
 1

Manuscript revised for Marine Ecology Progress Series 1 

 2 

Running page head: Auklet migration in northwestern Pacific 3 

 4 

Connecting the seasonal productivities: migratory movements of 5 

rhinoceros auklets in the northwestern Pacific 6 

 7 

Akinori Takahashi
1,2*

, Motohiro Ito
1
, Yuuya Suzuki

3
, Yutaka Watanuki

3
, Jean-Baptiste 8 

Thiebot
1
, Takashi Yamamoto

1,3
, Takahiro Iida

1,2
, Phil Trathan

4
, Yasuaki Niizuma

5
, 9 

Tomohiro Kuwae
6
 10 

 11 

1
National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan 12 

2
Department of Polar Science, The Graduate University for Advanced Studies 13 

(SOKENDAI), Tachikawa, Tokyo 190-8518, Japan 14 

3
Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, 15 

Hakodate 041-8611, Japan 16 

4
British Antarctic Survey, Natural Environment Research Council, High Cross, 17 

Madingley Road, Cambridge CB3 0ET, UK 18 

5
Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, 19 

Nagoya 468-8502, Japan. 20 

6
Port and Airport Research Institute, 3-1-1, Nagase, Yokosuka 239-0826, Japan 21 

*E-mail: atak@nipr.ac.jp 22 

 23 

ABSTRACT: Spatial and temporal variability in marine biological productivity may 24 

drive heterogeneity in seasonal resources available for marine animals in temperate 25 

waters. Migratory seabirds are expected to adjust the annual cycle of breeding activities 26 

and migratory movements to exploit seasonally available resources efficiently. We 27 

studied the movement and trophic position of rhinoceros auklets Cerorhinca 28 

monocerata breeding at Teuri Island, Japan Sea, during the nonbreeding and early 29 

breeding periods over two years. After breeding, the auklets moved northward from the 30 

colony to the Sea of Okhotsk, where phytoplankton blooms enhanced biological 31 

productivity in autumn. The birds then moved southward to the southwestern Japan Sea 32 
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(~1470 km from the colony), where major epipelagic fish and squid concentrations have 33 

been reported in winter. Stable isotope analyses suggest that the auklets fed on 34 

higher-trophic level prey, including fish and/or squid during the autumn and winter 35 

nonbreeding periods. The auklets moved northward and returned to the colony in 36 

mid-March. During the early breeding period, the birds foraged close to the colony 37 

(~380 km) on lower-trophic level prey, including fish and/or krill, which were available 38 

during the spring phytoplankton bloom. The timing of the return migration does not 39 

match with the northward migration of warm-water anchovy, a profitable prey during 40 

summer, but may be related to the adjustment of the chick-rearing period to anchovy 41 

arrival. We suggest that rhinoceros auklets follow spatial and seasonal changes in prey 42 

availability by a distinctive ‘three-step’ migration (first northward, second southward, 43 

third northward) in a temperate marine system of northwestern Pacific.  44 
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 49 

INTRODUCTION 50 

 51 

     Seabirds are faced with challenges in finding their prey in the spatially and 52 

temporally variable marine environment (Weimerskirch 2007), under the different 53 

foraging constraints that exist during the breeding and nonbreeding periods. During the 54 

breeding period, parent seabirds are central place foragers that have to commute 55 

between their colony and feeding grounds at sea. Their foraging ranges are relatively 56 

limited especially during early chick-rearing period to provision their offspring (e.g., 57 

Charrassin & Bost 2001, Rayner et al. 2012). Despite the constraints on their foraging 58 

range, parent seabirds have to feed intensively in order to meet the high energetic 59 

demands associated with breeding (Hamer et al. 2001). During the nonbreeding period, 60 

seabirds can move over larger distances without the constraints of central-place foraging 61 

(e.g., Thiebot et al. 2011), but may experience reduced prey availability due to 62 

decreased marine productivity outside the summer breeding season and/or possible 63 

changes in the accessibility of prey in the water column (e.g., Charrassin & Bost 2001). 64 
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An increasing number of studies have shown that seabirds, especially proficient-flying 65 

procellariiform seabirds, adjust the annual cycle of breeding activities and migratory 66 

movements to seasonally available resources (Shaffer et al. 2006, González-Solís et al. 67 

2007, Guilford et al. 2009, Rayner et al. 2011, Carey et al. 2014); though, such 68 

adjustments may vary among species of different migration abilities and among 69 

different marine regions. 70 

     Recent advances in bio-logging technologies, such as light-based geolocators, 71 

have allowed us to examine the year-round movement of individual seabirds over 72 

extensive periods (Burger & Shaffer 2008, Wakefield et al. 2009). In addition, stable 73 

isotope analysis of animal tissues can be used to examine the trophic position of 74 

seabirds during their year-round movement (Hobson & Bond 2012). Based on these 75 

techniques, long-distance trans-equatorial migrations have been documented for 76 

proficient-flying medium-sized petrels, which presumably allow them to exploit the 77 

summer peaks in biological productivities in both northern and southern hemispheres 78 

successively (Shaffer et al. 2006, González-Solís et al. 2007, Rayner et al. 2011). 79 

However, relatively less is known about the movements of seabirds with higher 80 

energetic cost of flying, such as auks (Elliott et al. 2013), in relation to seasonal changes 81 

in regional marine productivities and breeding constraints. So far, all the previous 82 

studies on the migratory movements of alcids have been conducted in the North Atlantic, 83 

highlighting the areas off Newfoundland as important foraging area during autumn and 84 

winter (Mosbech et al. 2012, Jessopp et al. 2013, Linnebjerg et al. 2013, McFarlane 85 

Tranquilla et al. 2013). In contrast, no such information is yet available for any alcid 86 

species breeding in the North Pacific. Information on migratory patterns will also be 87 

valuable for understanding population trends with respect to marine environmental 88 

change and for assessing any potential conservation issues (Harris et al. 2013, 89 

McFarlane Tranquilla et al. 2013). 90 

    Rhinoceros auklets Cerorhinca monocerata are medium-sized alcids (500 - 600 g) 91 

that breed in the North Pacific. The largest breeding colony is located at Teuri Island in 92 

the northern Japan Sea, where approximately 0.3 million pairs breed annually 93 

(Watanuki & Ito 2012). The auklets feed intensively on Japanese anchovy Engraulis 94 

japonicus close to the breeding colony (~130 km) during chick-rearing period (Kato et 95 

al. 2003, Watanuki & Ito 2012), but their movement and diet have been largely 96 
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unknown outside the breeding period. The objective of this study is therefore to 97 

characterize the migratory movements and trophic position of rhinoceros auklets during 98 

nonbreeding and early breeding periods, by combining information from light-based 99 

geolocation and stable isotope analyses. It is hypothesized that the migratory 100 

movements of the auklets follow seasonal changes in regional prey availability, given 101 

the heterogeneity of seasonal productivity patterns in Japan Sea and the adjacent Sea of 102 

Okhotsk (Lee et al. 2009, Radchenco et al. 2010). We expect that rhinoceros auklets 103 

maintain their fish diet by moving among different marine regions during the 104 

nonbreeding period, but they may be confined to feed close to the colony on different 105 

prey items during the early breeding period. 106 

 107 

 108 

MATERIALS AND METHODS 109 

 110 

・ Geolocator deployments. The study was conducted at Teuri Island (44°24’ N, 111 

141°17’ E), located in the northern Japan Sea (Fig. 1). Rhinoceros auklets first return 112 

to Teuri Island from March to April and lay a single egg in April and May. The single 113 

chick hatches between May and June, and fledges in July (Watanuki & Ito 2012). In 114 

July 2010, we captured 10 chick-rearing birds from nest burrows, and attached a 115 

geolocator (Mk15, 16 x 18 x 6mm, British Antarctic Survey, Cambridge, UK) on the 116 

tarsus of each bird using a plastic leg ring. The total mass of geolocators including the 117 

ring was 3.5 g (0.62 % of the mean body mass of tracked birds). We retrieved 118 

geolocators from 8 out of 10 birds and in May 2011. Upon recapture, the 10
th

 primary 119 

feather and 2-3 breast feathers were taken as samples for stable isotope analysis. One 120 

additional instrumented bird was recaptured in the breeding season of 2013. We also 121 

attached geolocators on 20 birds in July 2011. We retrieved geolocators from 16 out 122 

of 20 birds and in May-June 2012. Three individuals were tracked during the 123 

nonbreeding and early breeding periods of both 2010-11 and 2011-12. All the 124 

geolocators that were recovered recorded data successfully, but 5 geolocators from 125 

the 2011-12 deployments stopped recordings prematurely after 1-3 months. We 126 

therefore analyzed 20 complete tracks recorded from 17 birds (10 males and 7 127 

females). The sex of the birds was determined on the basis of bill and head 128 
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measurements (Niizuma et al. 1999). The study birds maintained their body mass 129 

between device attachment and retrieval on average (average mass change: +12.5 g, 130 

range: +75 g to -45 g), although we do not have comparable data from control birds to 131 

examine any device effects. 132 

・ Geolocation data analysis. The geolocators record time, light intensity, immersion 133 

in seawater and water temperature. The geolocators were programmed to measure 134 

light levels at 1 min intervals, and to record the maximum value after each 10 min 135 

period. Immersion in seawater was checked every 3 s and the data were compiled as a 136 

proportion over each 10 min period. Water temperature was recorded only after 137 

continuous immersion for 20 min as the temperature sensors require 10 min to 138 

stabilize. Accuracy of the temperature recordings was 0.5 °C as indicated by the 139 

manufacturer. Light and water temperature data were used to estimate the daily bird 140 

locations (Yamamoto et al. 2011). Times of sunset and sunrise were estimated from 141 

the thresholds in the light curves. Latitude was derived from day length and longitude 142 

from time of local midday with respect to Greenwich Mean Time and Julian day, 143 

using TransEdit and Locator software (British Antarctic Survey). To improve the 144 

location estimates from light levels, the daily median of the water temperature records 145 

from the geolocators were compared with remotely sensed sea surface temperature 146 

(SST) data (8-day composite, 9-km resolution, measured by Aqua-MODIS, 147 

downloaded from the ocean color web http://oceancolar.gsfc.nasa.gov). We retained 148 

the longitude estimates obtained from light-based geolocation, and searched the 149 

latitude where SST matches with median water temperature records from geolocators. 150 

Since SST varies with latitude (cooler towards higher latitude), this procedure 151 

enabled us to refine the latitude estimates during the entire period of at-sea trips, 152 

including during the equinoxes. Finally, these daily positions were smoothed using a 153 

theoretical movement model in a Bayesian framework (Thiebot & Pinaud 2010). This 154 

movement model calculates the most probable location estimates along the tracks 155 

(without deleting any locations) that meet with the following three conditions: 1) no 156 

locations occur on land, 2) the start and end locations of the tracks are the breeding 157 

colony, and 3) mean movement speed is 10 km/h (based on flying speeds measured 158 

from GPS tracking, Watanuki et al., unpublished data, corrected by the average time 159 

spent flying per day over the nonbreeding period, ~4.5 h, this study), with 5 km /h 160 

http://oceancolar.gsfc.nasa.gov/
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allowed for variance of the mean (see Thiebot & Pinaud 2010 and references therein 161 

for details).  162 

     Attendance at the colony was assessed from the immersion records from 163 

geolocators. We defined colony attendance as periods in the data when the geolocator 164 

was continuously dry for >5 hours across midnight, because most birds that are not at 165 

the colony rest on the sea surface during night (Kato et al. 2003). The nonbreeding 166 

period was defined as the period from the last attendance at the colony, defined using 167 

activity data, after breeding (late July) until the first attendance at the colony in the 168 

following year (mid March). Similarly, the early breeding period was defined as the 169 

period from the first attendance at the colony to the end of April, as geolocators were 170 

mostly retrieved from birds in early May, when birds were normally in the incubation 171 

period (Watanuki & Ito 2012).   172 

・ Stable isotope analysis of feathers. We analyzed stable isotopes of feathers grown 173 

during the nonbreeding period. Although accurate molt cycles are not known for 174 

rhinoceros auklets, the 10
th

 primary and breast feathers presumably grow during the 175 

pre-basic molt (August - October) and pre-alternate molt (February – March), 176 

respectively (Pyle 2009, Sorensen et al. 2010). Feathers were stored in a freezer 177 

(-20°C) until laboratory analyses. Nitrogen and carbon stable isotope ratios (δ
15

N and 178 

δ
13

C) were measured at Meijo University (Nagoya, Japan) for 2010-11 samples and at 179 

Port and Airport Research Institute (Yokosuka, Japan) for 2011-12 samples. At Meijo 180 

University, feathers were washed using 0.25 mol/L sodium hydroxide aqueous 181 

solution and distilled water, dried in a oven (60°C) for 24 hours, placed in liquid 182 

nitrogen for 1 minute, then homogenized using a sample crasher (TK-AM5，TITEC). 183 

At Port and Airport Research Institute, feathers were washed using 0.25 mol/L 184 

sodium hydroxide aqueous solution and distilled water, freeze-dried for 36-48 hours, 185 

cut as small as possible, then homogenized using a mortar. δ
15

N and δ
13

C were 186 

measured using a SerCon ANCA-GSL，Hydra 20-20MASS spectrometer (SerCon 187 

Ltd.) (Meijo University) or a Delta Plus Advantage mass spectrometer (Thermo 188 

Electron) coupled with an elemental analyzer (Flash EA 1112, Thermo Electron) 189 

(Port and Airport Research Institute). Stable isotope ratios are expressed in δ notation 190 

as the deviation from standard (air) in parts per thousand (‰) according to the 191 

following equation: δ
15

N or δ
13

C = [Rsample / Rstandard – 1] × 1000, where R = 
15

N/
14

N 192 
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or 
13

C/
12

C. Replicate measurements of internal laboratory standards indicated that the 193 

measurement precision was ± 0.16 ‰ and ± 0.12 ‰ for δ
15

N (SD) and ± 0.16 ‰ 194 

and ± 0.11 ‰ for δ
13

C (SD) in the laboratories at Meijo University and Port and 195 

Airport Research Institute, respectively.  196 

     We need to take into account the tissue-specific discrimination factors of 197 

isotopic values, to compare isotopic values of different tissues of consumers with that 198 

of prey. We used the discrimination factors as follows, based on a study of common 199 

murres Uria aalge (Becker et al. 2007): 3.7 ‰ and 3.6 ‰ for δ
15

N and 1.9 ‰ and 200 

1.0 ‰ for δ
13

C, for primary and breast feathers. We compared the δ
15

N and δ
13

C 201 

values of feathers with those of egg yolk and blood plasma obtained during breeding 202 

season as well as potential prey species (Euphausiids: Thysanoessa inermis; 0+ and 203 

>1+ sandlance Ammodytes personatus; Japan sea greenling Pleurogrammus azonus; 204 

Japanese anchovy; Squid Coleoides; juvenile chum salmon Oncorhynchus keta), 205 

reported in Ito et al. (2009, 2012). Ito et al. (2012) used the following discrimination 206 

factors, 3.4 ‰ and 2.8 ‰ for δ
15

N and 0.1 ‰ and -1.3 ‰ for δ
13

C, for egg yolk 207 

and blood plasma, respectively, based on other avian studies (egg yolk) and their own 208 

measurements from rhinoceros auklet chicks (blood plasma). 209 

・ Primary productivity. To characterize the seasonal patterns in primary 210 

productivity, monthly average values of sea surface chlorophyll a concentrations were 211 

calculated from January 2003 to December 2012 for an area in the Sea of Okhotsk 212 

(area A) and two areas in the Japan Sea (areas B and C; Fig. S1). The areas were 213 

chosen on the basis of 50 % kernel density boundaries of bird locations during the 214 

nonbreeding (areas A and C) and early breeding (area B) periods. We used the Aqua 215 

MODIS level 3 monthly standard mapped image 9-km resolution chlorophyll a data 216 

that were downloaded from the ocean color web.  217 

・ Statistics. Maximum distance reached from the colony by the birds was compared 218 

between years or sexes with one-way ANOVA. Two males and one female had 219 

repeated measurements (i.e. tracked during both 2010-11 and 2011-12). We show 220 

here the statistics that include the six tracks from these three birds as independent. 221 

Statistical results were similar, even if we included only one (the track of either 222 

2010-11 or 2011-12) of the two tracks for these three birds in the analyses. Minitab 223 

software (Minitab Inc., Pennsylvania, USA) was used for statistical analyses. Kernel 224 
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densities for geolocation data were calculated using the ArcGIS Spatial Analyst 225 

Density tool (ESRI, California, USA) with a cell size of 0.2 degree and a search 226 

radius of 2 degrees. Means (± SE) are shown. 227 

 228 

 229 

RESULTS 230 

 231 

Seasonal movement patterns  232 

     After the breeding season, tracked birds departed the colony on 23
rd

 July in both 233 

years (± 0.7 and ± 1.4 days for 2010-11 and 2011-12, respectively), indicated by the 234 

immersion records of geolocators. In the first phase of migration, the birds moved 235 

northward from the colony to the Sea of Okhotsk, which was consistent during both 236 

years (Fig. 2, Fig. 3). The birds were distributed mainly at the east or south of Sakhalin 237 

Island until September, and then moved southward to the northeastern or southeastern 238 

shore of Hokkaido Island in October (Fig. 4). In the second phase, the birds moved 239 

southward across the Japan Sea, during November - January. Most birds (7 of 9 birds 240 

and 8 of 11 birds in 2010-11 and 2011-12, respectively) reached the sea around the 241 

Korean Peninsula and Tsushima Strait (Fig. 3, Fig. 4). The remaining four birds (5 242 

tracks) appeared to spend winter farther east in Japan Sea, with a mean westernmost 243 

longitude of 135.6 °E. From February, the birds undertook their third movement phase 244 

by migrating northward again along the coast of Japan, and returned to the colony on 245 

11
th

 and 18
th

 March (± 2.3 and ± 1.1 days) in the 2010-11 and 2011-12 seasons, 246 

respectively (Fig. 3). Overall, kernel density of locations identified the Sea of Okhotsk 247 

and the sea around the Korean Peninsula and Tsushima Strait as key areas during the 248 

nonbreeding period in both 2010-11 and 2011-12 (Fig. 4).  249 

     The average maximum distance reached from the colony by the auklets during the 250 

nonbreeding period did not differ between the two years (1549 ± 77 km vs. 1403 ± 91 251 

km for 9 and 11 tracks in 2010-11 and 2011-12, respectively; F1,18 = 1.43, p = 0.25) nor 252 

between sexes (1481 ± 96 km vs. 1460 ± 83 km for 8 and 12 tracks from females and 253 

males, respectively; F1,18 = 0.03, p = 0.87).  254 

     After the initial arrival to the colony, the birds made foraging trips during 255 

pre-laying and the early incubation periods, until the end of the geolocator records. 256 



 9

During this early breeding period, the birds stayed relatively close to the colony (Fig.4); 257 

half of the daily at-sea locations were within 157 ± 10 km and 237 ± 21 km from the 258 

colony, for 2010-11 and 2011-12, respectively. The average maximum distance reached 259 

from the colony by the auklets during the early breeding period did not differ between 260 

the two years (376 ± 24 km vs. 386 ± 19 km for 9 and 11 tracks in 2010-11 and 2011-12, 261 

respectively; F1,18 = 0.1, p = 0.75) nor between sexes (407 ± 29 km vs. 365 ± 14 km for 262 

8 and 12 tracks from females and males; F1,18 = 2.12, p = 0.16). 263 

 264 

Activity and water temperature records 265 

     During the nonbreeding period, the leg-mounted geolocators remained dry for 266 

4.42 ± 0.42 h per day (n = 20 tracks). There were no apparent seasonal patterns in the 267 

time spent dry, and no clear evidence of flightless periods (Fig. 2). During the early 268 

breeding period, the daily time spent dry increased as the birds attended the colony at 269 

night or throughout a day for incubation (Fig. 2). 270 

     Water temperature recorded by the geolocators showed large seasonal changes in 271 

both years (Fig. 5). Water temperature experienced by the birds remained around 11 - 272 

14 °C from October to late February, but dropped to 4 - 6 °C in early March associated 273 

with a northward migration of auklets to the breeding colony.    274 

 275 

Isotopic value of feathers 276 

     Mean measured isotopic values (without adjustment for discrimination factors) 277 

were 15.6 ± 0.3 ‰ and 15.1 ± 0.1 ‰ for δ
15

N and -19.8 ± 0.2 ‰ and -18.8 ± 0.1 ‰ 278 

for δ
13

C in primary feathers, versus 13.5 ± 0.2 ‰ and 14.1 ± 0.1 ‰ for δ
15

N and 279 

-19.5 ± 0.2 ‰ and -18.1 ± 0.2 ‰ for δ
13

C in breast feathers, in 2010-11 (n = 8) and 280 

2011-12 (n = 16) respectively (Fig. 6). The δ
15

N values of primary and breast feathers 281 

adjusted for discrimination factors (3.7 ‰ and 3.6 ‰ for primary and breast feathers) 282 

were higher than those of egg yolk and blood plasma (adjusted for discrimination 283 

factors) during the prelaying, incubation and chick-rearing periods (Fig. 6). The δ
13

C 284 

values of primary feathers were lower than those of breast feathers, egg yolk and blood 285 

plasma (all values adjusted for discrimination factors) (Fig. 6). 286 

 287 

Marine primary productivity 288 
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     Chlorophyll a concentration was highest in April over the annual cycle in each 289 

area of A-C, and the peak values were higher in areas A and B (Sea of Okhotsk and 290 

northern Japan Sea) compared to area C (southwestern Japan Sea) (Fig. 7). A second, 291 

clear peak in chlorophyll a concentration was observed in autumn (September – 292 

November) in area A only.  293 

 294 

 295 

DISCUSSION 296 

 297 

     Our results, together with previous results from the chick-rearing period (Kato et 298 

al. 2003), suggest that, interannually, rhinoceros auklets from the largest colony in the 299 

northwestern Pacific mainly use three marine regions year-round: the Sea of Okhotsk in 300 

autumn, the southwestern Japan Sea in winter, and the northern Japan Sea during the 301 

breeding season in spring and summer. The auklets consistently used these areas over 302 

two successive years. The Sea of Okhotsk, northern Japan Sea and southwestern Japan 303 

Sea are highly productive areas (Lee et al. 2009, Radchenko et al. 2010) among which 304 

the seasonal patterns of biological productivity differ considerably (Fig. 7). We 305 

hypothesize that the auklets are able to connect such seasonal peaks in productivity by a 306 

distinctive ‘three-step’ migration pattern.  307 

 308 

Migratory movements and regional prey availability 309 

     Rhinoceros auklets feed mainly on warm-water Japanese anchovy during the 310 

chick-rearing period (Watanuki & Ito 2012), and change their foraging locations from 311 

south to north of the colony during May - July, presumably following the northward 312 

migration of anchovy (Deguchi et al. 2010). Our results showed that the auklets 313 

continued to move northward into the Sea of Okhotsk after the breeding season, which 314 

is in accordance with previous ship-based surveys that reported the concentrations of 315 

auklets along Soya Strait and in the Sea of Okhotsk in late July – late August (Shuntov 316 

2000, Deguchi et al. 2010). The auklets moved within the Sea of Okhotsk until October 317 

(Fig. 3). The Sea of Okhotsk is one of the southernmost seasonal sea ice zones in the 318 

northern hemisphere, and supports high biological productivity associated with spring 319 

ice-edge blooms as well as autumn blooms (Mustapha et al. 2009, Radchenko et al. 320 
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2010). High summer as well as autumn primary productivity was measured by satellite 321 

(area A in Fig. 7) as well as from ship-based observations in this region, associated with 322 

the seasonal intrusion of the Tsushima Warm Current and the East Sakhalin Current 323 

along the northern coast of Hokkaido Island (Mustapha et al. 2009). The high biological 324 

productivity in summer and autumn attracts forage fish, including Japanese anchovy (at 325 

shallow depths 0 – 60 m; Nagasawa et al. 1998), and their predators to the Sea of 326 

Okhotsk (Radchenko et al. 2010, Sakurai et al. 2013). For example, nonbreeding 327 

flesh-footed shearwaters Puffinus carneipes from breeding colonies in New Zealand and 328 

Australia move into the Sea of Okhotsk in August and September, presumably mostly 329 

feeding on fish (Rayner et al. 2011) and other southern hemisphere migrants such as 330 

sooty and short-tailed shearwaters (Puffinus griseus and P. tenuirostris) have been 331 

observed through July and August (Shuntov 2000, Sakurai et al. 2013, Carey et al. 332 

2014). Similarly, black-tailed gulls Larus crassirostris that breed in a colony in the 333 

northern Japan Sea move into the Sea of Okhotsk in August (Kazama et al. 2013). Such 334 

enhanced marine food web might also attract rhinoceros auklets in autumn.  335 

     From November to December, the auklets moved to the southwest region of the 336 

Japan Sea, and 75 % of the tracks reached as far as the sea around the Korean Peninsula. 337 

They stayed in this region until mid February before migrating back to their breeding 338 

colony in mid March. The southwest region of the Japan Sea is known to be productive 339 

due to coastal upwelling (Lee et al. 2009). The region is a major fishing ground for 340 

warm-water pelagic fish such as Japanese anchovy, Chub and Jack mackerels (Scomber 341 

japonicus and Trachurus japonicus) (Kim et al. 2008). In particular, Japanese anchovy 342 

are found distributed around the Korean Peninsula in winter, and are available at 343 

shallow depths (5 – 60 m; Iversen et al. 1993). This region is also known as a major 344 

autumn spawning ground for Japanese common squid Todarodes pacificus, so juvenile 345 

squid would be available for auklets in the water column during winter (Kidokoro et al. 346 

2010).  347 

     The three-step migration, or three-phased migratory pattern (first northward, 348 

second southward, third northward) will increase the total distance travelled during the 349 

nonbreeding period, compared with the direct migration from the colony to the southern 350 

wintering area. The costs of travelling by flight are expected to be high in alcids that 351 

have high wing loading such as rhinoceros auklets (Elliott et al. 2013). The auklets 352 



 12

presumably gain sufficient energy in autumn in the Sea of Okhotsk, which outweighs 353 

the energy costs of moving any extra distances to southern wintering areas. The birds 354 

appeared to experience a similar temperature range (12 – 14 °C) between October and 355 

late February (Fig. 5) due to southward seasonal movement, and relatively constant sea 356 

temperature may be favorable for thermoregulation.  357 

     The three-step migration is also observed in little auks Alle alle breeding in East 358 

Greenland (Mosbech et al. 2012). The little auk used an autumn staging area in the 359 

Greenland Sea at the northeast of the colony, and then performed a long southerly 360 

migration (~2000 km) to winter off Newfoundland. Other alcids show diverse migratory 361 

patterns even within a species. For example, common murres in a colony at Svalbard 362 

migrate southward (~1000 km from the colony) to the Barents Sea and adjacent areas 363 

(Fort et al. 2013), but the same species from a colony in central Norway migrate 364 

northward to the Barents Sea (Lorentsen et al. 2012). Atlantic puffins Fratercula 365 

arctica from the Isle of May off east Scotland stay within the North Sea or move north 366 

to the northeast Atlantic (Harris et al. 2013), but the same species from southwest 367 

Ireland make long-distance east-west movements to Newfoundland in 368 

August-September (2537 km on average; Jessopp et al. 2013). Thick-billed murres Uria 369 

lomvia from 5 colonies spanning eastern Canadian Coast from the high Arctic to 370 

Newfoundland show variable degrees of southward movement (700 – 3500 km) to 371 

common wintering areas in the Labrador Sea and the seas off Newfoundland 372 

(McFarlane Tranquilla et al. 2013). We suggest that the migratory patterns of alcids are 373 

highly flexible depending upon the spatial and seasonal patterns of prey availability 374 

relative to their breeding location and timing. However, the maximum migration 375 

distances of alcids from the colony (~3500 km) are relatively limited, compared to the 376 

distances traveled by proficient-flying procellariiform seabirds (~12000 km from the 377 

colony; Guilford et al. 2009, Yamamoto et al. 2010), suggesting that the high energetic 378 

costs of flight would constrain the ability of alcids to exploit seasonally available 379 

resources through migration. 380 

 381 

Trophic position during the nonbreeding period 382 

     The nitrogen and carbon isotope signatures of the 10
th

 primary feathers and breast 383 

feathers of auklets presumably reflect the diet during autumn and winter, respectively 384 
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(see ‘Stable isotope analysis of feathers’ in Materials and Methods). The relatively high 385 

δ
15

N values of both primary and beast feathers (adjusted for discrimination factors), 386 

compared with δ
15

N values of auklet blood samples during the breeding period, suggest 387 

that the auklets fed on higher trophic level prey, including fish and/or squid, rather than 388 

zooplankton (Fig. 6). This contrasts with isotopic studies of other alcids such as Atlantic 389 

puffins or thick-billed murres, which showed seasonal shifts to low δ
15

N values, 390 

suggesting the dependence on lower trophic level zooplankton during the nonbreeding 391 

period (Hedd et al. 2010, Hobson & Bond 2012). 392 

     We have to note that the relatively low δ
13

C values in both primary and breast 393 

feathers (adjusted for discrimination factors) may reflect the carbon source for primary 394 

producers, varying with habitat (nearshore/benthic vs. offshore/pelagic) and/or season 395 

(summer vs. autumn and winter). Information on regional differences in measured δ
15

N 396 

and δ
13

C values of particulate organic matter (POM) are not available in Japan Sea or 397 

the Sea of Okhotsk. Nearshore/benthic marine habitat is known to show higher δ
13

C 398 

values than offshore/pelagic habitat in general (Graham et al. 2011). However, 399 

rhinoceros auklets fed on pelagic fishes and yet showed higher δ
13

C values (adjusted for 400 

discrimination factors) during the breeding period than during the nonbreeding period 401 

(Fig. 6). In northern Japan Sea, the δ
13

C values of sinking particles were higher in early 402 

summer bloom period than the rest of the year (range: -25 - -23 ‰; Nakanishi & 403 

Minagawa 2003), which may partly explain the lower adjusted δ
13

C values observed 404 

during the nonbreeding period. 405 

     Estimation of prey species based on δ
15

N and δ
13

C values are difficult without 406 

more data on isotopic baseline and potential prey species in both the Sea of Okhotsk and 407 

southwestern Japan Sea. Nagasawa (1998) suggests that rhinoceros auklets would be a 408 

major predator of juvenile chum salmon migrating along the coasts of Hokkaido during 409 

the summer and autumn season, although the nitrogen isotopic value of juvenile chum 410 

salmon (collected during chick-rearing season at colony) was not as high as that of the 411 

primary feathers (Fig. 6). Ogi (1980) found juvenile Atka mackerel Pleurogrammus 412 

monopterigius in the stomach contents of thick-billed murres, horned Fratercula 413 

corniculata and tufted Fratercula cirrhata puffins caught entangled in the Sea of 414 

Okhotsk in summer. Juvenile chum salmon and Atka mackerel would also be potential 415 

prey for rhinoceros auklets, but isotopic data are lacking in the Sea of Okhotsk. 416 
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Japanese anchovy sampled in southwestern Japan Sea in summer had δ
15

N and δ
13

C 417 

values of 9.73 – 10.16 ‰ and -17.75 – -17.44 ‰, respectively (Tanaka et al. 2008). 418 

The δ
15

N values of breast feathers of auklets (adjusted for discrimination factors) were 419 

similar to that of anchovy, but the adjusted δ
13

C values were 1.3 – 3.0 ‰ lower than 420 

that of anchovy collected in southwestern Japan Sea.  421 

     To compare the isotopic values of feathers with that of prey, we used the 422 

discrimination factors of feathers obtained from a closely-related species (common 423 

murre, Becker et al. 2007) but not from rhinoceros auklets. The discrimination factors 424 

of feathers can be variable among different seabird species or different studies on the 425 

same species, especially for δ
13

C (Becker et al. 2007), and this might have been another 426 

confounding factor. 427 

 428 

Adjustment of breeding timing and location 429 

      Rhinoceros auklets return to their breeding colony in mid-March. Thereafter, 430 

they forage around the breeding colony during the prelaying, incubation (Fig. 4), and 431 

chick-rearing periods (Kato et al. 2003, Watanuki et al. 2009). The auklets experienced 432 

the lowest sea temperatures (4-6 °C) during the early breeding period compared with 433 

the rest of the year (11-18 °C), based on the water temperature records from the 434 

geolocators (Fig. 5). Therefore, the thermoregulatory energy costs may be highest 435 

during the early breeding period, as the lower end of thermoneutral zone of the auklets 436 

has been estimated to be 15 °C based on body mass (Shirai et al. 2013). The auklets 437 

often attended to the nest burrow during nighttime, and this might improve 438 

thermoregulatory efficiency in the early breeding period. Still, it remains unclear as to 439 

why auklets choose to return in March to breed in the northern Japan Sea, given the 440 

relatively high thermoregulatory costs. 441 

     One explanation could be the availability of euphausiids around the breeding 442 

colony in early spring. In the northern Japan Sea, euphausiids Thysanoessa longipes and 443 

T. inermis come to the surface to spawn when spring phytoplankton blooms occur (area 444 

B in Fig. 7) and when sea surface temperatures are 4-8 °C (Hanamura et al. 1989). The 445 

auklets feed on euphausiids and low trophic level juvenile fish in early spring based on 446 

the egg yolk isotope values (Fig. 6). The carotenoid-rich euphausiids may be suitable 447 

prey for females during egg production (Ito et al. 2009), and could be an important 448 
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factor determining the timing of auklets’ migration to the northern Japan Sea. Another, 449 

not mutually exclusive, explanation could be that the auklets need to adjust their 450 

chick-rearing period to the arrival of migrating warm water forage fish in early summer 451 

(Watanuki et al. 2009). Japanese anchovy, a profitable prey during the chick-rearing 452 

period, migrates to the sea around Teuri Island when warm waters (> 13 °C) from the 453 

Tsushima Warm Current intrude into the foraging area in late May and mid June 454 

(Watanuki et al. 2009). If the auklets are to adjust chick-rearing to the warm water 455 

arrival, they need to be back in the colony and have laid their eggs by mid April to early 456 

May, even though the sea temperature are still low at this time, given that incubation 457 

takes 45 days on average (Gaston & Jones 1998). 458 

     Proficient-flying procellariiform seabirds can move long distances and shift their 459 

foraging ranges seasonally, even while attending the colony. For example, streaked 460 

shearwaters Calonectris leucomelas from the colony on the Pacific coast of Japan, shift 461 

their foraging area from south to the north of the colony in April – July, while attending 462 

the colony (Yamamoto et al. 2011). They fly up to a mean distance of 600 km from the 463 

colony, presumably following the northward migration of Japanese anchovy 464 

(Yamamoto et al. 2011). Rhinoceros auklets shift their foraging area seasonally during 465 

the early to late breeding period (Deguchi et al. 2010, this study), but the range of shift 466 

is much smaller, reflecting higher flight costs (up to a median distance of 240 km from 467 

the colony, see results). We suggest that the adjustment of breeding timing and location 468 

are an important factor affecting the migratory patterns, especially in a species with a 469 

short foraging range during the breeding period. In fact, the seasonal mismatch between 470 

breeding timing and anchovy migration has important fitness consequences in 471 

rhinoceros auklets (Watanuki et al. 2009). 472 

 473 

Conservation implications 474 

     The breeding population of rhinoceros auklets at Teuri Island is the largest in the 475 

northwestern Pacific, comprising more than 90 % of the total population in Asia 476 

(Gaston & Jones 1998). High concentrations of the nonbreeding auklets in the Sea of 477 

Okhotsk in autumn and in the southwestern Japan Sea in winter (Fig. 4) indicate that 478 

these two regions offer critical nonbreeding habitat for the population of Teuri Island. 479 

We suggest that the auklets are susceptible to 1) ocean warming and climatic regime 480 
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shifts, and 2) oil spill threats, which have been observed in both the Sea of Okhotsk and 481 

southwestern Japan Sea. 482 

     Significant warming and reductions in winter sea-ice production have been 483 

observed in the Sea of Okhotsk, and this may negatively influence the biological 484 

productivity of these regions (Radchenko et al. 2010, and references therein). In the 485 

northern part of the Sea of Okhotsk, increased sea surface temperatures negatively 486 

affected the breeding performance of planktivorous alcids, but the opposite was the case 487 

for piscivorous alcids (Kitaysky & Golubova 2000). Climatic regime shifts are 488 

suggested to occur in the Japan Sea, and may have influenced the stock size of 489 

epipelagic fish including Japanese anchovy (Kim et al. 2008) and the migration patterns 490 

of Japanese common squid (Kidokoro et al. 2010).  491 

     Oil platform development is planned for the Sea of Okhotsk, east of Sakhalin 492 

Island (Sakurai et al. 2013), where auklets concentrate in autumn. Therefore if oil spills 493 

occur in this region in autumn, it would have severe implications for the global 494 

population of auklets. Also, in the southwestern Japan Sea, oil spills from tankers 495 

passing through the Tsushima Strait may also affect the population if the spill happens 496 

in winter. Indeed, 1326 and 482 oiled carcasses of rhinoceros auklets were recovered 497 

from the shore of the southwestern Japan Sea, during oil spills from unknown sources in 498 

January 1986 (Sato 1999) and from a tanker in January 1997 (Fries et al. 1998), 499 

respectively. Therefore, the information presented here is crucial for identifying key 500 

areas of global significance for seabird conservation. 501 

 502 

CONCLUSION 503 

     Our results suggest that rhinoceros auklets followed spatial and seasonal changes 504 

in prey availability by a distinctive ‘three-step’ migration after breeding; moving 505 

northward to the Sea of Okhotsk in autumn, southward to the southwestern Japan Sea in 506 

winter, and then returning northward to the breeding colony in the northern Japan Sea in 507 

early spring. The auklets appeared to continue feeding on higher trophic level prey 508 

including fish and/or squid during the autumn and winter nonbreeding periods, but 509 

switched to lower trophic level prey in early spring when they were confined to forage 510 

close to the colony. The accessibility of foraging habitats with different seasonal 511 

productivity patterns would be important for nonbreeding seabirds that have high 512 
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energetic constraints on migratory movements. 513 
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Figures 685 

 686 

 687 

 688 

Fig. 1. Cerorhinca monocerata. Oceanographic features of study area. Warm and cold 689 

currents displayed in pink and blue, respectively. TWC and ESC indicate the Tsushima 690 

Warm Current and the East Sakhalin Current, mentioned in the text. Teuri Island 691 

(breeding colony) is marked with a star. 692 
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 693 

 694 

Fig. 2. Cerorhinca monocerata. An example of time-series data obtained by geolocators 695 

for one bird. Latitude and longitude were estimated using light level and water 696 

temperature, and were smoothed using a movement model (see Materials and Methods 697 

for details). Water temperature recorded by the geolocator and time spent dry per day 698 

are also shown. Horizontal arrows indicate the early breeding period (after the first 699 

return to the breeding colony). 700 

701 
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 704 

 705 

Fig. 3. Cerorhinca monocerata. Monthly locations of nine rhinoceros auklets during the 706 

nonbreeding and early breeding periods in August 2010 – April 2011. Each colour 707 

shows locations from different individuals. Teuri Island is marked with a star. 708 

Satellite-derived monthly-averaged sea surface temperature contours are also shown. 709 

710 
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 711 

 712 

Fig. 4. Cerorhinca monocerata. Kernel density distribution of auklet locations during 713 

the nonbreeding (NB) and early breeding (EB) periods of first and second study year 714 

(2010-11 and 2011-12). Kernel densities indicate 25 %, 50 %, and 75 % from darker to 715 

lighter colours. Teuri Island is marked with a star. 716 

717 
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 718 

 719 

Fig. 5. Cerorhinca monocerata. Seasonal patterns in water temperature recorded by the 720 

geolocators during a) August 2010 – April 2011 and b) August 2011 – April 2012 721 

(means ± SE; n = 9 and 11 birds, respectively).  722 

723 
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 724 

 725 

Fig. 6. Cerorhinca monocerata. δ
15

N and δ
13

C values of primary and body feathers of 726 

rhinoceros auklets collected in 2010-11 and 2011-12, before (black closed squares) and 727 

after (grey closed squares) applying the adjustment of discrimination factors (indicated 728 

by grey arrows). δ
15

N and δ
13

C values of auklet egg yolks and blood plasma collected 729 

during the incubation (INCU) and chick-rearing (CR) periods (open squares; adjusted 730 

for discrimination factors), and those of prey species (open circles, with names in 731 

italics) are also shown. The prey samples were obtained at the colony during the 732 

chick-rearing periods in 2004 and 2005 (Ito et al. 2009). Means ± SE are shown. 733 

Isotopic values of prey, the egg and blood plasma of auklets (open symbols) are based 734 

on Ito et al. (2009, 2012).   735 

736 
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 737 

 738 

Fig. 7. Cerorhinca monocerata. Mean monthly-average chlorophyll a concentrations of 739 

three different foraging areas (defined by 50 % kernel boundary of auklet locations) in 740 

the Sea of Okhotsk (Area A) and the northern and southwestern Japan Sea (Areas B and 741 

C) over 10 years (2003-2012). Mean values are shown with a thick line, and values of 742 

Mean ± 1 SD are shown with dotted lines, to show inter-annual variability. The arrows 743 

below each graph show the approximate period when the auklets stayed in each of Area 744 

A, B, and C. Please refer to Fig. S1 for the locations of the Areas A-C. Note the 745 

occurrence of autumn bloom in Area A.  746 

747 
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Electronic Supplement 748 

 749 

 750 

 751 

Fig. S1. Kernel density distribution of auklet locations during the nonbreeding period of 752 

the first and second study year combined (2010-11 and 2011-12 combined). Kernel 753 

densities indicate 25 %, 50 %, and 75 % from darker to lighter colours. Chlorophyll a 754 

concentrations were calculated for Area A (red), Area B (black) and Area C (blue). The 755 

areas were chosen on the basis of 50 % kernel density boundaries during nonbreeding 756 

(Areas A and C) and early breeding (Area B: see Fig 4) periods. Teuri Island is marked 757 

with a star. 758 


