JANUARY 1989

This report updates the briefing note compiled on the 20th January and provides a broader review of the developing drought. Data for this report have been provided, principally, by the water authorities and the Meteorological Office. A substantial proportion of the recent data particularly that relating to January 1989 - is of a provisional nature and subject to revision.

'AT A GLANCE'

The last three weeks have witnessed an intensification of the drought and the distinct regional contrasts - which had become evident by the end of 1988 - have, generally, been reinforced. Dry conditions which would have qualified as 'unusual' up to December have persisted and the accumulated rainfall deficit may now, more appropriately, be termed 'rare'. A winter drought exists and is becoming severe in parts of central and southern England. In the affected areas, river flows are more typical of those associated with a normal summer and groundwater levels are similar to those experienced early in 1976. With regard to water resources, the continuing decline in runoff rates, and in aquifer storage, is of a lesser significance than the diminishing period available for sustained rainfall to ameliorate the potential impact of the drought; from April the hydrological effectiveness of rainfall will be increasingly reduced by the acceleration in evaporation rates. Rainfall over the next 8/10 weeks will be critical in determining the magnitude and impact of the 1989 drought.

The exceptionally low rainfall from the end of October 1988 has created a significant drought in meteorological terms and a considerable drought in hydrological terms. However, its impact on the community will be critically dependent on the variation in reservoir contents over the next couple of months; clearly these will directly influence the ability of particular regions to successfully withstand the effect of a spring and summer drought in 1989. For a balanced view of the water resources outlook, therefore, the following review should be considered alongside the current, and projected, reservoir storage for each water authority area.

RAINFALL

The first six weeks of 1989 has seen a continuation of the synoptic situation which has brought dry, or extremely dry, conditions to much of central and western Europe. A near-stationary high pressure system - normally located close to the Azores in the winter - is centred over the mainland of Europe. This has served to divert the usual run of Atlantic troughs away from the English lowlands and is the major factor in the north/south contrasts (and, to a lesser degree, west/east contrasts) which have characterised the rainfall pattern over Great Britain for several months.

Table 1 gives the monthly rainfall totals for 1988/89 as a percentage of the 1941-70 average, together with the accumulated totals from April, September and November. Also tabulated is the difference between actual rainfall and the monthly mean for each area. Monthly rainfall deficits may be seen to be general features during 1988 apart from July and, in some regions, October. Figure 1 confirms the existence of a sustained dry spell for England and Wales and illustrates the monthly rainfall pattern for two of the most severely affected water authorities - Southern and Thames.

Table 1 enables the development of the drought to be examined and a picture emerges of a relatively long term shortfall overlain - recently - by notably dry conditions leading to a rapid intensification in the drought in some areas. Assuming stable climatic conditions*, the April-January shortfall, expressed as a percentage of the average, over England and Wales might be expected about once every ten years on average. The period commencing in August is rather more notable with a return period approaching 20 years and the exceptionally dry conditions from November to January are significantly rarer again, with an expectation of one occurrence, perhaps, every 50 years. Provisional data indicate that the three months to January are, in fact, the driest such period over England and Wales since 1879 and, for England alone, the three months were some 30 mm drier than in 1933/34 when the previous minimum this century was recorded.

Whilst Table 1 testifies to rainfall deficiencies in all regions, concern is focusing on those water authority areas where November to January rainfall has been below half of the average. For the Thames Water area, the five months beginning in August were almost as dry as the notable winter droughts of 1933/34 and 1964/65. More remarkably, the three-month rainfall total (to the end of January) is unprecedented in the 105 year areal rainfall record for the Thames catchment above Kingston. Even drier conditions have been experienced in parts of the Southern Water area where the Hampshire Division's November-January total is approximately 30 per cent of the long term average; an exceptionally rare occurrence to be expected not more than once in 100 years on average.

The magnitude of the rainfall deficits, and their spatial distribution, makes for an increasingly compelling comparison with the winter of 1975/76. In some regions - particularly the South - the current winter has been considerably drier than its precursor. However, no two droughts are identical and too much can be made of parallels with the 'Great Drought' - during this extreme event several districts in central and southern England registered less than half their average rainfall over a 16 month period (May 1975 - August 1976) and in terms of accumulated rainfall deficiencies, for England and Wales, the 1988/89 drought does not yet bear comparison with the notable droughts of 1901/02, 1921, 1933/34, 1943/44, 1959, 1964/65 and 1975/76.

An appreciation of the spatial variation in the intensity of the current drought may be gained by considering Table 1 in conjunction with Figure 2 which illustrates the accumulated rainfall deficiency over the November-January period together with the percentage of the February to April rainfall required to make good this shortfall. The probability of completely compensating for the deficit over the next three months ranges from very unlikely (return period > 50 years) in the West and North to vanishingly small in the South East. More realistically, the return periods associated with rainfall totals 75 mm above the average (for February-April) range from a few years (5-10) in the North West and Welsh Water areas to over 30 years for the Thames Water area, and other regions of lowland England, where February to April are normally the driest months of the year.

* Clearly, this is an assumption to be made with increasing caution. Nonetheless it does allow the spatial and temporal variations in the drought's intensity to be examined within a consistent framework.

SOIL MOISTURE DEFICITS

Whilst the water resources situation would improve significantly with above average rainfall over the ensuing three or four months it should be emphasised that, with the dry conditions continuing into February, appreciable soil moisture deficits will need to be satisfied before runoff becomes generally available to augment river flows and to substantially replenish lowland reservoirs.

In some parts of central and southern England SMDs increased through December and January and, by the end of the month, appreciable deficits obtained in Kent, in the lower Thames Valley and the basin of the River Trent where the soil was considerably drier than in a normal January (see Figure 3). Away from the English lowlands most areas are at, or close to field capacity but there is no obvious pattern to the existing deficits in the drier regions; East Anglia, for instance, is characterised by large variations in the magnitude of deficits. The above average deficits implied by Figure 3 reflect both the low rainfall and the extraordinarily mild weather which is conducive to higher evaporation losses than would typify a normal winter. A further factor may be the recent changes in agricultural cropping practices which may provide greater scope for transpiration losses; these in turn would diminish runoff and infiltration rates.

RIVER FLOW

The failure of effective rainfall totals (the net rainfall after allowing for the requirements of the soil and vegetation) to follow their normal seasonal cycle, with a steady increase through the autumn and much of the winter, has resulted in January 1989 river flows being more typical of summer discharge rates throughout many parts of England and Wales. Table 2 lists monthly runoff totals (from April 1988) for a number of representative rivers together with the accumulated runoff over the April-January and November-January periods; the associated ranking is also given. In those regions most affected by the drought (see below), monthly runoff totals display a remarkable stability and the lack of any strong seasonal upturn after October is a common feature. For some rivers a gentle downward trend in monthly flow began in February 1988 - see, for instance, the River Ouse at Gold Bridge. Nonetheless, by early autumn most rivers were flowing close to - or a little below - the average for the time of year. Since November, the flows have altered little but the hydrological perspective has changed dramatically at least in relation to the rivers of central and southern England and, especially, those draining to the eastern English Channel and the Thames estuary. Table 3 shows that in this region the Rivers Itchen, Ouse, Medway and Teise all established new monthly runoff minimum for January and in some instances discharges had declined to considerably below the corresponding flow rates in 1976. Table 4 serves to confirm the rarity of the prevailing flow rates in this area; the associated return periods are of the order of 25-50 years. Table 3 and 4 taken together, tend to confirm the regional pattern that emerges from a consideration of the rainfall and soil moisture situations. Very low flows (return periods in excess of 25 years) are associated with catchments in central England (south from the Trent basin) and in a broad band abutting against the south coast as far west as Dorset. To the west and east of these zones flows are at seasonally low levels but are, as yet, in no way remarkable. Northwards - and particularly north-westwards the drought becomes increasingly less evident and in Cumbria, for instance, preliminary estimates of the January 1989 flow have closely approached the long term mean.

A comparison of the ranks given in Table 2 for the runoff totals corresponding to the: April-January, November-January and January (see Table 3) periods underlines the relatively rapid intensification of the drought. Over the full ten months, few rivers recorded outstandingly low runoff totals - the Sussex Ouse is an exception. Accumulated runoff over the three months (Nov-Jan) is well below average but only in a few areas are they notably rare. January 1989 proved something of a watershed, with those catchments registering a decline from the December runoff appearing particularly vulnerable to a sustained period of very low discharge during 1989 unless the synoptic pattern changes relatively quickly. Runoff for the River Thames (gauged at Kingston) in January was about 1/5th of the long term January average and only a little greater than the corresponding flow rates during the winter droughts of 1887/88, 1904/05, 1921/22, 1933/34, 1943/44 and 1975/76. Flows throughout much of Kent, Sussex and Hampshire are extremely low for the time of year and, in some cases, appreciably lower than in 1976. Significant increases in winter runoff rates did, however, occur in some rivers during January. Examples include the Yscir and the Cynon, in South Wales; nonetheless Table 5 shows that the combined Nov-Jan runoff for the Yscir remains the lowest in an eighteen year record for these three months. Table 5 also confirms that very limited winter runoff is typical of regions extending beyond the South East but that the drought is currently only of moderate proportions in East Anglia where, on average, the lowest annual runoff totals (<100 mm) are recorded.

Figure 5 is provided as a location map for the rivers featured in this report.

GROUNDWATER

The groundwater position is little changed from that reported in mid-January. Generally, no significant recharge to the major aquifers has occurred in central and southern England (see Fig. XX in the report of 20/1/89); levels in the Dalton Holme borehole confirm that minimum recharge has been available to replenish the Chalk and Upper Greensand aquifer in Yorkshire also. Data assembled for the IH meteorological site demonstrate that no effective recharge has occurred since February 1988 in the Wallingford area. Groundwater levels for the index boreholes monitored by the British Geological Survey, confirm that this absence of significant recharge is representative of a large proportion of lowland England - levels are, in some areas, comparable with those recorded early in 1976. Figure 4 compares groundwater hydrographs for the period 1986-89 with the corresponding trace for 1973-76; data for a wider range of sites will be presented in the February review. A few deep boreholes are still recording groundwater levels above the seasonal average; examples include the Therfield site - near Royston (see earlier report) - where the infiltrate takes several months to percolate down to the water table; as a consequence of this lag the borehole levels are still in relatively steep decline from an early summer peak arising from the abundant recharge early in 1988 (for some aquifer units, 25 per cent of the total 1988 rainfall occurred in January). A number of springs in the driest regions have ceased to flow and shallow boreholes are drying up at an increasing rate. This is not an unprecedented situation. Many springs and boreholes were dry for extended periods in 1973 and 1976. However, notwithstanding some evidence that a less stable weather pattern may become established, the prospects for any recharge throughout lowland England in February 1989 are not good - approximately 80 per cent of the mean monthly rainfall will be needed in many districts to satisfy SMDs before any infiltration can commence - and it is likely that no major recovery in groundwater levels can be expected before the autumn.

IH/BGS 10/2/89

TABLE 1

1988/9 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE TOGETHER WITH THE SHORTFALL RELATIVE TO THE AVERAGE

••••••••••••••••••••••••••••••••••••••														
		Apr	May	Jun	Jul	Aug 1988	Sep	0ct	Nov	Dec	Jan 1989	Apr– Jan	Sep- Jan	Nov- Jan
England and Wa shortfall		71 17	88 8	64 22	177 56	94 5	77 19	107 +6	49 49	46 49	51 42	78 193	65 286	49 140
WATER AUTHORIT	IES													
North West	% mm	73 16	74 21	41 49		116 +20	90 12	102 +2	55 54	71 34	61 44	88 123	76 142	63 132
Northumbria	% mm	71 16	98 1		219 +92	70 30	80 16	135 +26	78 21	50 37	40 48	89 87	76 96	57 106
Severn Trent	% mm	71 15	86 9	80 11	180 +52	83 14	70 20	95 3	48 41	48 36	51 24	80 131	62 134	49 111
Yorkshire	% ստ	57 24	84 10	67 19	184 +59	96 4	74 22	130 +21	61 35	51 36	31 53	83 123	67 125	48 124
Anglia	% mm	75 10	100 0		170 +40	67 19	71 15	100	58 26	41 31	60 21	82 95	66 93	53 78
Thames	% mm	67 15	86 8		160 +36	76 23	74 16	103 +2	38 45	25 50	50 31	75 155	57 140	37 126
Southern	% mm	.87 6	76 13	36 32	141 +24	63 33	65 25	108 +6	34 62	24 61	38 47	64 249	53 189	32 170
Wessex	% mm	63 20	77 16	74 14	163 +39	99 1	62 30	123 +19	35 63	25 68	52 40	74 194	58 182	37 171
South West	% mm	76 17	89 9	69 20	121 +60	121 +21	68 33	127 +31	41 79	41 79	50 64	81 189	64 224	44 222
Welsh	mm	65 30	105 +5		179 +75	121 +25	87 16	97 4	47 76	45 80	59 56	83 193	66 232	50 212

Note: July 1988-January 1989 rainfall figures are provisional. December and January rainfalls are MORECS figures supplied by the Meterological Office.

TABLE 2

CATCHMENT RUNOFF IN MM AND AS A PERCENTAGE OF LTA

River/Station Name		Apr	May	Jun	Jul	Aug 198		0ct	Nov	Dec	Jan 1989	Apr- Jan	Rank/No. of Yrs	Nov- Jan	Rank/No. of Yrs
S Tyne at Haydon	mm %	32 57	31 83	13 45	100 370	43 102	51 93	65 94	38 40						
Wharfe at Flint Ml	mm %	25 45	20 50	9 35	50 192	73 102	56 82	80 125	65 80	81 84	42 43	501 87	10/32	188 68	3/33
Derwent at B'crambe	mm %	27 77	21 78	12 67	21 162	18 86	16 80	22 92	21 81	29 67	17 33	204 81	4/26	67 58	3/26
Trent at Colwick	mm %	24 77	22 85	16 84	28 175	16 94	17 94	23 96	17 55	29 64	21 41	213 77	3/30	107 85	2/29
Lud at Louth	mm %	45 132	29 100	23 110	19 112	14 100	13 108	14 117	13 87	17 85	15 48	202 102	10/20	45 67	6/20
Witham at Claypole	mm %	18 85	14 88	10 100	9 129	- 6 86	5 83	5 56	5 42	9 47	8 31	89 79	7/29	22 39	5/29
Ouse at Bedford	mn %	15 75	20 154	13 163	29 483	8 160	10 50	11 110	9 45	18 64	13 36	146 96	27/55	40 48	12/55
Colne at Lexden	mm %	14 108	9 100	7 140	7 175	4 100	5 125	9 100	8 62	11 65	13 59	87 85	10/28	32 62	6/29
Thames at Kingston	nm %	17 89	12 80	6 60	8 133	3 50	5 83	9 90	8 42	9 32	7 21	84 55	15/106	24 30	8/107
Coln at Bibury	mm %	44 100	27 79	19 68	18 82	14 82	14 93	15 88	15 60	18 44	15 30	199 68	4/25	48 41	2/26
Kennet at Theale	mm %	30 94	23 85	17 77	17 100	13 81	13 93	18 113	14 70	16 59	16 46	177 79	6/27	46 57	1/30
Ouse at Gold Bridge	mm %	33 97	24 92	13 123	15 150	12 109	12 80	13 43	10 20	11 20	8 13	151 49	1/26	29 17	1/27
Test at Broadlands	mm %	32 94	26 87	21 84	21 100	18 95	18 95	20 87	20 80	20 67	20 51	216 83	4/28	60 64	4/30
Itchen at Highbrdg		50 106	42 98	32 91	31 100	25 86	24 89	27 87	27 77	27 63	26 53	311 84	4/30	80 57	3/28
Stour at Throop	um %	25 71	18 72	11 69	11 100	9 82	10 77	25 109	13 38	20 59	19 31	161 56	3/16	52 34	2/16
Tone at Bishops H	mn %	29 73	21 72	15 83	22 138	13 100	24 160	42 156	20 45	26 38	25 31	237 68	5/28	71 37	2/28
Brue at Lovington	mm %	18 60	11 44	7 44	35 219	13 81	33 220	76 36	21 47	25 36	32 45	271 51	3/24	78 42	2/25
Exe at Thorverton	mm %	39 67	28 72	20 80	51 255	31 107	82 210	118 157	27 28	59 43	57 44	512 79	6/31	143 39	1/32
Torridge at T'ngton	. mn %	32 65	14 33	6 33	33 100	30 115	62 214	124 234	27 28	73 60	53 51	454 79	5/25	153 48	1/26
Severn at Bewdley	mm %	24 77	17 71	13 72	19 136	22 122	35 159	41 121	22 41	36 57	27 38	256 73	6/68	85 45	3/68
Yscir at Pont'yscir	. mn %	44 72	57 130	44 142	75 394	53 177	97 211	91 98	39 28	66 43	92 64	658 87	5/16	197 45	1/16
Cynon at Abercynon	mn %	55 71	92 151	41 98	113 353	103 206	118 171	100 82	56 36	66 34	94 51	838 83	9/29	216 40	2/31
Lune at Caton	mm %							129 71	68 42	168 86					
Eden at Sheepmount	mm %							92 75	48 35	95 62					

TABLE 3

RIVER FLOWS - January 1989

River/Station Name	POR	Mean Flow Jan 1989 (cumecs)	% of Ave	Rank	Jan Min/Year		Comment
Wharfe at Flint Mill	1937-1989	12.0	44	3	4.47	(1963)	
Aire at Kildwick	1968-1989	5.0	47	3	4.46	(1973)	
Derwent at B'crambe	1961-1989	10.0	37	1	10.0	(1989)	Similar flow in 1973
Trent at Colwick	1958-1989	58.9	41	3	52.9	(1963)	Sig. lower than '76 and '73
Lud at Louth	1968-1989	0.31	79	3	0.14	(1976)	
Witham at Claypole	1959 1989	0.85	31	5	0.67	(1965)	Driest since 1976
Ouse at Bedford Ouse	1933-1989	7.0	37	9	2.88	(1944)	
Roding at Redbridge	1950 1989	1.19	32	6	0.68	(1973)	Lower flows in 54 '63 '65 '7
Colne at Lexden	1959-1989	1.17	62	8	0.46	(1973)	
Mimram at Panshanger	1952–1989	0.47	82	6	0.24	(1974)	Very high baseflow component
Turkey Brk at Albany	1971-1989	0.11	41	3	0.04	(1973)	7 Januarys - similar flows
Thames at Kingston	1883-1989	25.9	21	2	18.6	(1976)	1905 also ranks third
" " na	aturalised	46.9	34	8	33.4	(1905)	3 Jan flows similar to 1905
Kennet at Theale	1961-1989	6.1	46	2	4.15	.(1976)	Similar to 1963
Coln at Bibury	1963-1989	0.62	30	2	0.37	(1976)	
Medway at Teston	1956-1989	3.3	15	1	3.3	(1989)	Compare 1976: 5.44
Teise at Stonebridge	1961-1989	0.46	19	1	0.46	(1989)	Compare 1976: 0.55
Ouse at Gold Bridge	1960-1989	0.57	13	1	0.57	(1989)	Compare 1976: 1.18
Test at Broadlands	1957-1989	7.6	67	2	7.2	(1976)	
Itchen at Highbridge	1958-1989	3.5	63	1	3.5	(1989)	Compare 1976: 4.21
Stour at Throop	1973-1989	7.6	31	2	4.32	(1976)	
Piddle at Baggs Mill	1963-1989	1.2	33	2	1.05	(1976)	
Exe at Thorverton	1956-1989	12.73	44	4	5.44	(1963)	
Torridge at T'rington	1962 1989	14.35	48	. 4	5.02	(1964)	
Tone at Bishops Hull	1961-1989	1.91	32	3	1.3	(1976)	
Brue at Lovington	1964-1989	1.63	31	2	0.74	(1976)	
Severn at Bewdley	1921-1989	44.5	38	5	22.1	(1963)	
Yscir at Pontaryscir	1972-1989	2.16	64	5	1.15	(1973)	Drier than 1976
Cynon at Abercynon	1957-1989	3.72	51	6	1.05	(1963)	Driest since 1976
Dee at Manley Hall	1937-1989	28.45	55	9	13.5	(1964)	

*Rank: Driest = 1

A significant proporation of January 1989 flows are estimates.

TABLE 4

ESTIMATED RETURN PERIODS FOR JANUARY 1989 FLOWS

	Station	Hyd. Area	PoR	Jan 1989 mean flow (m ³⁵⁻¹)	<u>Jan '89</u> Jan mean	Return Period (yrs)	BFI
1	Trent/Colwick	28	58-88	58.9	0.41	25	.64
2	Lud/Louth	29	68-87	0.31	0.48	5-10	.90
3	Bedford Ouse/Bedford	33	33-87	7.0	0.36	5-10	.51
4	Stour/Langham	36	62-87	3,1	0.58	5	.51
5	Mimram/Panshanger Pk	38	52-88	0.45	0.76	5	.94
6	Turkey Bk/Albany Pk	38	71-88	0.11	0.24	10	.21
7	Thames/Kingston (nat)	3919	383-88	47.0	0.34	10-25	.64
8	Kennet/Theale	39	61-88	6.1	0.46	10-25	.87
9	Coln/Bibury	39	63-88	0.62	0.30	50	.94
10	Ouse/Gold Bridge	41	60-87	0.57	0.13	50	. 49
11	Test/Broadlands	42	57-87	7.6	0.50	25-50	.94
12	Itchen/Highbridge	42	58-87	3.5	0.53	50	.97
13	Stour/Throop Mill	43	73-88	7.6	0.31	25-50	.66
14	Severn/Bewdley	54	21-88	44.5	0.39	10-25	.53
15	Yscir/Pontaryscir	56	72-87	2.2	0.66	5	. 47
16	Cynon/Abercynon	57	57-87	3.7	0.51	5	.42

TABLE 5

LOWEST RECORDED NOVEMBER-JANUARY RUNOFF TOTALS

Trent at Colwick (1958-1989) YEAR 55mm 1975/6 76mm 1962/3 85mm 1968/9 88mm 1964/5 95mm 1963/4	RANK 1 2 3 4 5	Witham at Claypole YEAR 12mm 1964/5 16mm 1975/6 19mm 1963/4 19mm 1962/3 22mm 1988/9	(1959- 1989)
Average 127mm		57mm	
Colne at Lexdon (1959-1989) YEAR 12mm 1964/5 16mm 1972/3 17mm 1973/4 18mm 1974/5 21mm 1962/3 32mm 1988/9	RANK 1 2 3 4 5 6	Thames at Kingston YEAR 15mm 1933/4 15mm 1921/2 18mm 1943/4 19mm 1975/6 23mm 1988/9	(1883–1989)
Average 12 mm		80mm	
Itchen at Highbridge (1958–1989) YEAR 79mm 1973/4 80mm 1988/9 88mm 1964/5 92mm 1962/3 94mm 1975/6	RANK 1 2 3 4 5	Stour at Throop YEAR 39mm 1975/6 52mm 1988/9 93mm 1973/4 101mm 1980/1 124mm 1978/9	(1973–1989)
Average 127mm		154mm	
Severn at Bewdley (1921-1989) YEAR 76mm 1933/4 82mm 1975/6 85mm 1988/9 96mm 1962/3 111mm 1953/4	RANK 1 2 3 4 5	Yscir at Pontarysci YEAR 197mm 1988/9 257mm 1975/6 320mm 1976/7 354mm 1978/9 393mm 1980/1	r (1972-1989)
Average 188m		440.nm	

FIGURE 1 OCTOBER 1987 - JANUARY 1989 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE

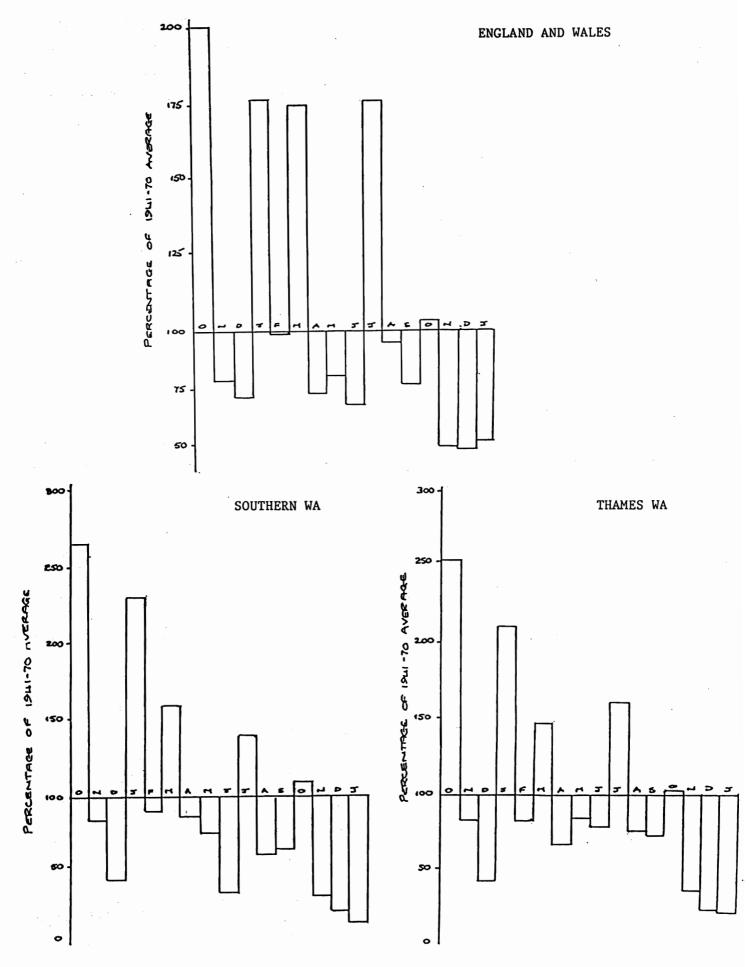


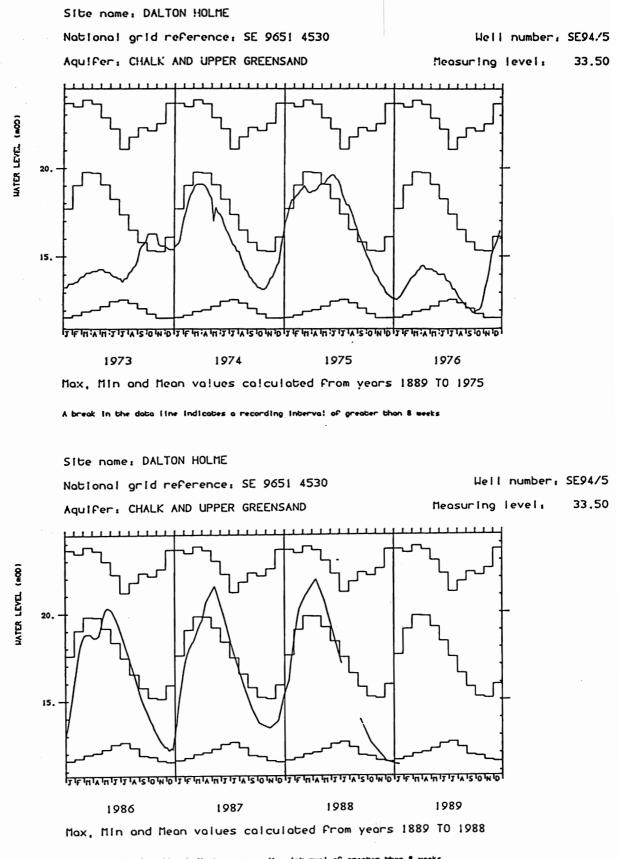
FIGURE 2 RAINFALL - EXPRESSED AS A PERCENTAGE OF THE AVERAGE AND (in brackets) IN MM - REQUIRED OVER THE FEBRUARY TO APRIL PERIOD TO MAKE GOOD THE NOVEMBER 1988 TO JANUARY 1989 DEFICIT

mm

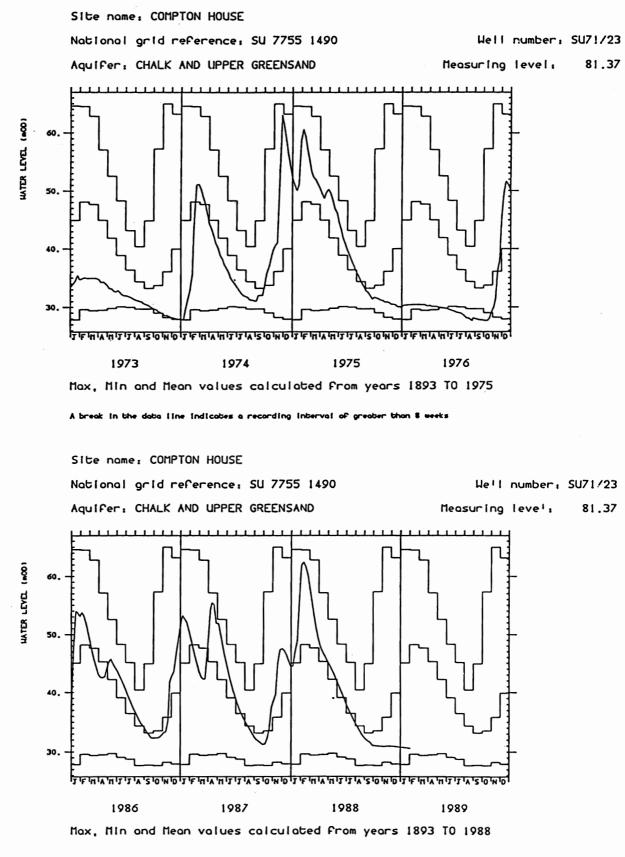
>50

110-60

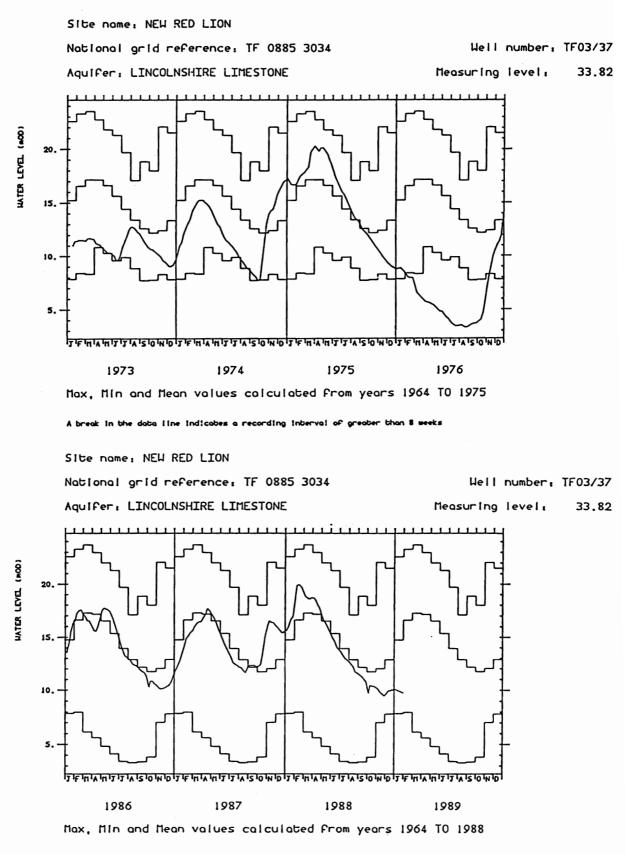
30-60

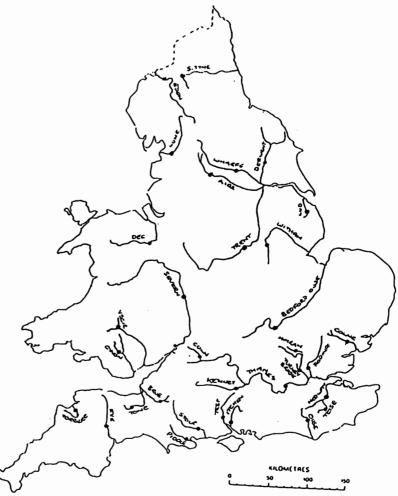

20.30

10.20


0-10

0


FIGURE 3 SOIL MOISTURE DEFICIT FOR JANUARY EXPRESSED AS A SHORTFALL OF THE LONG-TERM JANUARY AVERAGE


A break in the data line indicates a recording interval of greater than 8 weeks

A break in the data line indicates a recording interval of greater than 8 weeks

A break in the data line indicates a recording interval of greater than 8 weeks

