Data for this review have been provided, principally, by the Water Authorities and the Meteorological Office.

A proportion of the data featured is of a provisional nature and subject to later revision.

Summary

May was a remarkably dry and warm month in most parts of England and Wales. Water demand increased substantially and local distribution problems were experienced in some areas, particularly the South-East. However runoff and infiltration rates are normally modest in May and the notably dry conditions were not associated with any serious deterioration in the water resources situation. Apart from a few areas where drought conditions persist - in particular Kent where the situation is exacerbated by water supply problems - river flows and groundwater levels are generally below average but within the normal range for the time of year.

Review

High pressure dominated weather conditions over England and Wales throughout virtually all of May and rainfall in many areas was negligible. Based on provisional data, May 1989 registers as the driest this century for England and Wales. Many regions recorded less than a quarter of their average rainfall and some localities, especially in the South-East, had less than 5 mm ; total rainfall in central London barely reached 1 mm - an unprecedented amount over a 300 year period. However, thundery activity was common in the third week of May and heavy rainfall brought flooding to a few localities; great spatial variability was a characteristic of the late-May rainfall.

The impact of the exceptionally dry May on the longer term rainfall deficiencies is shown in Table 1 . Accumulated rainfall totals for the periods October 1988 - May 1989 and April 1988 - May 1989 point to significant rather than notable rainfall deficits in most regions. Some important local variations are masked by the regional rainfall figures. Parts of the Chalk outcrop in east Yorkshire and Lincolnshire, for instance, have received little more than 70 per cent of average rainfall since last September. A substantial long term deficiency persists in the Southern Water area where, particularly in Kent, a hydrological drought of significant magnitude may still be recognised. Even in the South-East however, rainfall over the last eight months has been very much more abundant than in 1975/76; accumulated rainfall totals for the Thames and Southern Water areas both exceeded those recorded during the Great Drought by about 150 mm .

At the end of May a northerly airstream brought cool and unsettled conditions to much of England and Wales. By June 8th many areas, especially in central and southern England, had recorded more than 50 per cent of their average June rainfall.

Soil Moisture Deficits, which were negligible at the end of April, increased extremely rapidly through May and, although some stabilisation occurred over the period May 23-June 6, SMDs were generally above average, notably so in the West, approaching mid-June.

The response of river flows to the exceptionally low May rainfall was heavily influenced by the natural storage characteristics of individual catchments. Runoff rates exhibited only a modest decline in high baseflow rivers but steep recessions characterised rivers draining impervious catchments. Mean flows in May were, generally, below average but substantially above historical drought discharge rates except in Kent and east Yorkshire where the River Derwent closely approached its lowest May runoff total in a 16 -year record. In the South-East, baseflows remain generally below average but, apart from a few rivers in Kent, not remarkably so and the river flow outlook is more reassuring than, say, in 1965, 73 or 76. In some lowland catchments May runoff was the lowest, for May, since the Great Drought but examination of the full flow records (assuming a stable climate) indicate that, generally, such discharge rates may be expected once every $5-10$ years on average. The current runoff deficiency appears rather more prominent in the context of the last 13 years when, gererally, rainfall - especially winter rainfall - has been considerably above the long term average.

Accumulated runoff totals (see Table 2) confirm the relatively modest nature of the drought in most catchments.

Infiltration was minimal in May throughout much of the English lowlands but since, on average, May recharge is very limited anyway, the impact of the dry spell from late April, on groundwater resources was rather marginal in most areas. Except in some deep wells, groundwater levels were in recession throughout England and Wales by the end of May. Principally as a consequence of the recharge in March and April, many boreholes - notwithstanding the very low groundwater levels registered through the winter of 1988/89 - recorded late-May/early-June levels only a little below the average for the beginning of summer. Some deep Chalk wells, including Dalton Holme in Yorkshire, were still rising - albeit modestly and, often, from a low base - through May. However, the virtual absence of any further recharge to aquifer units in parts of Kent and along the south coast has left groundwater levels well below average and, in a few cases, approaching levels recorded during May 1976. Groundwater levels in parts of the Permo-Triassic aquifer in Devon are also reportedly on a par with those for May 1976 but interpretation of these data is complicated by the increased abstraction rates now obtaining.

IH/BGS

		$\begin{aligned} & \text { Oct } \\ & 1988 \end{aligned}$	Nov	Dec	Jan	Feb	$\begin{aligned} & \text { Mar } \\ & 1989 \end{aligned}$	Apr	May	Oct- May	Approx Return* Period	$\begin{aligned} & \text { Apr } 88- \\ & \text { May } 89 \end{aligned}$	Approx Return ${ }^{*}$ Period
England and Wales	mm $\%$	$\begin{array}{r} 89 \\ 107 \end{array}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 41 \\ & 46 \end{aligned}$	$\begin{aligned} & 44 \\ & 51 \end{aligned}$	$\begin{array}{r} 78 \\ 121 \end{array}$	$\begin{array}{r} 84 \\ 142 \end{array}$	$\begin{array}{r} 85 \\ 146 \end{array}$	$\begin{aligned} & 22 \\ & 33 \end{aligned}$	$\begin{array}{r} 491 \\ 81 \end{array}$	5-10	$\begin{array}{r} 907 \\ 87 \end{array}$	5-10
WATER AUTHORITIES													
North West	mm \%	$\begin{aligned} & 120 \\ & 102 \end{aligned}$	$\begin{aligned} & 67 \\ & 55 \end{aligned}$	$\begin{aligned} & 86 \\ & 72 \end{aligned}$	68	$\begin{aligned} & 123 \\ & 151 \end{aligned}$	$\begin{aligned} & 113 \\ & 157 \end{aligned}$	$\begin{array}{r} 92 \\ 120 \end{array}$	$\begin{aligned} & 33 \\ & 40 \end{aligned}$	$\begin{array}{r} 703 \\ 90 \end{array}$	< 5	$\begin{array}{r} 1304 \\ 95 \end{array}$	<5
Northumbria	man $\%$	$\begin{aligned} & 101 \\ & 135 \end{aligned}$	$\begin{aligned} & 73 \\ & 78 \end{aligned}$	$\begin{aligned} & 38 \\ & 51 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{array}{r} 70 \\ 106 \end{array}$	$\begin{array}{r} 55 \\ 105 \end{array}$	$\begin{aligned} & 49 \\ & 89 \end{aligned}$	$\begin{aligned} & 25 \\ & 38 \end{aligned}$	$\begin{array}{r} 441 \\ 79 \end{array}$	10	$\begin{array}{r} 871 \\ 87 \end{array}$	5-10
Severn Trent	mm $\%$	$\begin{aligned} & 62 \\ & 95 \end{aligned}$	$\begin{aligned} & 38 \\ & 48 \end{aligned}$	$\begin{aligned} & 34 \\ & 49 \end{aligned}$	$\begin{aligned} & 35 \\ & 51 \end{aligned}$	$\begin{array}{r} 65 \\ 122 \end{array}$	$\begin{array}{r} 69 \\ 132 \end{array}$	$\begin{array}{r} 87 \\ 168 \end{array}$	$\begin{aligned} & 23 \\ & 35 \end{aligned}$	$\begin{array}{r} 413 \\ 82 \end{array}$	5-10	$\begin{array}{r} 781 \\ 88 \end{array}$	5
Yorkshire	$\begin{gathered} \operatorname{mom} \\ \% \end{gathered}$	$\begin{array}{r} 90 \\ 130 \end{array}$	$\begin{aligned} & 54 \\ & 61 \end{aligned}$	$\begin{aligned} & 38 \\ & 51 \end{aligned}$	$\begin{aligned} & 24 \\ & 31 \end{aligned}$	$\begin{array}{r} 64 \\ 100 \end{array}$	$\begin{array}{r} 63 \\ 118 \end{array}$	$\begin{array}{r} 79 \\ 140 \end{array}$	$\begin{aligned} & 24 \\ & 40 \end{aligned}$	$\begin{array}{r} 435 \\ 80 \end{array}$	5-10	$\begin{array}{r} 825 \\ 87 \end{array}$	5-10
Anglia	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{array}{r} 52 \\ 100 \end{array}$	$\begin{aligned} & 36 \\ & 58 \end{aligned}$	$\begin{aligned} & 22 \\ & 42 \end{aligned}$	$\begin{aligned} & 31 \\ & 59 \end{aligned}$	$\begin{aligned} & 34 \\ & 81 \end{aligned}$	$\begin{array}{r} 48 \\ 121 \end{array}$	$\begin{array}{r} 74 \\ 186 \end{array}$	$\begin{aligned} & 14 \\ & 30 \end{aligned}$	$\begin{array}{r} 312 \\ 80 \end{array}$	5-10	$\begin{array}{r} 604 \\ 87 \end{array}$	5-10
Thames	$\mathfrak{m m}$ \&	$\begin{array}{r} 66 \\ 103 \end{array}$	$\begin{aligned} & 28 \\ & 38 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	$\begin{aligned} & 31 \\ & 50 \end{aligned}$	$\begin{array}{r} 60 \\ 129 \end{array}$	$\begin{array}{r} 65 \\ 141 \end{array}$	$\begin{array}{r} 77 \\ 167 \end{array}$	$\begin{aligned} & 14 \\ & 25 \end{aligned}$	$\begin{array}{r} 358 \\ 78 \end{array}$	5-10	$\begin{array}{r} 673 \\ 83 \end{array}$	5-10
Southern	$\begin{array}{r} \mathrm{mm} \\ \mathbf{\%} \end{array}$	$\begin{array}{r} 84 \\ 108 \end{array}$	$\begin{aligned} & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 29 \\ & 38 \end{aligned}$	$\begin{array}{r} 62 \\ 109 \end{array}$	$\begin{array}{r} 75 \\ 144 \end{array}$	$\begin{array}{r} 81 \\ 169 \end{array}$	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	$\begin{array}{r} 394 \\ 73 \end{array}$	10-20	$\begin{array}{r} 671 \\ 75 \end{array}$	20-30
Wessex	$\begin{array}{r} \operatorname{mm} \\ \% \end{array}$	$\begin{aligned} & 101 \\ & 123 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 22 \\ & 24 \end{aligned}$	$\begin{aligned} & 44 \\ & 52 \end{aligned}$	$\begin{array}{r} 89 \\ 151 \end{array}$	$\begin{array}{r} 87 \\ 149 \end{array}$	$\begin{array}{r} 74 \\ 137 \end{array}$	$\begin{aligned} & 25 \\ & 36 \end{aligned}$	$\begin{array}{r} 475 \\ 80 \end{array}$	5-10	$\begin{array}{r} 831 \\ 84 \end{array}$	5-10
South West	$\begin{array}{r} \min \\ \% \end{array}$	$\begin{aligned} & 144 \\ & 127 \end{aligned}$	$\begin{aligned} & 55 \\ & 41 \end{aligned}$	56	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 135 \\ & 151 \end{aligned}$	$\begin{aligned} & 115 \\ & 137 \end{aligned}$	$\begin{array}{r} 92 \\ 130 \end{array}$	$\begin{aligned} & 18 \\ & 21 \end{aligned}$	$\begin{array}{r} 680 \\ 81 \end{array}$	5-10	$\begin{array}{r} 1191 \\ 88 \end{array}$	5
Welsh	mm $\%$	$\begin{array}{r} 125 \\ 97 \end{array}$	67 47	65 45	80 59	140 146	$\begin{aligned} & 151 \\ & 174 \end{aligned}$	$\begin{array}{r} 89 \\ 103 \end{array}$	$\begin{aligned} & 23 \\ & 25 \end{aligned}$	$\begin{array}{r} 739 \\ 81 \end{array}$	5-10	$\begin{array}{r} 1360 \\ 90 \end{array}$	5

[^0]| River/Station Name | | $\begin{array}{r} \text { Oct Nov } \\ 1988 \end{array}$ | | Dec | | $\begin{gathered} \text { Feb Mar } \\ 1989 \end{gathered}$ | | Apr | May15 | \qquad
 513 | Rank/No. of Years$1 / 13$ | Oct $175-$
 May 76
 638 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wharfe at Flint Ml | mm | 80 | 65 | 81 | 42 | 64 | 95 | 71 | | | | |
| | $\%$ | 125 | 80 | 84 | 43 | 84 | 127 | 131 | 39 | 57 | | 78 |
| Derwent at B'crambe | mm | 22 | 21 | 29 | 17 | 17 | 22 | 29 | 13 | 170 | 2/16 | 151 |
| | 8 | 92 | 81 | 67 | 33 | 39 | 49 | 85 | 52 | 58 | | 51 |
| Trent at Colwick | mm | 23 | 17 | 29 | 21 | 26 | 42 | 57 | 18 | 233 | 8/31 | 124 |
| | \% | 96 | 55 | 64 | 41 | 59 | 105 | 178 | 69 | 80 | | 42 |
| Lud at Louth | mm | 14 | 13 | 17 | 15 | 12 | 16 | 17 | 15 | 119 | 4/21 | 56 |
| | \% | 117 | 87 | 85 | 48 | 33 | 42 | 50 | 54. | 55 | | 26 |
| Witham at Claypole | mm | 5 | 5 | 9 | 8 | 8 | 12 | 31 | 14 | 92 | 5/30 | 34 |
| | \% | 56 | 42 | 47 | 31 | 28 | 46 | 148 | 92 | 59 | | 22 |
| Ouse at Bedford | mm | 11 | 9 | 18 | 13 | 23 | 37 | 46 | 13 | 170 | 25/56 | 34 |
| | $\%$ | 110 | 45 | 64 | 36 | 85 | 119 | 242 | 101 | 88 | | 18 |
| Colne at Lexden | $\underline{m m}$ | 9 | 8 | 11 | 13 | 14 | 23 | 20 | 6 | 98 | 10/30 | 40 |
| | $\%$ | 100 | 62 | 65 | 59 | 74 | 128 | 154 | 75 | 80 | | 33 |
| Thames at Kingston (nat) | mm | 14 | 12 | 15 | 13 | 19 | 36 | 26 | 13 | 148 | 28/106 | 73 |
| | \% | 108 | 57 | 50 | 35 | 59 | 116 | 118 | 76 | 72 | | 35 |
| Kennet at Theale | mm | 18 | 14 | 16 | 16 | 19 | 31 | 29 | 22 | 165 | 4/27 | 87 |
| | $\%$ | 113 | 70 | 59 | 46 | 32 | 82 | 94 | 78 | 72 | | 38 |
| Coln at Bibury | mm | 15 | 15 | 18 | 15 | 19 | 48 | 44 | 30 | 204 | 4/26 | 72 |
| | \% | 88 | 60 | 44 | 30 | 56 | 91 | 102 | 89 | 64 | | 23 |
| Ouse at Gold Bridge | mm | 13 | 10 | 11 | 8 | 12 | 44 | 37 | 11 | 146 | 2/27 | 135 |
| | 8 | 43 | 20 | 20 | 13 | 25 | 98 | 109 | 40 | 42 | | 38 |
| Test at Broadlands | mm | 20 | 20 | 20 | 20 | 20 | 31 | 27 | 27 | 185 | 3/31 | 137 |
| | 8 | 87 | 80 | 67 | 51 | 40 | 79 | 79 | 89 | 73 | | 54 |
| Itchen at Highbrdge | mm | 27 | 27 | 27 | 26 | 25 | 41 | 40 | 36 | 249 | 3/31 | 227 |
| | 8 | 87 | 77 | 63 | 53 | 46 | 79 | 85 | 83 | 71 | | 65 |
| Stour at Throop | mm | 25 | 13 | 20 | 19 | 28 | 57 | 39 | 15 | 216 | 2/16 | 104 |
| | 8 | 109 | 38 | 59 | 31 | 49 | 110 | 115 | 63 | 62 | | 30 |
| Tone at Bishops H | mm | 42 | 20 | 26 | 25 | 54 | 80 | 40 | 19 | 306 | 5/28 | 144 |
| | $\%$ | 156 | 45 | 38 | 31 | 72 | 138 | 102 | 66 | 73 | | 35 |
| Severn at Bewdley | mm | 41 | 22 | 36 | 27 | 45 | 77 | 48 | 12 | 308 | 15/68 | 168 |
| | $\%$ | 121 | 41 | 57 | 38 | 64 | 167 | 177 | 50 | 81 | | 44 |
| Yscir at Pont'yscir | mm | 91 | 39 | 66 | 92 | 130 | 182 | 72 | 18 | 690 | 2/16 | 462 |
| | \% | 98 | 28 | 43 | 64 | 123 | 160 | 120 | 41 | 80 | | 54 |
| Dee at Manley Hall | mm | 107 | 60 | 94 | 75 | 88 | 183 | 98 | 28 | 733 | 19/51 | 469 |
| | \% | 120 | 115 | 69 | 56 | 84 | 194 | 158 | 61 | 94 | | 60 |
| Lune at Caton | man | 129 | 68 | 168 | 256 | 167 | 191 | 82 | 20 | 1081 | 23/25 | 679 |
| | \% | 71 | 42 | 86 | 174 | 192 | 193 | 106 | 37 | 124 | | 78 |

FIGURE 1 MONTHLY RAINFALL - JANUARY 1988 TO MAY 1989
Percentage of Nean Nonthly Rainfall over England and Wales 1958-53

Nean Nontlily Rainfall for the South West and Welsh Water Ruthoritic: 1986-89

FIGURE 3 GROUNDWATER OBSERVATION WELL HYDROGRAPHS

Site name: COMPTON HOUSE
National grid reference: SU 77551490
Well number: SU71/23
Aquifer: CHALK AND UPPER GREENSAND
Measuring level:
81.37

Max. Min and Mean values calculoted from years 1894 TO 1988

A break in the dota IIne Indicotes o recording Interval of preoter than 8 weeks

Site nome: WASHPIT FARM
National grid reference: TF 81381960
Well number: TF81/2
Aquifer: CHALK AND UPPER GREENSAND
Measurling level: 80.20

Max. Min and Mean values colculated from years 1950 TO 1988

A break in the doco ilne indicotes a recording interval of greaber thon eseaks

SIte nome: DALTON HOLME
Notlonal grid reference: SE 96514530
Well number: SE94/5
Aquifer: CHALK AND UPPER GREENSAND
Measuring level: $\quad 33.50$

Max, MIn ond Mean values calculated from years 1889 TO 1988

A break in the doto itme Indicabes a recording Interval of greaber thon 8 weeks

Site name: AMPNEY CRUCIS
Notional grid reference: SP 05950190
Well number: SP00/62
Aquifer: MIDDLE JURASSIC
Measuring level: 109.70

1985
1986
1987
1988
1989
Max. MIn and Mean values calculoted From years 1958 TO 1988

A break in the dote I Ine Indicotes o recording inverval of greaber thon ofeeks

[^0]: Note: December to May rainfalls are based upon MORECS figures supplied by the Meterological Office.
 *The return periods have been estimated from data provided by the Meteorological Office.

