water table drainage rates and minimum water table depths (WTD) observed during the summer dry spells of 2008, 2010 and

2013. The time lag is the number of days elapsed between the start of the dry period and the onset of a response from the ecosystem

respiration (Reco); the time lag was determined by optimising the polynomial fit between Reco and WTD. The minimum value of Reco for

each dry spell and the water table depth corresponding to each minimum value of Reco were calculated using a second degree polynomial

regression function between Reco and WTD. No parabolic relationship was observed in 2013 between Reco and WTD; for this reason, time

lag, minimum Reco and WTD for minimum Reco could not be calculated.

Period Drainage rate Minimum Time lag Minimum Reco WTD for minimum Mean Tair Wind

(cm day−1) WTD (cm) (days) (µmol m−2 s−1) Reco (cm) (◦C) direction (◦)

05–29/05/2008 1.2 −20.4 2 0.03 −1.5 10.1 70

22/07–01/08/2008 3.0 −19.1 3 2.31 −4.5 16.1 100

15–26/05/2010 1.6 −30.7 2 1.05 −15.6 12.9 181

09–24/06/2010 2.0 −36.1 0 1.58 −12.5 13.0 176

21/07–08/08/2010 2.0 −22.1 5 2.01 −2.9 11.4 191

26/05–06/09/2013 1.4 −48.5 – – – 14.5 222

Figure 6. Spring/summer fluxes of NEE, GPP andReco (mean from

April to September) as a function of the preceding winter’s mean air

temperature (mean from December to March).

During the first two dry spells of 2010 the relationship be-

tween Reco and WTD was of clear parabolic form, with Reco

reaching a minimum a few days after the onset of the dry

period. Except for the second dry period of 2010, the residu-

als of the regressions between Reco and WTD were not cor-

related with air nor soil temperature. The two dry spells of

2008 exhibited similar parabolic relationships between Reco

and WTD but differed in magnitude.

Such parabolic relationships between Reco and WTD were

not observed during the summer of 2013, which was the sec-

ond driest in the 2002–2013 study period (the driest was 2003

with 346 mm rain between April and September compared

to 361 mm in 2013); 2013 also had the longest winter of the

study period (start of the growing season at day 103 in 2013

compared to day 77± 21 for the entire study period) as well

Figure 7. Daily ecosystem respiration as a function of water table

depth during five dry spells (two in summer 2008 and three in 2010).

as the lowest soil temperatures. Soil temperature at −5 cm

increased by 3 ◦C in the 10 days prior to the start of the ther-

mal growing season; Tsoil increased steadily until mid-July

and reached 15 ◦C, the highest value of the 11-year study

period, on 26 July. The dry period began on 25 May, culmi-

nating on 22 July (WTD=−48 cm), and WTD was≤−5 cm

until early September. In 2013, the relationship between Reco

and WTD was linear across the 6 temperature classes consid-

ered (Fig. 8). Above 16 ◦C, the positive correlation between

Reco and WTD was less pronounced and was even found to

be negative for the 16–18 ◦C temperature class. Above 18 ◦C,

the positive linear correlation was no longer statistically sig-

nificant.

For all years for which WTD data was available, the sen-

sitivity of Reco to air temperature (Q10) decreased with a

drop in water table; in contrast, the theoretical values of

Reco at Tair = 0 ◦C (obtained by extrapolation to the origin of
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Figure 8. Ecosystem respiration as a function of water table depth

and air temperature (daily means for May–September 2013).

the temperature-dependent functions fitted to monthly Reco

and averaged to annual values) were found to increase with

WTD. One-way analysis of variance (ANOVA) on GPP, NEE

and Reco with respect to 10 WTD classes (Table 3) demon-

strated that the position of the WT does have a statistically

significant impact on Reco for all years between 2007 and

2013, except 2012. For GPP, the correlation with WTD was

significant in 2008 and 2010, and for NEE in 2013 only.

4 Discussion

The following sections discuss the effects of winter meteo-

rology and water table depth on ecosystem response during

the growing season and place the Auchencorth Moss peat-

land into a broader context by comparing it to other sites

in the Northern Hemisphere with published NEE records

≥ 3 years.

4.1 Effect of winter meteorology on ecosystem response

Mean winter Tair explained 87 % of inter-annual variabil-

ity in NEE during the following summer (NEESS), 43 % of

GPPSS and 28 % of RecoSS (Fig. 6), which is consistent with

observations over a 12-year period at a boreal fen in north-

ern Sweden (Peichl et al., 2014). A number of studies have

reported correlations between winter meteorological condi-

tions and the development of plant populations later in the

year. Weltzin (2000) reported increased total net primary pro-

ductivity (TNPP) in shrubs, a decrease in graminoids and

no effect on bryophytes exposed to a gradient of infrared

loading (i.e. continuous heating by infrared lamps). Indi-

vidual species of bryophytes at a temperate UK site have

been shown to respond to winter warming and/or summer

drought in opposite ways, but this was not reflected at the

Table 3. Results (p value) of 1-way analysis of variance (ANOVA)

on daily GPP, Reco and NEE with respect to 10 water table depth

(WTD) classes (> 0 to <−45 cm in increments of 5 cm). Missing

values denote failure of the equal variance test.

Year NEE Reco GPP

2007 – 0.02 –

2008 0.14 < 0.01 0.02

2009 0.72 0.04 0.80

2010 0.93 < 0.01 < 0.01

2012 – 0.06 0.48

2013 0.03 < 0.01 0.05

community level, whose mean cover did not exhibit signif-

icant differences between treatments (Bates et al., 2005).

Kreyling (2008) demonstrated enhancement of aboveground

net primary productivity (ANPP) in grasses as a result of

freeze-thaw cycles the preceding winter, whilst belowground

net primary productivity (BNPP) was adversely affected.

Eddy-covariance measurements provide spatially integrated

fluxes representative of the entire plant community within

the footprint of the flux tower. The contributions of individ-

ual species, whose productivity can vary from year to year

(Bates et al., 2005; Kreyling et al., 2010, 2008; Weltzin et

al., 2000) cannot be assessed by EC. However, based on the

knowledge that Sphagnum mosses are capable of photosyn-

thesising as soon as the snow cover disappears and daily air

temperature reaches > 0 ◦C (Loisel et al., 2012), we speculate

that the sensitivity of GPP, GPPsat and α to winter air tem-

perature is predominantly caused by graminoids and other

non-moss species.

4.2 Effect of water table level on GPP and Reco

WTD had a statistically significant negative effect on GPP

indicating a decrease in plant productivity caused by the on-

set of drought stress. This has previously been shown to be

important at other sites, particularly in moss species (Aurela

et al., 2009; Lafleur et al., 2003; van der Molen et al., 2011);

furthermore, a negative linear relationship between leaf area

index (LAI) and WTD has been reported for a grassland es-

tablished on drained organic soil in Ireland (Renou-Wilson

et al., 2014), which illustrates the effect of water availability

on graminoid productivity. It must however be noted that the

WTD range in the Renou-Wilson (2014) study was signifi-

cantly deeper (typically 20–60 cm below peat surface) than

at our study site. Wet-adapted moss species growing in hol-

lows are known to have large variability in growth rate di-

rectly linked to WTD (faster growth than hummock and lawn

species under wet conditions, but susceptible to desiccation

under dry conditions; Gunnarsson, 2005; Loisel et al., 2012).

Weltzin et al. (2000) showed that, along a gradient of de-

creasing WTD of range consistent with our study site, TNPP

increased in bryophytes, decreased in shrubs and was un-
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changed in graminoids. As graminoids and bryophytes were

the dominant species in the EC footprint, the sensitivity of

GPP to WTD observed at our study site was likely to be

mainly due to mosses.

The parabolic trend seen in the relationship between Reco

and WTD during dry spells (Fig. 7) may help understand

the mechanistic drivers of Reco at Auchencorth Moss. The

parabolic trends were especially strong during the two first

dry spells of 2010 (15 May–9 June 2010 and 10 June–

10 July 2010) during which the prevailing wind direction

was from the south. The WTD measurements might not be

representative of the entire flux footprint, which could per-

haps explain the markedly different trends observed in 2008

when wind was blowing from the east. We postulate that

the initial decline in respiration was caused by a reduction

in plant metabolic activity as water availability decreased

(Lund, 2012). Drought has been shown to decrease C as-

similation, slow the translocation of photosynthates between

above- and belowground biomass, and reduce root-mediated

respiration within days (Ruehr et al., 2009). Meanwhile, the

lowering of the WT also favours aerobic processes, increases

microbial activity and decomposition of organic matter (Hen-

driks et al., 2007; Moyano et al., 2013), and facilitates CO2

diffusion within the peat profile (Moldrup et al., 1999; Tang

et al., 2005) causing a net increase in CO2 efflux from the

soil. Minimum Reco could then correspond to equilibrium

between declining autotrophic and increasing heterotrophic

respiration. The decrease of the sensitivity of Reco with re-

spect to Tair (Q10) at our site is consistent with findings at

other hydric sites where soil respiration (in particular het-

erotrophic respiration) has been shown to be enhanced by

drought (Wang et al., 2014). The subsequent net increase

in Reco with deepening WTD could then be explained by a

gradual increase in the ratio of heterotrophic to autotrophic

respiration.

Based on these observations, we attribute the differences

in respiration patterns during the dry spells to water table dy-

namics, which differs from drier sites where temperature (not

WT) was found to be the dominant control of Reco (Lafleur

et al., 2005; Updegraff et al., 2001). This is further supported

by the result of one-way ANOVA, which demonstrates a sta-

tistically significant correlation between Reco and WTD for

all growing seasons (except for 2012 which had a wetter than

average growing season with WT near or above the peat sur-

face for the entire growing season). The linear (rather than

parabolic) response of Reco to WTD in 2013 could perhaps

be linked to the long winter of 2013 (the thermal growing

season began 69 days later than in 2008, and 10 days later

than in 2010) and the fact that the dry spell, which lasted

most of the summer, began less than a month after the start

of the growing season. Under these conditions, the moss pop-

ulation could have switched from relatively low metabolic

activity to desiccation while active growth had just begun in

the graminoid community. Hence, the RH /RA ratio could

have been smaller than in previous years. In contrast to other

years, GPP during summer 2013 was positively correlated

to WTD (p < 0.001), which suggests growth in species less

susceptible to drought-stress than mosses.

Disentangling the effects of lower than average winter air

temperature and summer dry spells on annual NEE is not

straightforward, but the former seems to be the dominant

driver based on our results (Table 1). The combined effects of

a long, relatively cold winter and warm, dry summer which

could have slowed plant growth, disturbed the normal pheno-

logical cycle and enhanced carbon losses from the peatland

through enhanced heterotrophic respiration, were illustrated

in 2013 when the sink strength of Auchencorth Moss was

significantly weakened (−5.2 g C-CO2 m−2 yr−1) compared

to the long-term mean of −64.1± 33.6 g C-CO2 m−2 yr−1

(2003–2012).

4.3 NEE in Northern Hemisphere peatland C budgets

Compared to other peatlands in the Northern Hemisphere,

annual values of NEE at Auchencorth Moss are at the

high end of both the mean (−64.1± 33.6 g CO2-C m−2 yr−1)

and inter-annual range (−5.2 to −135.9 g CO2-C m−2 yr−1).

However, when the length of the growing season (LGS; the

start of the growing season was defined as the first day of

the year when mean diurnal air temperature exceeded 5 ◦C

for 5 consecutive days. Conversely, the end of the grow-

ing season was defined as the first day of the year when

mean diurnal air temperature fell below 5 ◦C for 5 con-

secutive days) was accounted for, the mean daily growing

season NEE (NEEGS) at Auchencorth Moss (−0.57 g CO2-

C m−2 day−1) was remarkably similar to that found at both

Mer Bleue (cool temperate bog; −0.58 g CO2-C m−2 day−1;

Roulet et al., 2007) and Degerö Stormyr (boreal mire;

−0.48 g CO2-C m−2 day−1; Peichl et al., 2014). By con-

trast, mean daily NEEGS at Glencar (maritime blanket bog;

Koehler et al., 2011, McVeigh et al., 2014) was slightly lower

(−0.39 g CO2-C m−2 day−1), whilst the two sub-arctic Scan-

dinavian peatlands Lompolojänkä (nutrient-rich sedge fen;

Aurela et al., 2009) and Stordalen (sub-arctic palsa mire;

Christensen et al., 2012) stand out with mean daily growing

season NEE rates 2 to 2.5 times higher than the values found

for Auchencorth Moss, Degerö Stormyr and Mer Bleue, and

over 3 times higher than the value found at Glencar (Table 4).

Auchencorth Moss had a mean daily NEE during the dor-

mant season (NEEDS) of 0.61 g CO2-C m−2 day−1, the high-

est amongst the aforementioned catchments (10, 5, 3 and 2

times higher than Glencar, Degerö Stormyr, Stordalen and

Mer Bleue, respectively). Mean daily NEEDS at Lompolo-

jänkä was only slightly lower than at Auchencorth Moss

(0.52 g CO2-C m−2 day−1).

Despite the lower daily mean NEE, the long growing sea-

son at Auchencorth Moss made its total NEEGS comparable

to that of Lompolojänkä and Stordalen. The vigorous net up-

take at Lompolojänkä during the growing season was offset

by relatively high carbon losses during the rest of the year.
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Table 4. Annual minimum, maximum and mean values of NEE at several long-term peatland monitoring sites in the Northern Hemisphere.

LGS and LDS are the length of growing and dormant season respectively, and subscripts GS and DS denote growing and dormant season.

The length of the growing season for the study site Auchencorth Moss was bounded by the first and last day for which mean daily air

temperatures exceeded 5 ◦C for 5 consecutive days. For the other sites, LGS was estimated from data available in the respective articles.

Site Auchencorth Moss Stordalen1 Mer Glencar3 Lompolojänkkä4 Degerö

(this study) Bleue2 Stormyr5

Latitude 55◦47′ 68◦20′ 45◦23′ 51◦55′ 68◦0′ 64◦11′

Duration (years) 11 8 6 9 3 12

Minimum NEE −5.2 −20 −2 −32.1 −3.3 −18

(g CO2-C m−2)

Maximum NEE −135.9 −95 −112 −79.7 −58.9 −105

(g CO2-C m−2)

Mean NEE −64.1± 33.6 −66± 29.1 −40.2± 40.5 −55.7± 30.0 −31.9± 27.8 −58.0± 21.0

(g CO2-C m−2)

Mean NEEGS −142± 55.0 −133± 28.0 −97.1± 38.7 −60± 15.0 −160± 13.0 −84.8± 23.6

(g CO2-C m−2)

Length of growing 247 117c 168a 153b 119 120

season (LGS) (days)

NEEGS/LGS −0.57 −1.14 −0.58 −0.39 −1.34 −0.48

(g CO2-C m−2 day−1)

NEEDS/LDS 0.61 0.27 0.29 0.06 0.52 0.11

(g CO2-C m−2 day−1)

References: 1 Christensen et al. (2012); 2 Roulet et al. (2007); 3 McVeigh et al. (2014); 4 Aurela et al. (2009); 5 Peichl et al. (2014). a Estimated from Lafleur et al. (2003):

growing season from May to September (1998–2002); b mean growing season lengths 2002–2007 (Sottocornola and Kiely, 2010); c use of NEE and LGS for the years

2006–2008 only, as winter measurements of NEE during the other years of the study were deemed unreliable by the authors (Christensen et al., 2012).

Auchencorth Moss, Lompolojänkä and Stordalen therefore

had comparable NEE but for very different reasons: Auchen-

corth Moss had long growing seasons but also relatively high

carbon losses the rest of the year, which could be due to

milder winters with minimal snow cover. Lompolojänkä and

Stordalen had vigorous carbon uptake rates, their LGS were

comparable to one another, but were half that of Auchencorth

Moss, whilst Lompolojänkä had high carbon losses during

the dormant season which strongly reduced the site’s sink

strength.

Carbon uptake rates at Degerö Stormyr and Mer Bleue

were very similar to Auchencorth Moss but their carbon loss

rates, which were comparable to Stordalen’s, were half or

less than that of Auchencorth Moss. This could be explained

by cooler climate and prolonged periods of snow cover com-

pared to Auchencorth Moss.

Considering the differences in latitude, climate, hydrology

and vegetation, these sites (with the exception of Stordalen

and Lompolojänkä) are remarkably similar in terms of their

daily mean NEEGS.

NEE represents only one flux pathway within the full

net ecosystem C budget (NECB). When terrestrial CH4

emissions (2007–2008; Dinsmore et al., 2010), downstream

aquatic flux losses and water surface evasion (2007–2011;

Dinsmore et al., 2013) are accounted for, the total long-

term sink strength of Auchencorth Moss is reduced to

approximately −28 g C m−2 yr−1 (whilst recognising un-

certainty as the fluxes are not measured over the same

time period). Using literature values of CH4 (Roulet et

al., 2007) and aquatic C losses for Mer Bleue (Billett

and Moore, 2008) results in an approximate total C sink

strength of −17 g C m−2 yr−1; for Degerö Stormyr the total

C sink strength is −24 g C m−2 yr−1 (Nilsson et al., 2008),

−30 g C m−2 yr−1 for Glencar (Koehler et al., 2011) and

−34 g C m−2 yr−1 for Stordalen (Christensen et al., 2012;

Lundin et al., 2013; Olefeldt et al., 2013); data for Lompolo-

jänkä could not be found. Hence when all flux pathways are

accounted for the C balances of the different peatlands ap-

pear to converge.

5 Summary

Eleven years of continuous monitoring of net ecosystem ex-

change of carbon dioxide at a temperate Scottish peatland

revealed highly variable inter-annual dynamics despite little

or no change in land management. Variation in climate and

especially winter air temperature is thought to be the dom-

inant control at the study site. The latter explained 87 % of

inter-annual changes in NEE and a modest rise of 1 ◦C above

average winter air temperature for the 2002–2013 study pe-

riod was accompanied by a 20 % increase in CO2 uptake.

Colder winters appear to have an adverse effect on the peat-

land CO2 sink strength possibly due to disturbances to the

phenological cycle of the graminoid species at the site. Dry
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spells have been linked to enhanced ecosystem respiration

and depressed GPP and it is thought that (a) heterotrophic

respiration can become the dominant term as water availabil-

ity decreases, and (b) mosses are more sensitive to WTD than

other species at the site. Cold winters and dry summers both

have negative effects on the CO2 sink strength of the bog;

these two factors converged in 2013 and led to a significant

reduction in net CO2 uptake (−90 % compared to the 11-

year mean). Auchencorth Moss, although always a sink of

CO2 during the study period, is highly sensitive to even mod-

est changes in hydro-meteorological conditions at relatively

short timescales. The large inter-annual variability of NEE

observed to date makes future trends difficult to predict and

quantify. Changes in seasonal hydro-meteorological condi-

tions, especially changes in precipitation patterns and inten-

sity, could however be pivotal for the CO2 cycling of this

peatland. Drier summers could lead to a reduction in net CO2

uptake but this could be offset by milder temperatures, par-

ticularly in winter, and longer growing seasons. Mean annual

temperatures at the study site have risen by 0.019 ◦C yr−1

since 1961, which could, in theory, benefit C uptake by the

peatland in the long-term since NEE was found to be closely

linked to the length of the growing season.

The Supplement related to this article is available online

at doi:10.5194/bg-12-1799-2015-supplement.
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