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a b s t r a c t

The Water Framework Directive is the first international legislation to require European countries to
establish comparable ecological assessment schemes for their freshwaters. A key element in harmonising
quality classification within and between Europe’s river basins is an “Intercalibration” exercise, stipulated
by the WFD, to ensure that the good status boundaries in all of the biological assessment methods corre-
spond to similar levels of anthropogenic pressure. In this article, we provide a comprehensive overview
of this international comparison, focusing on the assessment schemes developed for freshwater lakes.
Out of 82 lake ecological assessment methods reported for the comparison, 62 were successfully inter-
cological assessment
urope
ish fauna
akes
acrophytes

calibrated and included in the EC Decision on intercalibration, with a high proportion of phytoplankton
(18), macrophyte (17) and benthic fauna (13) assessment methods. All the lake assessment methods are
reviewed in this article, including the results of intercalibration. Furthermore, the current gaps and way
forward to reach consistent management objectives for European lakes are discussed.
hytoplankton
ater Framework Directive

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

Many benefits provided by aquatic ecosystems can only be
aintained if the ecosystems are protected from deterioration

Millennium Ecosystem Assessment, 2005; de Groot et al., 2010).
his aim requires (1) suitable methods to assess anthropogenic
mpact on aquatic ecosystems and to evaluate ecological integrity,
2) common management objectives across state boundaries and
dministrative barriers, and (3) concerted action aimed at halting
nd reversing degradation on the national and international level
Palmer et al., 2005; Hering et al., 2013).

Many countries have adopted legislation to determine the eco-
ogical integrity of surface waters including streams, rivers, lakes,
stuaries and coastal waters. The purpose of the US Clean Water
ct (CWA) is to “restore and maintain the chemical, physical, and
iological integrity of the Nation’s waters.” Also in Australia, a
roader, more holistic approach to aquatic ecosystem manage-
ent is adapted “to maintain and enhance the ecological integrity

f freshwater and marine ecosystems” (ANZECC, 2000). Similarly,
he South African National Water Act aims at “protecting aquatic
nd associated ecosystems and their biological diversity”. Still, in
any cases, these legislation acts have not fulfilled their ambitions

Doremus and Dan Tarlock, 2013; Adler, 2013), mainly due to a lack
f clear guidelines for the assessment of biological integrity (Davies
nd Jackson, 2006), the insufficient development and quality of
ioassessment methods (Adler, 2003; Yoder and Barbour, 2009),
lack of consistent management objectives (Davies and Jackson,

006; Adler, 2013), and poor comparability of biological data (Cao
nd Hawkins, 2011; Diamond et al., 2012).

In Europe, the Water Framework Directive (EC, 2000; WFD)
stablishes a framework for the protection and improvement of
nland and coastal waters, which aims to achieve ‘good’ surface

ater status by 2015 or, at the latest, by 2027. In contrast to other
egislations, the WFD provides operational definitions for assessing
cological status, setting management objectives, and harmonis-
ng EU Member States’ ecological assessment systems. In short, the

FD is based on the following main principles:

Biological assessment uses numerical measurements of commu-
nities of plants and animals (phytoplankton, aquatic flora, benthic

invertebrates and fish fauna) as stipulated in the Directive (e.g.,
biomass, taxonomic composition, diversity, etc.).
In biological assessment, the observed condition is compared
with the reference status with the result given in five classes:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

‘high’ status (no differences to reference conditions), ‘good’ sta-
tus (slight differences), ‘moderate’ status (moderate differences),
‘poor’ and ‘bad’ statuses (major differences).

- ‘Good’ ecological status represents the target value that all sur-
face water bodies must achieve in the near future. These values
(expressed as ‘good’ status class boundaries) are compared and
harmonised through the intercalibration exercise, ensuring con-
sistent management objectives across Europe.

Since the adoption of the European Water Framework Direc-
tive (WFD) in 2000, huge progress has been made in the ecological
assessment of European waters. Many European countries now
have a set of assessment tools for indicating the state of Europe’s
water resources and for monitoring improvements in relation
to investments in river basin management, or deterioration in
response to future environmental changes (Birk et al., 2012a; Brucet
et al., 2013b). These assessment methods are composed of sev-
eral metrics (see Tables 1–5), and combination rules are applied
to calculate the ecological assessment result for the whole system.

In order to harmonise ecological assessment systems and to
ensure a consistent level of ambition in the protection and restora-
tion of surface water bodies across the EU, an intercalibration
exercise was launched, involving hundreds of experts from all
Member States (Nõges et al., 2009). This exercise led to the devel-
opment of innovative new approaches to accomplishing this highly
complex task (Birk et al., 2013). In total, 230 methods from 28
countries were intercalibrated and published in the EC Decision (EC,
2013). This flagship document sets the harmonised boundaries for
the Member States’ national methods for classifying the ecological
quality of their rivers, lakes, coastal waters and estuaries.

In this article, we provide an overview of this international
comparison, focusing on the assessment schemes developed for
freshwater lakes. More specifically, we (1) briefly review the assess-
ment methods developed for lakes focusing on the metrics included
and the pressures addressed; (2) describe the intercalibration exer-
cise performed on lake assessment methods; (3) assess the gaps
in the lake assessment methods regarding biological communities,
pressures addressed and geographical regions.

2. Intercalibration methodology
A step-by-step methodology for the comparison and harmoni-
sation of ecological assessment methods was developed (EC, 2011;
Birk et al., 2013). The assessment methods were first checked for
their compliance with the WFD requirements - only methods that
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Table 1
Overview of the Member States (MS) lake phytoplankton assessment methods (only intercalibrated methods). For detailed description of metrics see supplementary material
S2, Table 1.

Metrics included in national systems Pressures addressed and pressure indicators

MS Abundance Taxonomic composition Sensitivity/tolerance

Austria CHL-A, TBV Brettum index EUTR: TP
Belgium CHL-A %CYA EUTR: TP, TN
Cyprus CHL-A, TBV BV-CYA IGA index EUTR: TP, land-use, PD
Denmark CHL-A %CYA, %CHRY Sensitivity Index EUTR: TP, TN
Estonia CHL-Asurf, CHL-Atot Phytoplankton community description PCQ index EUTR: TP, TN
Finland CHL-A, TBV %CYA (impact taxa) TPI index EUTR: TP
Germany CHL-A, CHL-Amax, TBV Algal class metrics PTSI index EUTR: TP, TN
Ireland CHL-A IPI index EUTR: TP, TN
Italy-lakes CHL-A, TBV PTIOT index EUTR: TP
Italy-reservoirs CHL-A, TBV BV-CYA MedPTI index EUTR: TP, land-use, PD
Netherlands CHL-A Bloom index EUTR: TP, TN
Norway CHL-A, TBV BV-CYAmax PTINO index EUTR: TP
Poland CHL-A, TBV BV-CYA EUTR: TP, TN
Portugal CHL-A, TBV BV-CYA IGA index EUTR: TP, land-use, PD
Slovenia CHL-A, TBV Brettum index EUTR: TP
Spain CHL-A, TBV %CYA IGA index EUTR: TP, land-use, PD
Sweden CHL-A, TBV %CYA TPI index EUTR: TP
UK CHL-A, TBV BV-CYA PTIUK index EUTR: TP, TN

CHL-a, chlorophyll-a concentration; TBV, total biovolume; BV-CYA, biovolume of Cyanobacteria; %CYA, percentage of Cyanobacteria of total biovolume; CHRY, Chrysophyta;
EUTR, eutrophication; TP, total phosphorus; TN, total nitrogen; PD, population density.

Table 2
Overview of the Member States (MS) lake macrophyte assessment methods (only intercalibrated methods). For detailed description of metrics see supplementary material
S2, Table 3.

Metrics included in national systems Pressures addressed and
pressure indicators

MS Abundance Composition Sensitivity/tolerance Functional and
richness/diversity

Austria Colonisation depth
Vegetation density

Species composition index Trophic index Type-specific zonation EUTR and GD: TP, CHL-a, SD

Belgium Abundance of submerged
vegetation

Type-specific species
composition index

Disturbance index Macrophyte growth forms EUTR and others: TP, TN,
CHL-a

Denmark Colonisation depth
Total coverage

Presence of indicator
species

EUTR: TP, TN, CHL-a

Estonia Colonisation depth (deep
lakes)

Abundance of different
taxonomic groups

Abundance of
sensitive/tolerant taxa

EUTR and HM: TP, TN,
CHL-a

Finland PMA index Trophic index
PTST index

EUTR and HM: TP

France IBML index EUTR and GD: TP, chl-a, SD
Germany Colonisation depth Dominance of selected taxa Reference Index EUTR and GD: TP, TN,

CHL-a, SD
Ireland Colonisation depth

Average depth of presence
% RF Chara
% RF elodeids

Plant trophic score
% RF tolerant taxa

EUTR: TP, TN, CHL-a

Italy Colonisation depth Dissimilarity index,
Invasive species

Trophic score EUTR and GD: TP, chl-a, SD

Latvia Colonisation depth Abundance of different
taxonomic groups

Abundance of
sensitive/tolerant taxa

EUTR: TP, TN, CHL-a

Lithuania Colonisation depth Dominance of selected taxa Reference Index EUTR: TP, TN, CHL-a
Netherlands Indicator species metrics Growth form metrics EUTR and HM: TP, TN,

CHL-a
Norway Trophic index EUTR: TP
Poland Colonisation index Pielou’s index (syntax

level)
EUTR and others: TP, TN,
CHL-a

Slovenia Colonisation depth Depth limit of charophytes Trophic index EUTR and GD: TP, CHL-a, SD
Sweden Trophic index EUTR: TP
UK Mean cover Relative cover of

filamentous algae
LMNI index Number of functional

groups
Number of taxa

EUTR: TP, TN, CHL-a

E tion; R
c

m
m
f
l
v
t
a

UTR, eutrophication; HM, hydromorphological modifications; GD, general degrada
oncentration; SD, Secchi depth.

et these criteria could be intercalibrated. For example, assess-
ent schemes must establish “biological reference conditions”

rom which the degree of human impact is measured using an Eco-

ogical Quality Ratio (EQR) – the ratio of the observed assessment
alue to the expected value under reference conditions. Addi-
ionally, the assessment method must include all the biological
ttributes included in the Directive, e.g., for phytoplankton: average
F, relative frequency; TP, total phosphorus; TN, total nitrogen; CHL-a, chlorophyll-a

phytoplankton biomass, composition and abundance of planktonic
taxa, frequency and intensity of planktonic blooms.

Secondly, the assessment methods were checked to ensure

that intercalibration was feasible, with analyses restricted to
methods that address similar water body types and anthropogenic
pressure and which are based on similar concepts. For example,
some assessment schemes for lake benthic invertebrates were
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Table 3
Overview of the Member States (MS) lake phytobenthos assessment methods (only intercalibrated methods). For detailed description of metrics see supplementary material
S2, Table 2.

MS Sensitivity/tolerance metrics Pressures addressed and pressure indicators

Belgium PISIAD index EUTR: TP, chl-a
Germany Trophic-index TINord Quotient of reference species RAQ EUTR: TP
Finland IPS index EUTR: TP
Hungary IBD index; EPI-D index; TDIL index EUTR: TP
Ireland Lake Trophic Diatom Index EUTR: TP
Poland Trophic index TJ Index of reference species GRJ EUTR: TP
Slovenia Trophic index (Lake – TI) EUTR: TP
Sweden IPS index EUTR: TP
UK Diatom Assessment Of Lake Ecological Quality (DARLEQ) EUTR: TP

EUTR, eutrophication; TP, total phosphorus; CHL-a, chlorophyll-a concentration.

Table 4
Overview of the Member State (MS) lake benthic invertebrate assessment methods (only intercalibrated methods). For detailed description of metrics see supplementary
material S2, Table 4.

Metrics included in the national assessment systems Pressures addressed and
pressure indicators

MS Composition metrics Sensitivity/tolerance
metrics

Richness/diversity metrics Functional metrics

Belgium Number of sensitive taxa
Mean tolerance score

EPT taxa richness
Total taxa richness
Shannon-Wiener diversity

EUTR, HM: not tested

Estonia ASPT index
Swedish Acidity index

EPT and total taxa richness
Shannon-Wiener diversity

EUTR: TP, land use

Finland BQIFI index EUTR: TP, TN, CHL-a, SD
HM: Morphoindex

Germany-ALPa RA of Odonata Fauna index Shannon-Wiener diversity RA of gatherers
r/k ratio

HM: Morphological Index

Germany-CBa RA of Odonata Fauna index ETO taxa richness RA of habitat lithal EUTR, HM: Combined
stressor index

Lithuania RA of COP ASPT index CEP taxa richness
Hill‘s number

EUTR: TP

Netherlands DN%, DP%, KM% KM% (taxa) HM: shore characteristics
Norway AWIC index;

Acidity index
Ephemeroptera taxa
richness
Gastropoda taxa richness

ACID: pH, ANC, Lal

Slovenia Littoral fauna index Total taxa richness
Margalef diversity

HYMO: Lake Modification
Index

Sweden-BQIb BQISE index EUTR: TP
Sweden-MILAb RA Ephemeroptera RA

Diptera
AWIC index Ephemeroptera taxa

richness Gastropoda taxa
richness

RA of predators ACID: pH

UK-CPETc CPET index EUTR: TP
UK-LAMMc LAMM index ACID: pH, ANC

RA, relative abundance; EUTR, eutrophication; HM, hydromorphological modifications; ACID, acidification; TP, total phosphorus; TN, total nitrogen; CHL-a, chlorophyll-a
concentration; SD, Secchi depth; ANC, acid neutralising capacity; LAl, labile aluminium.

a Germany intercalibrated two benthic fauna assessment methods: for Alpine and for Central Baltic lake types.
b icatio

ation.

d
e
o
n
b
e
2
l
a

(
c
c

o
(

Sweden intercalibrated two methods: MILA for acidification am BQI for eutroph
c UK intercalibrated two methods: LAMM for acidification am CPET for eutrophic

eveloped to measure the impact from acidification (McFarland
t al., 2010), whereas other national schemes measured the impact
f eutrophication (Ruse, 2010). These two types of schemes are
ot comparable. Similarly, it was not possible to compare methods
ased on littoral and profundal benthic invertebrate communities,
ven if they address the same eutrophication pressure (Sandin et al.,
014). In several cases, assessment systems developed for deep

akes include specific metrics (e.g. macrophyte colonisation depth)
nd cannot be applied to shallow lakes (Søndergaard et al., 2010).

Thirdly, the biological quality element (BQE) and pressure data
e.g., nutrient levels for eutrophication, pH or acid neutralising
apacity (ANC) levels for acidification) were collected from the

ountries involved and options for intercalibration were evaluated.

Intercalibration can be carried out in three ways, depending
n the availability and similarity of national assessment methods
Fig. 1):
n.

- If Member States have common sampling methods and thus sim-
ilar kinds of data (e.g., the number of individuals of all taxa at
identical determination level), then national methods were com-
pared directly by applying each national method to the data of
other countries (direct comparison; Sandin et al., 2014; Gassner
et al., 2014);

- If Member States did not have common sampling methods, the
results of national assessment methods were compared using
common metrics, a metric developed that was sufficiently com-
parable with other countries to enable a comparison to be made
(indirect comparison; Lyche-Solheim et al., 2013; Kelly et al.,
2014);
- If assessment methods had not yet been developed, the Member
State could choose to set boundaries based on a common database
using the same assessment metrics (common boundary setting;
Wolfram et al., 2009; Poikane et al., 2010).
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Table 5
Overview of the Member States (MS) lake fish fauna assessment methods (only intercalibrated methods). For detailed description of metrics see supplementary material S2,
Table 5.

Metrics included in the national assessment systems Pressures addressed and
pressure indicators

MS Abundance/composition Sensitivity/tolerance Functional metrics
Richness/diversity

Age structure metrics

Austria Fish biomass
(hydroacoustics)
Abundance index of alien
species

Abundance index of
type specific
species/sensitive
species

Abundance index of migrating
spawners/of spawning guilds/of
small-bodied species

Length frequency of
sentinel species

EUTR, HM, fisheries, alien
species: index based on
expert judgement

Finland Total biomass of fish
Total number of fish
Biomass proportion of
cyprinid fish

Indicator species EUTR: TP, landuse

Germany Sentinel/type/side
species number
Sentinel species
abundance

Habitat/Spawning preferences
Abundance of habitat/spawning
preferences

Reproduction of potentially
stocked species

EUTR, HM, fisheries, alien
species: index based on
expert judgement

Ireland Total biomass
Native fish biomass
Perch/roach biomass
Rel. abundance of
bream/rudd
Rel. biomass of cyprinid
species/non-native species

Relative abundance of
rheophilic/lithophilic/phytophilic
species
Species evenness/dominance index

Maximum length of
dominant species (based
on BPUE)

EUTR: TP, CHL-a

Italy NPUE of the guiding
species
Reduction % of guid-
ing + accompanying
species

Relative richness of alien species Population structure of the
guiding species
Reproductive success % of
guiding + accompanying
species

EUTR, HM, fisheries, alien
species: index based on
expert judgement

EUTR, eutrophication; HM, hydromorphological modifications; TP, total phosphorus; CHL-a, chlorophyll-a concentration.

All countries use the same assessment method

Yes

Common
boundary setting

No

Sampling and data processing similar: 
all MS methods can be applied to other MS data 

Yes

Direct
comparison

1. All sites assessed by all 
national methods

2. Boundary translation using  
regression between national 
methods and the mean value 

of all MS assessments

3. Assessing boundary bias 
and boundary harmonisation

No

Indirect
comparison

1. Relationships between  
national methods and IC 

common metrics

2. Boundary translation 
using regressions between 
national methods and IC 

common metrics

3. Assessing boundary bias 
and boundary harmonisation

Fig. 1. Flow chart of the main steps of the intercalibration process.
Due to biogeographical and typological reasons, as well as differ-
ences in data acquisition, the biological data of different countries
cannot be compared without concern (Cao and Hawkins, 2011;
Birk et al., 2013). As an example, the number of benthic inverte-
brate taxa might be generally higher in one country than in others,
because the sampling covers much more area per site (Böhmer
et al., 2014). The richness and diversity of fish species are related
mainly to geographical and climatic variables (Brucet et al., 2013a).
Hence, a “benchmarking” procedure was applied with the aim
of correcting any biogeographical and methodological differences
within a common dataset that can cause incomparability. Three dif-
ferent approaches were applied: “reference benchmarking” based
on near-natural reference sites (Pardo et al., 2012), “alternative
benchmarking” using sites at similar impairment levels (Birk et al.,
2012b), and “continuous benchmarking” using pressure–response
gradients (Kelly et al., 2014; for a detailed description of this pro-
cedure see Birk et al., 2013).

The final objective of intercalibration was to compare and har-
monise national boundaries. This was done using a standardised
analytical procedure and harmonised comparability criteria. The
main criteria used for evaluating comparability was boundary bias:
the deviation of a class boundary relative to the common view of
the Member States (defined by the common metrics or by the global
mean of all of the methods).

The most that any national boundary could deviate from the
global mean view of all countries was ±0.25 classes and therefore
the most widely divergent national methods could not differ from
each other by more than 0.5 classes. National methods that did not
comply with these criteria were required to adjust their boundaries
until acceptable boundary bias and class agreement were achieved.

It is important to stress that intercalibration checks whether the
results are comparable, irrespective of method.

For definition of the main terms used in the intercalibration of
ecological assessment methods see supplementary material S3.
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. Lake assessment methods

.1. Lake assessment methods: phytoplankton

The use of phytoplankton for water quality assessment of lakes
as a long history, and considerable knowledge of this subject has
ccumulated over the past century (Willén, 2000). Phytoplankton
as traditionally been one of the dominant elements in lake assess-
ent and thus has played an important role in the development

f WFD-compliant assessment systems. Nearly all of the Member
tates have developed phytoplankton assessment methods. Out
f 24 methods participating in the intercalibration exercise, 18
ethods were included in the final intercalibration results. All of

he methods address eutrophication pressure and follow similar
ssessment principles (Table 1):

All include measures of phytoplankton abundance – all national
methods consider chlorophyll-a, and most also consider total
phytoplankton biovolume (Carvalho et al., 2013b);
Most include measures of cyanobacteria (as proxy measures of
the risk of toxic algal blooms) as cyanobacteria biovolume or
cyanobacteria as a percentage of the total phytoplankton biovol-
ume (Carvalho et al., 2013b);
All include metrics based on the trophic preferences of species
or algal groups, e.g., Brettum index (Austria, Slovenia; Brettum,
1989) and PTI index (Finland, Sweden; Willén, 2007). However,
functional and diversity indices are not used (except Estonia
where Pielou’s evenness index is used).

Despite some variation between countries in sampling methods
nd sampling periods (Nõges et al., 2010), all of the intercalibrated
ethods exhibited significant relationships with total phosphorus

TP), and some of the methods also exhibited significant rela-
ionships with total nitrogen (TN) and catchment characteristics.
owever, it has been difficult to establish relationships for Eastern
ontinental lakes and Mediterranean reservoirs due to both a lack
f data (Padisák et al., 2006) and peculiarities of the water bod-
es. For example, Mediterranean reservoirs are affected by extreme
hanges in their water level due to seasonal climate variation
Marchetto et al., 2009) while Eastern Continental lakes are con-
idered naturally eutrophic with nutrient concentrations that are
onsiderably higher than limiting thresholds (Borics et al., 2013).

.2. Lake assessment methods: macrophytes

Macrophytes have been used in lake assessment for many years,
nd the macrophyte community is generally regarded as a key indi-
ator of ecological status both in deep (Pall and Moser, 2009) and
n shallow lakes (Søndergaard et al., 2010). However, in contrast to
hytoplankton assessment systems, existing macrophyte assess-
ent was confined to relatively small geographic regions, mainly

n Scandinavia and Central Europe, and was based primarily on indi-
ator species analyses (Melzer, 1999), while the WFD requires lake
ssessment based on both macrophyte abundance and composi-
ion. Most European countries have undertaken significant efforts
o develop WFD-compliant macrophyte assessment tools. Twenty
ystems have been developed recently, and 17 of these have been
ntercalibrated (Table 2).

All macrophyte assessment systems (except that in Poland)
nclude sensitivity/tolerance metrics expressed as indices that are
ased on species indicator values, e.g., a trophic index (Pall and

oser, 2009) or relative abundance of sensitive versus tolerant

axa (Schaumburg et al., 2004; Free et al., 2006). Most macrophyte
ssessment systems include an assessment of abundance (except
he methods of Norway, Sweden and Finland). The most widely
ators 52 (2015) 533–544

used abundance measures are the macrophyte colonisation depth
and the abundance of submerged macrophytes.

Most macrophyte assessment systems claim to address not
only eutrophication but also other pressures, such as general
degradation and hydromorphological changes. However, signifi-
cant pressure response relationships have only been shown for
eutrophication parameters (nutrient and chlorophyll-a concentra-
tions and water transparency) (Table 2). Even in these cases there
remain some difficulties with the response of macrophyte metrics
to pressure, especially the delayed response to both increasing
and decreasing eutrophication (Pall and Moser, 2009) and the
non-linear reaction to eutrophication following the alternative
stable state theory (Penning et al., 2008). Further challenges are
establishing pressure–response relationships for pressures that are
themselves quite hard to quantify (hydromorphological modifica-
tions, i.e. shoreline developments and water level fluctuations), as
well as for multiple stressors.

3.3. Lake assessment methods: phytobenthos

Although phytobenthos is only one part of the BQE “macro-
phytes and phytobenthos” (Annex V, WFD), most Member States
have developed separate assessment methods for macrophytes
and phytobenthos. Moreover, only 11 of the 27 Member States
of the EU took part in the intercalibration of phytobenthos meth-
ods (Tables 3 and 7). Nevertheless, the collective view of the
phytobenthos expert group (Kelly et al., 2014) was that a Mem-
ber state cannot be considered to be fully compliant with the
WFD requirements if it possesses only a macrophyte (or only
phytobenthos) method. There are situations (e.g. where the lake
is subject to hydromorphological stress, navigation, etc.) where
macrophytes have completely disappeared and will not give any
reliable indication of the impact of nutrients on littoral flora, as
well as situations when the two elements react at different rates
to changes in their environment (Schaumburg et al., 2004; Pall and
Moser, 2009).

All national phytobenthos methods assess the composition and
relative abundance of diatoms, assumed to be proxies for the phyto-
benthos community as a whole (Table 3). All the methods address
eutrophication pressure and have demonstrated significant rela-
tionships to total phosphorus concentrations with the exception of
some methods in low alkalinity lakes, where a combination of short
gradients and the confounding effects of low pH led to very weak
relationships with TP.

3.4. Lake assessment methods: benthic invertebrates

The lack of WFD-compliant macroinvertebrate assessment tools
was identified as one of the major knowledge gaps impeding the
full assessment of the ecological quality of lakes (Solimini et al.,
2006). Macroinvertebrates have been recognised as one of the
most difficult biological groups to consider in the assessment of
lake quality for three main reasons: their complex biotic struc-
ture, their high spatial and temporal variability (Solimini et al.,
2006; Free et al., 2006; Solimini and Sandin, 2012). In spite of
these factors, 20 systems have been developed, of which 13 have
been successfully intercalibrated (Table 4). Of the 44 metrics,
almost half (42%) are sensitivity/tolerance metrics included in all
national systems. Some countries have used traditional indices,
such as the ASPT index (Lithuania and Estonia; Armitage et al.,
1983), Benthic Quality Index (Sweden and Finland; Wiederholm,
1980) and Acidity index (Norway and Estonia; Henrikson and

Medin, 1986). Most of the Member States have developed new
sensitivity indices, such as the Littoral Fauna Index (Slovenia;
Urbanic, 2014), Mean Tolerance Score (Belgium; Gabriels et al.,
2010) and the LAMM index (United Kingdom; McFarland et al.,
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010). Eight methods also contain richness/diversity methods,
he most frequently used being metrics of total taxa richness,
PT (Ephemeroptera, Plecoptera and Trichoptera) taxa richness
Lenat, 1988) and Shannon–Wiener diversity. Only four methods
ontain composition metrics, while functional metrics are rarely
sed.

Most of the current benthic fauna assessment systems are based
n significant pressure–response relationships. Nonetheless, the
ariation explained by the models was found to be low in many
ases and was considered unsatisfactory (Free et al., 2006). The
ow explanatory power of the models has several explanations,
.e. complex biotic structure, impact of various environmental fac-
ors and multiple pressures, and habitat impact (Solimini et al.,
006; Free et al., 2009). In short, while the development of ben-
hic assessment methods can be considered a partial success story,
here is still a need to further understand the structure of lake
enthic macroinvertebrate communities and their response to
nthropogenic pressure to reduce the uncertainty of the metrics
eveloped. Recently, a new harmonized multimetric assessment
ystem has been proposed for Western, Northern, Central and
outhern Europe (including natural Mediterranean lakes; Miler
t al., 2013) and its implementation in national assessment systems
ay represent the way forward to overcoming those limita-

ions.

.5. Lake assessment methods: fish fauna

It is well established that fish are sensitive indicators of environ-
ental degradation and offer the major advantage of integrating

he direct and indirect effects of stress over large scales of space
nd time (Minns et al., 1994). Fish exhibit reactions to eutro-
hication (Mehner et al., 2007), habitat destruction, shoreline
egradation, lake use intensity (Belpaire et al., 2000), hydro-
orphological degradation, connectivity (Degerman et al., 2001),

cidification (Henriksen et al., 1989) and combined degradation
Whittier, 1999). Nevertheless, the fish community is often an over-
ooked and neglected aspect of lake monitoring. So far, only eight

ember States have finalised fish assessment systems (Kelly et al.,
012; Olin et al., 2013), and only five of these have shown significant
ressure–response relationships (Table 5).

The use of fish communities as indicators of environmental
uality is potentially challenging (Kelly et al., 2012), with sev-
ral problems: (i) a wide variety of sampling methods are used by
he Member States, including multi-mesh gill nets, electro-fishing,
rawling and hydro-acoustics; (ii) the activities of fishing, stock-
ng and the introduction of exotic species, all of which can have

large impact on the natural fish fauna; (iii) lakes are subjected
o multiple pressures (shoreline degradation, eutrophication and
ater level regulation), and fish, at the topmost level of the trophic

ascade, indirectly integrate the effects of these on lower trophic
evels; (iv) high natural variability in fish metrics, which may be
elated to lake size, depth and water chemistry; (v) fish are mobile
nd can avoid areas of environmental stress, resulting in this BQE
eing less sensitive to pressures than others. Taking all these factors
ogether, it is not surprising that there are few significant relation-
hips between fish metrics and specific pressure indicators (Olin
t al., 2013). Fish are, however, important indicators: they are at the
op of the food chain, have significant economic and social impor-
ance and their assessment is an important part of an integrated
pproach to water management. One solution to this problem is

o base assessment of pressure on expert judgement (e.g., Aubry
nd Elliott, 2006); Austria, Germany, and Italy have demonstrated
response of their overall fish assessment result to a combined

ressure index (all common pressures scored and summed up to
reate an overall pressure index).
ators 52 (2015) 533–544 539

4. Lake intercalibration

4.1. Intercalibration groups

Fourteen Lake Intercalibration groups were formed, each focus-
ing on a specific geographical region/BQE/anthropogenic pressure
combination (Table 7, only finalised results included):

- For phytoplankton, macrophytes and phytobenthos, all geo-
graphic groups just addressed eutrophication pressure;

- For phytobenthos, all methods were intercalibrated within a sin-
gle pan-European group due to the low number of methods
available;

- For benthic invertebrates, the Alpine group addressed hydromor-
phological alterations whilst the Central Baltic group addressed
combined pressures, including hydromorphological alteration
and eutrophication. In the Northern region, two separate groups
were created, one that addressed eutrophication using profundal
communities whilst another addressed acidification using littoral
communities.

- For fish fauna, the Alpine group addressed diverse pressures, but
the Northern group only addressed eutrophication.

In several cases, it was not possible to intercalibrate the meth-
ods:

- Due to the low number of methods in the group (the Mediter-
ranean benthic fauna group and the Central Baltic fish group);

- Due to different pressure/assessment concepts on which the
methods were based (e.g. the Norwegian fish method which
addressed acidification could not be included in the Northern fish
group dealing with eutrophication).

4.2. Common metrics and benchmarking

In the next step, datasets were collected and compared. In most
cases (nine groups), the assessment methods and data were suf-
ficiently similar to enable direct comparison, where each national
method was applied to all data in a common dataset. For five groups,
specific common metrics were developed for the intercalibration
exercise (Table 7, for details see Lyche-Solheim et al., 2013; Phillips
et al., 2013). For the lake phytobenthos intercalibration exercise,
the trophic index (TI: Rott et al., 1999), a widely used phytobenthos
metric, was used as the common metric of intercalibration.

Half of the groups applied reference-site benchmarking. This
was true primarily in the Northern and Alpine regions, where near-
natural reference sites were available in sufficient numbers. Six
Intercalibration groups applied continuous benchmarking, which
uses the available pressure gradient (e.g. from good to bad status)
to identify country-specific differences. This approach was used in
the Central Baltic region, where reference sites are rare, or no longer
exist, and the range of pressures was high across the group but not
always adequately represented within each country. It was also
used in several cases in the Northern and Alpine regions, as this
approach was independent of national views of reference and is,
therefore, more robust.

4.3. Boundary harmonisation

In the final step, national boundaries on the EQR scale were com-
pared and, if necessary, adjusted if the agreed comparability criteria

were exceeded.

Only three groups (Alpine phytoplankton, Alpine benthic fauna,
and Northern Benthic fauna acidification methods) found that no
boundary adjustment was needed, as the comparability analysis
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Table 6
Overview of the Member States (MS) lake assessment methods.

MS Phytoplankton Macrophytes Phytobenthos Benthic fauna Fish fauna

Austria Intercalibrated Intercalibrated – – Intercalibrated
Belgium Intercalibrated Intercalibrated Intercalibrated Intercalibrated –
Bulgaria – Submitted – – –
Cyprus Intercalibrated n.a. n.a. n.a. n.a.
Denmark Intercalibrated Intercalibrated – – –
Estonia Intercalibrated Intercalibrated – Intercalibrated –
Finland Intercalibrated Intercalibrated Intercalibrated Intercalibrated Intercalibrated
France Submitted Intercalibrated Submitted Submitted Submitted
Germany Intercalibrated Intercalibrated Intercalibrated Intercalibrated (2)

Submitted
Intercalibrated

Greece – – – – –
Hungary Submitted Submitted Intercalibrated Submitted
Ireland Intercalibrated Intercalibrated Intercalibrated Intercalibrated
Italy Intercalibrated (2) Intercalibrated Submitted Submitted Intercalibrated
Latvia Submitted Intercalibrated – – –
Lithuania Submitted Intercalibrated – Intercalibrated –
Netherlands Intercalibrated Intercalibrated – Intercalibrated Submitted
Norway Intercalibrated Intercalibrated – Intercalibrated Submitted
Poland Intercalibrated Intercalibrated Intercalibrated – –
Portugal Intercalibrated n.a. n.a. n.a. n.a.
Romania Submitted Submitted – Submitted –
Slovenia Intercalibrated Intercalibrated Intercalibrated Intercalibrated –
Spain Intercalibrated Submitted – Submitted –
Sweden Intercalibrated Intercalibrated Intercalibrated Intercalibrated (2)

Submitted
Submitted

UK Intercalibrated Intercalibrated Intercalibrated Intercalibrated (2) –
In total 18 intercalibrated

5 submitted
17 intercalibrated
3 submitted

9 intercalibrated
2 submitted

13 intercalibrated
6 submitted

5 intercalibrated
4 submitted

Intercalibrated, method intercalibrated and included in the final results; Submitted, method participated in the intercalibration but not included in the final results; n.a., not
applicable, method development and intercalibration not feasible due to lack of natural lakes. (2), MS has intercalibrated 2 assessment methods (e.g., for different human
impacts).
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howed that the methods yielded very similar assessments (in
greement with the comparability criteria defined in the Inter-
alibration Guidance). These were groups with just a few (2–4)
imilar assessment methods (for example, Alpine phytoplankton
ethods all include biomass metrics and composition metrics each
ith harmonised boundary values agreed upon during develop-
ent (Wolfram et al., 2009).
In all other groups, boundary adjustments were needed. In some

ases, only the class boundaries of a few methods were adjusted.
n several cases, the assessment methods were so dissimilar that

ore profound changes were needed, e.g., in the values associated
ith reference status or in the way data was used and combined.

or example, reference values of the Belgian benthic fauna system
ere revised, and the combination rules of the specific metrics
sed in the Norwegian and British phytoplankton systems were
djusted.

For detailed description of one intercalibration exercise see sup-
lementary material S3.

. Intercalibration gaps

.1. Intercalibration gaps: fish fauna, phytobenthos and benthic
nvertebrates

The situation with respect to different BQEs is highly vari-
ble. Nearly all Member States have developed and intercalibrated
ssessment methods for phytoplankton and macrophytes. The only
xception is Greece (which has not developed methods for either

QE) and Bulgaria (which has not developed a method for phyto-
lankton). In contrast, only five countries have intercalibrated lake
sh-based assessment methods, nine have phytobenthos methods
nd 10 have benthic fauna assessment methods.
5.2. Eastern Continental and Mediterranean regions

There have been particular difficulties in the development and
intercalibration of ecological assessment methods in the Eastern
Continental and Mediterranean regions (Table 6). Due to high
evaporation/precipitation ratios and low geographic relief, lakes
in the Eastern Continental region are often endorheic and naturally
eutrophic. In this region, there are relatively few examples of lakes
with catchments in a near natural state, and as the least impacted
also have relatively high nutrient concentration, e.g. TP > 100 �g/l,
pressure–response models show asymptotic behaviour and high
variation (Borics et al., 2013). Thus, there have been considerable
difficulties in establishing sound pressure–response relationships
and setting meaningful ecological class boundaries (Poikane et al.,
2014). Further research is, therefore, needed to develop and inter-
calibrate ecological assessment tools for these lakes.

The main difficulties encountered in the Mediterranean region
are the small number and high diversity of natural lakes. In the
entire Mediterranean region, only 257 lakes are reported, mostly
(84%) in Spain, which includes many lakes with water surface areas
of less than 50 ha. Lakes are highly diverse: for example, in the
Mediterranean part of Italy, there are 13 lakes, including the pale-
osaline Lago di Pergusa – a unique saltwater lake in Europe, the
Lago di Trasimeno – a very large shallow lake, and several volcanic
lakes of different depths. Therefore, in spite of a common effort
within the Mediterranean intercalibration group, it has not been
possible to intercalibrate natural Mediterranean lakes, due to the
lack of a sufficient number of lakes within common types. Never-
theless, Mediterranean countries must develop tools for evaluating

the ecological quality of their lakes, even though this development
is hindered by the limited amount of data available and the high
inter- and intra-annual variability of the biological communities
and water characteristics (Boix et al., 2005). In both regions, the
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Table 7
Overview of the Member States (MS) lake intercalibration exercises (only finalised exercises).

BQE Region Pressure
addressed

Intercalibration
option

Common metrics used Benchmarking
applied

MS methods
intercalibrated

MS
participated
but not
intercalibrated

Phytoplankton ALP EUTR Direct
comparison

Average of each
national methods EQRs

Reference sites AT, DE, ITlakes,
SI

FR

CB EUTR Comparison via
common
metrics

Multimetrics of
Chlorophyll-a and PTI
EQR (Phillips et al.,
2013)

Continuous BE, DE, DK, EE,
IE, NL, PL, UK

LV, LT

MED EUTR Direct
comparison

Average of each
national methods EQRs

Reference
sites + continuous

CY, ES,
ITreservoirs, PT

RO, FR

NOR EUTR Direct
comparison
Comparison via
common
metrics

Multimetrics of
Chlorophyll-a and PTI
EQR (Phillips et al.,
2013)

Continuous FI, IE, NO, SE,
UK

Macro phytes ALP EUTR Direct
comparison

Average of each
national methods EQRs

Reference sites AT, DE, FR, IT, SI

CB EUTR Direct
comparison

Average of each
national methods EQRs

Continuous BE, DE, DK, EE,
LT, LV, NL, PL,
UK

NOR EUTR Comparison via
common
metrics

Lake Macrophyte
Intercalibration
common metrics
(Hellsten et al., 2014)

Reference sites FI, IE, NO, SE,
UK

Phytobenthos All EUTR Comparison via
common
metrics

Trophic index
(Rott, 1999)

Continuous BE, FI, DE, HU,
IE, PL, SI, SE, UK

IT, FR

Benthic
invertebrates

ALP HM Comparison via
common
metrics

Multimetrics of Fauna
index, number of taxa,
r/k ratio and RA of
feeding type gatherer
(Böhmer et al., 2014)

Continuous DEALP-eulit , SI DEALP-sublit , FR,
IT

CB HM and EUTR Comparison via
common
metrics

Multimetrics of
EPTCBO taxa number,
ASPT index, relative
abundance of ETO and
microhabitat type lithal
(Böhmer et al., 2014)

Continuous BE, DE, EE, LT,
NL, UK

NOR EUTR Direct
comparison

Average of each
national methods EQRs

Reference sites FI, SEMILA SEASPT, UKCPET

NOR ACID Direct
comparison

Average of each
national methods EQRs

Reference sites NO, SE, UKLAMM

Fish fauna ALP Diverse
impacts

Direct
comparison

Global mean of all the
methods

Site-specific
references

AT, DE, IT FR

NOR EUTR Direct
comparison

Global mean of all the
methods

Reference sites FI, IE SE, NO
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UTR, eutrophication; HM, hydromorphological modifications; ACID, acidification
OR, Northern.

se of palaeolimnological data (e.g. Bennion et al., 2004) may be
ore suitable for defining site-specific reference conditions.

.3. Anthropogenic pressures addressed by lake assessment
ethods

Lakes in Europe are subject to manifold anthropogenic
ressures (eutrophication, acidification, hydromorphological alter-
tions, alien species and climate change). A recent analysis showed
hat approximately 30% of European lakes are impacted by hydro-

orphological modifications and 20% are impacted by acidification
EEA, 2012). Despite this, most of the methods developed focus on
utrophication impacts, while only three methods address acidifi-
ation (benthic invertebrate methods of Norway, Sweden and the

K) and three – hydromorphological alterations (benthic inverte-
rate methods of Germany, the Netherlands and Slovenia). Some of
he methods claim to address multiple pressures (mainly eutrophi-
ation and hydromorphological alterations together), but not all the
biological quality element; ALP, Alpine; CB, Central Baltic; MED, Mediterranean;

necessary pressure–response relationships have been established,
or they have been established only for eutrophication parame-
ters. These gaps in lake assessment highlight the need for further
research, particularly on the impact of combined pressures (e.g.
eutrophication and hydrological pressures, such as changes to nat-
ural water level regimes or flushing rates).

5.4. Heavily modified and artificial water bodies

Many lakes in Europe are either artificial (e.g. fish ponds) or
heavily modified (e.g. reservoirs for hydropower or water storage).
For such water bodies the environmental objective is the good eco-
logical potential instead of the good ecological status. Overall, 15.8%
of the lake water bodies are designated by the Member States as

either heavily modified water bodies or artificial water bodies (EEA,
2012). For ecological potential the same biological quality elements
are used as for the ecological status, with a crucial difference in
how reference conditions are used. Ecological status always has the
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ndisturbed type-specific reference conditions as a starting point;
cological potential refers to a situation where the negative effects
f a physical modification (e.g. a dam) are mitigated as much as pos-
ible, taking into account the costs and benefits of these measures
Borja and Elliott, 2007).

The WFD requires intercalibration of biological methods for all
ater categories including heavily modified water bodies, but so

ar the focus has been almost exclusively on natural water bodies.
nly recently the intercalibration of ecological potential methods
as been started, with a focus that is more on comparing and har-
onising the ways different countries apply mitigation measures

or different water uses, and how existing biological methods are
sed in their classification.

.5. Detection of cyanobacteria blooms

Despite successful European policies to reduce nutrient emis-
ions (EEA, 2012), Cyanobacterial blooms are still one of the most
idespread effects of eutrophication in Europe (Dolman et al.,

012; Carvalho et al., 2013b) which are further aggravated by cli-
ate change (Paerl and Paul, 2012). MS have to measure plankton

loom intensity and frequency and to ensure that persistent sum-
er blooms do not occur. Bloom definition has been developed

Mischke et al., 2011) and a sufficiently strong metric for phy-
oplankton blooms, based on cyanobacteria biovolume has been
emonstrated (Carvalho et al., 2013a). All phytoplankton assess-
ent methods reflect bloom intensity as they either include a

yanobacterial bloom metric or show a strong correlation with a
loom metric (Lyche-Solheim et al., 2014). Bloom frequency is,
owever, still not tackled in an appropriate way, as the current
ampling frequencies are not adequate to capture the temporal
ynamics of phytoplankton over days and weeks, especially short-

ived blooms (Dubelaar et al., 2004; Søndergaard et al., 2011). With
he development of satellite technology in the near future, high fre-
uency and high resolution satellite imagery may enable improved
emporal representation of the open water of lakes for parameters
uch as phytoplankton chlorophyll-a and cyanobacteria biovolume
Hunter et al., 2010), allowing missing metrics such as bloom fre-
uency to be addressed.

.6. Uncertainty

The intercalibration exercise was concerned solely with harmo-
izing the position of the high/good and good/moderate boundaries

or individual BQEs. In practice, ecological status assessments will
e based on the simultaneous assessment of several BQEs and,
s these estimates will each differ in their precision, it would be
nteresting to compare the sensitivity of each method (taking into
ccount uncertainties associated with sampling regimes and ana-
ytical procedures) and, indeed, to compare national capabilities for
lassifying sites when using all BQEs simultaneously. Progress has
een made with understanding uncertainty associated with indi-
idual BQEs (Kelly et al., 2009; Thackeray et al., 2013), though there
s still much to learn about classification procedures under the rules
rescribed in the WFD (Caroni et al., 2013; Moe et al., 2015).

. Conclusions

In total, 82 lake assessment methods were reported for the
ntercalibration, and, following final adjustments, 62 were suc-
essfully intercalibrated. The results include a high proportion
f phytoplankton (18), macrophyte (17) and benthic invertebrate

ssessment methods (13), but few phytobenthos (9) and fish assess-
ent methods (5). Most of the methods were developed to detect

he impact of eutrophication (50 methods), although in addi-
ion, some methods have demonstrated a significant response to
ators 52 (2015) 533–544

hydromorphological pressures (3), acidification (3) or combined
pressures (5). Most of the Central and Northern European countries
have developed assessment methods while significant gaps exist
for Eastern Continental and Mediterranean countries. The inter-
calibrated methods are now included in the EC Decision (EC, 2013)
setting a legal obligation on Member States to use these harmonised
boundaries to assess the ecological quality of their lakes. This is a
major step forward in setting consistent management objectives
for European water bodies but much remains to be done, mainly
developing assessment systems (i) for phytobenthos and fish fauna,
(ii) for other pressures and pressure combination, except eutrophi-
cation, and (iii) for Eastern Continental and Mediterranean lakes.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.ecolind.2015.
01.005.
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