Data for this April review have been provided, principally, by the Water Authorities and the Meteorological Office.

A substantial proportion of the recent data featured in this note is of a provisional nature and subject to later revision.

Abstract

Summary April was a wet month, notably so in some areas, and the water resources situation continued the improvement which began in mid-February. Soils remained close to field capacity throughout April and runoff and aquifer recharge totals were substantially greater than the monthly average over wide areas. Whilst total 1988/89 replenishment of the principal aquifers remains below normal, the late surge in infiltration over the last 8-10 weeks is especially beneficial - levels in most index boreholes are expected to be close to the average by mid-May and the outlook for baseflow supported rivers is reassuring.

Review

In contrast with much of the preceding winter, April was cold and wet. A sequence of frontal systems brought unsettled conditions and several episodes of prolonged steady rainfall. Rainfall totals a little below average were recorded in South Wales and along the north-east coast but elsewhere precipitation was abundant; substantial areas of central England had more than twice the April mean and, generally, rainfall over the outcrop areas of the major aquifers exceeded 150 per cent. The continuing decline in the drought's intensity may be traced by reference to Table 1; accumulated rainfall totals from the beginning of October are now within about 15 per cent of the mean in all water authority areas with the exception of Southern Water. The unevenness of the temporal distribution of rainfall is remarkable. For example, the Thames catchment experienced its wettest February-April period in a decade following the driest three-months (commencing in November) in a 106 year record. However, impressively high percentage rainfall totals for March and April can be somewhat misleading - on average these are among the driest months of the year in the South East - and the excess rainfall has been insufficient to fully compensate for the longer term deficiencies in parts of lowland England (see Figure 1). In the 13 -months ending in April 1989, a considerable shortfall may still be recognised in some southern districts and this remains significant in relation to the refilling of reservoirs in one or two catchments.

The low temperatures and limited sunshine during April served to postpone the normal seasonal build-up of soil moisture deficits. Soils remained close to, or at, field capacity until the end of the month when SMDs were between 15 and 30 mm below average throughout central and southern England.

Monthly mean river flows for April were above, or well above, average throughout England and Wales except in rivers which are sustained principally from groundwater. In such catchments flows remain significantly below the mean but are, generally, increasing in response to the recent aquifer recharge and there is every prospect of the late spring flows falling well within the normal flow range (see Figure 2). Table 2 summarises the current runoff situation; of the rivers featured only the Lune, Lud (substantially), Kennet, Test and Itchen registered April runoff
totals below the corresponding figure for 1988; in most catchments runoff was appreciably greater. Accumulated runoff totals since October 1988 are still relatively modest in lowland England but the very healthy discharge rates maintained since early March contrast sharply with the spring flows registered before the sumner droughts of $1959,1964,1973,1976$ and 1984.

Heavy percolation rates.throughout April led to a marked improvement in groundwater resources at a time when water table recessions are normally well established in most areas. Quantifying the improvement is complicated by the different lag times of individual observation wells; these reflect the depth of the wells and the characteristics of the individual aquifer units.

In the Great Oolite aquifer of the Cotswolds groundwater levels peaked in late March/early April - at a level close to the normal spring maximum and are now in decline. By contrast, the water table is still rising in the Chilterns and parts of the North Downs. Generally the delayed recharge has resulted in groundwater levels in early May approaching, or in western districts - exceeding the monthly average. Some further modest response to the April infiltration may be anticipated in the deeper wells but 1988/89 recharge is still minimal in parts of the Yorkshire Chalk (see Fig. 3), northern East Anglia and parts of Kent. In these areas, recharge since last summer is estimated to be less than one quarter of the average, 60-80 per cent of the mean is more typical of the English lowlands with average, or above average, totals in the North West. Although it has been a poor winter in terms of aquifer replenishment, the situation for most of the country is not a matter of concern. Only in the districts mentioned above would a prolonged dry summer result in aquifer conditions even approaching those prevailing in the early autumn of 1976.

IH/BGS

TABLE 1
1988/9 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1941-70 AVERAGE

		Oct	$\begin{array}{r} \text { Nov } \\ 1988 \end{array}$	Dec	Jan	$\begin{aligned} & \text { Feb } \\ & 19 \end{aligned}$	$\begin{aligned} & \text { Mar } \\ & 39 \end{aligned}$	Apr	$\begin{aligned} & \text { Oct- } \\ & \text { Apr } \end{aligned}$	Approx Return* Period	$\begin{aligned} & \text { Apr- } \\ & \text { Apr } \end{aligned}$	Approx Return* Period
England and Wales	$\underset{\substack{\mathrm{m}}}{ }$		$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 41 \\ & 46 \end{aligned}$	$\begin{aligned} & 44 \\ & 51 \end{aligned}$	$\begin{array}{r} 78 \\ 121 \end{array}$	$\begin{array}{r} 84 \\ 142 \end{array}$	$\begin{array}{r} 85 \\ 146 \end{array}$	$\begin{array}{r} 469 \\ 87 \end{array}$	<5	$\begin{array}{r} 885 \\ 91 \end{array}$	<5
WATER AUTHORITIES												
North West	$\begin{gathered} \mathrm{mmi} \\ \mathrm{q} \end{gathered}$		$\begin{aligned} & 67 \\ & 55 \end{aligned}$	$\begin{aligned} & 86 \\ & 72 \end{aligned}$	$\begin{aligned} & 68 \\ & 61 \end{aligned}$	$\begin{aligned} & 123 \\ & 151 \end{aligned}$	$\begin{aligned} & 113 \\ & 157 \end{aligned}$	$\begin{array}{r} 92 \\ 120 \end{array}$	$\begin{array}{r} 669 \\ 95 \end{array}$	<2	$\begin{array}{r} 1270 \\ 98 \end{array}$	<2
Northumbria	$\begin{array}{r} \mathrm{mm} \\ \mathrm{y} \end{array}$	$\begin{aligned} & 101 \\ & 135 \end{aligned}$	$\begin{aligned} & 73 \\ & 78 \end{aligned}$	$\begin{aligned} & 38 \\ & 51 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \end{aligned}$	70 106	$\begin{array}{r} 55 \\ 105 \end{array}$	$\begin{aligned} & 49 \\ & 89 \end{aligned}$	$\begin{array}{r} 417 \\ 84 \end{array}$	5	$\begin{array}{r} 847 \\ 91 \end{array}$	<5
Severn Trent	$\begin{array}{r} \mathrm{mm} \\ \mathrm{q} \end{array}$		$\begin{aligned} & 38 \\ & 48 \end{aligned}$	34 49	$\begin{aligned} & 35 \\ & 51 \end{aligned}$	$\begin{array}{r} 65 \\ 122 \end{array}$	$\begin{array}{r} 69 \\ 132 \end{array}$	$\begin{array}{r} 87 \\ 168 \end{array}$	$\begin{array}{r} 390 \\ 89 \end{array}$	<5	$\begin{array}{r} 758 \\ 92 \end{array}$	2-5
Yorkshire	$\begin{array}{r} m m \\ \% \end{array}$	$\begin{array}{r} 90 \\ 130 \end{array}$	$\begin{aligned} & 54 \\ & 61 \end{aligned}$	38 51	$\begin{aligned} & 24 \\ & 31 \end{aligned}$	$\begin{array}{r} 64 \\ 100 \end{array}$	$\begin{array}{r} 63 \\ 118 \end{array}$	$\begin{array}{r} 79 \\ 140 \end{array}$	$\begin{array}{r} 411 \\ 85 \end{array}$	<5	$\begin{array}{r} 801 \\ 90 \end{array}$	<5
Anglia	$\underset{\mathrm{m}}{\mathrm{~mm}}$	$\begin{array}{r} 52 \\ 100 \end{array}$	$\begin{aligned} & 36 \\ & 58 \end{aligned}$	22	$\begin{aligned} & 31 \\ & 59 \end{aligned}$	$\begin{aligned} & 34 \\ & 81 \end{aligned}$	$\begin{array}{r} 48 \\ 121 \end{array}$	$\begin{array}{r} 74 \\ 186 \end{array}$	$\begin{array}{r} 298 \\ 87 \end{array}$	<5	$\begin{array}{r} 590 \\ 91 \end{array}$	<5
Thames	$\begin{array}{r} \mathrm{mm} \\ \mathrm{q} \end{array}$	$\begin{array}{r} 66 \\ 103 \end{array}$	$\begin{aligned} & 28 \\ & 38 \end{aligned}$	16 24	$\begin{aligned} & 31 \\ & 50 \end{aligned}$	60 129	65 141	77 167	$\begin{array}{r} 344 \\ 85 \end{array}$	<5	$\begin{array}{r} 659 \\ 88 \end{array}$	5
Southern	$\begin{array}{r} \mathrm{mm} \\ \% \end{array}$	$\begin{array}{r} 84 \\ 108 \end{array}$	$\begin{aligned} & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 29 \\ & 38 \end{aligned}$	$\begin{array}{r} 62 \\ 109 \end{array}$	$\begin{array}{r} 75 \\ 144 \end{array}$	$\begin{array}{r} 81 \\ 169 \end{array}$	$\begin{array}{r} 383 \\ 79 \end{array}$	5-10	$\begin{array}{r} 660 \\ 78 \end{array}$	10-15
Wessex	$\begin{array}{r} \mathrm{mm} \\ \mathrm{~m} \end{array}$	$\begin{aligned} & 101 \\ & 123 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	22 24	$\begin{aligned} & 44 \\ & 52 \end{aligned}$	$\begin{array}{r} 89 \\ 151 \end{array}$	87 149	74 137	$\begin{array}{r} 451 \\ 86 \end{array}$	<5	$\begin{array}{r} 923 \\ 87 \end{array}$	5
South West	$\begin{array}{r} \mathrm{mm} \\ \mathrm{o} \end{array}$	$\begin{aligned} & 144 \\ & 127 \end{aligned}$	$\begin{aligned} & 55 \\ & 41 \end{aligned}$	$\begin{aligned} & 56 \\ & 41 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 135 \\ & 151 \end{aligned}$	$\begin{aligned} & 115 \\ & 137 \end{aligned}$	$\begin{array}{r} 92 \\ 130 \end{array}$	$\begin{array}{r} 662 \\ 88 \end{array}$	< 5	$\begin{array}{r} 1081 \\ 93 \end{array}$	<5
Welsh	$\begin{array}{r} \mathrm{mm} \\ \% \end{array}$	$\begin{array}{r} 125 \\ 97 \end{array}$	$\begin{aligned} & 67 \\ & 47 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 59 \end{aligned}$	$\begin{aligned} & 140 \\ & 146 \end{aligned}$	$\begin{aligned} & 151 \\ & 174 \end{aligned}$	$\begin{array}{r} 89 \\ 103 \end{array}$	$\begin{array}{r} 716 \\ 87 \end{array}$	<5	$\begin{array}{r} 1249 \\ 94 \end{array}$	<5

Note: December to April rainfalls are based upon MORECS figures supplied by the Meterological Office.
${ }^{*}$ The return periods have been estimated from data provided by the Meteorological Office.

FIGURE 1 MONTHLY RAINFALL - JANUARY 1988 TO APRIL 1989

Percentage of monthly ramfall for the Northumbrian and the North West Water Authorities

e

Gauged flom ($\mathrm{m}^{\prime} / \mathrm{s}$)

TABLE 2

River/Station Name Wharfe at Flint Ml	$\begin{array}{r} \mathrm{mm} \\ \hline \frac{9}{0} \end{array}$	$\begin{array}{r} \text { Oct Nov } \\ 1988 \end{array}$		Dec		$\begin{aligned} & \text { Feb Mar } \\ & 1989 \end{aligned}$		Apr 71	Oct 1988- Apr 1989 498	Rank/No. of Years$12 / 34$	Oct 1975- Apr 1976 340
		80	65	81	42	64	95				
		125	80	84	43	84	127	131	92		63
Derwent at B'crambe	mm	22	21	29	17	17	22	29	157	2/16	135
	8	92	81	67	33	39	49	85	59		51
Trent at Colwick	mm	23	17	29	21	26	42	57	215	8/31	112
	8	96	55	64	41	59	105	178	81		42
Lud at Louth	mm	14	13	17	15	12	16	17	104	3/21	48
	$\%$	117	87	85	48	33	42	50	55		25
Witham at Claypole	mm	5	5	9	8	8	12	31	78	4/30	31
	\%	56	42	47	31	28	46	148	55		22
Ouse at Bedford	mm	11	9	18	13	23	37	46	157	24/56	31
	\%	110	45	64	36	85	119	242	87		17
Colne at Lexden	mm	9	8	11	13	14	23	20	98	11/30	37
	\%	100	62	65	59	74	128	154	87		33
Thames at Kingston (nat)	mm	14	12	15	13	19	36	26	135	30/106	67
	\%	108	57	50	35	59	116	118	72		36
Kennet at Theale	mm	18	14	16	16	19	31	29	143	3/28	80
	8	113	70	59	46	32	82	94	71		40
Coln at Bibury	mm	15	15	18	15	19	48	44	174	4/26	64
	9	88	60	44	30	56	91	102	62		23
Ouse at Gold Bridge	mm	13	10	11	8	12	44.	37	135	2/28	128
	\%	43	20	20	13	25	98	109	42		39
Test at Broadlands	mm	20	20	20	20	20	31	27	158	3/31	124
	$\%$	87	80	67	51	40	79	79	71		56
Itchen at Highbrdge	mm	27	27	27	26	25	41	40	213	2/31	204
	\%	87	77	63	53	46	79	85	69		66
Stour at Throop	mm	25	13	20	19	28	57	39	201	2/16	96
	8	109	38	59	31	49	110	115	62		29
Tone at Bishops H	mm	42	20	26	25	54	80	40	287	5/28	134
	\%	156	45	38	31	72	138	102	74		34
Severn at Bewdley	mm	41	22	36	27	45	77	48	297	16/68	158
	\%	121	41	57	38	64	167	177	83		44
Yscir at Pont'yscir	mm	91	39	66	92	130	182	72	672	2/16	445
	$\%$	98	28	43	64	123	160	120	82		55
Dee at Manley Hall	mm	107	60	94	75	88	183	98	705	20/51	445
	\%	120	115	69	56	84	194	158	96		60
Lune at Caton	mm	129	68	168	256	167	191	82	1061	23/24	628
	8	71	42	86	174	192	193	106	131		77

FIGURE 3 GROUNDWATER OBSERVATION WELL HYDROGRAPHS

Site nome: COMPTON HOUSE
Notional grid reference, SU 77551490
Well number: SU71/23
Aquifer: CHALK AND UPPER GREENSAND
Meosurling level: 81.37

Max. MIn and Mean values calculated from years 1894 TO 1988

SIte name: WASHPIT FARM
National grid reference: TF 81381960
Well number: TF8:/2
Aquifer: CHALK AND UPPER GREENSAND
Measurlng level: 80.20

Max. Min and Mean values calculated from years 1950 TO 1988

Site name, DALTON HOLME
Notional grid reference: SE 96514530
Well number: SE94/5
Aquifer: CHALK AND UPPER GREENSAND

Max. Min and Mean values calculated from years 1889 TO 1988

A breok In bhe dabo IIne Indicabes o recording inberval of greaber btion it weaks

Site name: AMPNEY CRUCIS
National grid reference: SP 05950190
Well number: SP00/62
Aquifer: MIDDLE JURASSIC Measuring level: 109.70

1985

1986
1987
1988
1989
Max, Min and Mean values calculated from years 1958 T0 1988

