HYDROLOGICAL SUMMARY - JANUARY 1990

Data for this review have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office.

The recent areal rainfall figures are derived from a restricted network of raingauges and a significant proportion of the river flow data is of a provisional nature. Flood warning and alleviation duties took priority late in January; consequently, data for some rivers are incomplete and the monthly runoff figures may require revision in the event of station recalibration following the recent high flows.

For a fuller appreciation of the water resources impact of the drought, this hydrological review should be considered alongside assessments of the current reservoir storage and water demand situations in each region.

SUMMARY

The extremely variable weather which has been a feature of the winter thus far continued into early 1990. Generally, January was warm and wet. A sequence of vigorous frontal systems crossed the British Isles, switching most hydrological interest away from the declining drought to the widespread flooding experienced towards the end of the month, which continued into February.

The transformation in the water resources outlook, which began in December, gathered momentum through the first six weeks of 1990 but a continuing drought may still be recognised in a few isolated eastern coastal areas.

After a brief respite in early January the extremely unsettled weather which characterised the latter half of December became re-established. Rainfall was persistent and widespread from mid-month and, with zero soil moisture deficits obtaining generally, flooding was reported from many areas. Fluvial spate conditions continued into February when, by the 6th, exceptionally high flow rates were experienced in many rivers throughout Great Britain. Rainfall patterns showed a strong steepening of the normal west-to-east gradient with a few localities on the eastern seaboard remained relatively dry. However, apart from a few isolated localities, the drought in England and Wales may be considered to have ended by mid-February, in meteorological terms. On a regional basis, rainfall for the winter (from 1st December) has been above average, substantially so in southern Britain, and accumulated precipitation totals for the last 12 months are close to the long term average, with the exception of eastern Scotland. Hydrologically, the picture is far less clear-cut. Runoff totals for January are generally within the normal range and accumulated totals for the winter so far climbed rapidly through January in response to the hydrologically effective rainfall.

The groundwater situation defies any simple generalisation due to the large geological and temporal variation in recharge rates over the first six weeks of the year. Healthy upturns in groundwater levels have been recorded in western and some southern aquifer units. But the outlook remains fragile in a few eastern districts where only a sluggish response had occurred by the end of January. Generally, however, runoff and recharge data testify to a very marked improvement in water resources over the last 8-10 weeks. The water resources outlook is also very much healthier than at the corresponding time in 1989.

REVIEW

Rainfall

Weather patterns during January were influenced by a persistent, moist, south-westerly airstream which became more dominant from mid-month. A series of vigorous depressions crossed the British Isles culminating in an especially violent storm on the 25th which caused considerable damage and resulted in significant loss of life. A number of very active frontal systems followed in the wake of this depression. The associated rainfall over the ensuing fortnight, torrential at times, yielded totals which were notable throughout most of Britain; over three times the average in the Scottish Highlands and a large proportion of southern England and South Wales.

Rainfall totals for January were below average over a substantial part of East Anglia and in restricted coastal districts from north Kent to north-east Scotland. Rain shadow effects were again strongly evident in the Scottish Highlands and the remarkable contrast between precipitation amounts along a transect roughly from Mull to Aberdeen, which has been a persistent feature, continued. Winter rainfall in the Fort William region has been about twice the average, whereas Aberdeen registered its fifteenth successive month with below average rainfall. Some eastern districts have recorded only $50-60 \%$ of mean rainfall over this period; similar rainfall deficits characterise coastal localities adjacent to the Tweed estuary. Droughts of this magnitude may be expected, on average, less often than once every several hundred years.

January is normally one of the wettest months of the year. In England and Wales, significant reductions in the accumulated rainfall deficits had been registered by month-end. These diminished further in early February when, in much of southern Britain, torrential rain caused the monthly average to be exceeded before the end of the first week. A large tract of central southern England recorded more than three times the average rainfall for the fortnight beginning on the 24th January.

Notwithstanding the very dry spell in November to mid-December, regional rainfall amounts throughout Britain from the beginning of October are close to or above the average, particularly so in southern Britain. If account is taken of the February rainfall the picture is even more encouraging. Rainfall over the Thames catchment since October, for instance, now exceeds the average for the full winter half-year; over the December to February period the rainfall is already the highest for more than fifty years.

In eastern Scotland the situation is different. Even with the high rainfalls which have fallen over the headwaters of the North East RPB, the accumulated deficits from periods as far back as October 1988 show significant shortfalls from average conditions; January was the first month to exceed average rainfall since March 1989 (Table 1). The rarity of some of the accumulating periods is shown in Table 2. Similar, though more moderate, conditions have typified the Tweed and the Tay RPBs. The more volatile conditions in the west and central Scotland are clear from the 1989 and January 1990 rainfall from the Highland and Clyde RPBs; individual months have shown variations from below 50 to above 250% of the long term average falls.

Soil Moisture Deficit (SMD)

With the exception of a few coastal districts bordering the North Sea, SMDs hovered around zero throughout January. In an average year modest deficits may persist well into the winter in low-lying parts of south-east England. By the end of January 1990 the area showing zero SMDs was significantly greater than average and in marked contrast to 1989.

Notable deficits are now restricted to the Northumbrian coast and the lowest portion of the Tweed Valley.

Abstract

Runoff Following a high flow episode over the Christmas period most rivers were in recession in early January. Recessions in lowland England were relatively steep; baseflows were still very depressed. Flow rates generally picked up through the month and spate conditions obtained over wide areas from the beginning of the last week. Moderate to severe flooding ensued over the following three weeks. Overbank flows typified large areas but the higher magnitude floods were recorded in the West Country and South Wales, the lower Severn, the Thames Valley and many rivers draining from the western highlands of Scotland. Unprecedented discharge rates were registered for the headwaters of the Spey and on the Tay, the Ballathie gauging station recorded a daily mean discharge on the $5^{\text {th }}$ February of $1750 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ despite considerable attenuation of the flood peak resulting from an breach in the floodbanks upstream. This flow rate exceeds the highest daily mean on the Surface Water Archive for the whole of the United Kingdom.

January runoff totals were within the normal range other than other than the depressed totals in the Chalk of Yorkshire and Lincolnshire and parts of East Anglia. Accumulated runoff totals through the winter and over durations of 9 and 15 months remain modest in some eastern and southern catchments (Table 3). The Dee at Park in Scotland and the Yorkshire Derwent at Buttercrambe recorded the second lowest and lowest December to January accumulations on record, respectively. In contrast, the more responsive catchments towards the west had runoff totals for December and January which exceeded the combined totals for the preceding 8 to 10 months; the totals for both the Teme and the Yscir were new records. Some southern catchments with significant baseflow support have shown similar patterns, as in the Thames to Kingston. The provisional peak flow of $276 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at Knightsford Bridge on the $28^{\text {th }}$ January on the Teme was comparable with the highest on record, in December 1979.

Groundwater

Groundwater levels at the beginning of winter were inordinately low, particularly in some eastern and southern aquifers. A belated seasonal upturn generally began over the latter part of December. However, apart from some western areas, groundwater levels were still below average at the end of the year. During January, further heavy rainfall led to continued infiltration and consequent rises in groundwater level in the south-west and south of England, but the effects appear to have been much less marked in the extreme south east, the north Midlands and the north-east. Sustained above-average rainfall will be required in these latter districts through February and March for the groundwater levels to approach mean values before the onset of the summer recessions.

The upturns in groundwater levels observed in late December were generally continued through January, and are illustrated in the well hydrograph in Figure 4. In the south-west of England, the levels in the Bussels No. 7 site reached the mean monthly level by the end of the month. The rise in the Chalk of southern England (the Compton and Rockley sites) also continued although levels were still beneath the late January means. The very transitional nature of January levels is however well illustrated by the subsequent behaviour of the Rockley trace. By February 13th, a very sharp rise had taken the water table to its highest level - with the exception of the late winter in 1988/89-for a decade. Similar conditions have been exhibited on the Isle of Wight. In the North-East, East and eastern Kent, the picture is very different. At the Dalton Holme site in the Yorkshire Chalk, the groundwater level, although rising, is still beneath the seasonal recorded minimum. For the Washpit Farm site in the Anglian Chalk, it has not been possible to obtain recent readings from the measuring authority, but the level at the end of December was still falling and it seems probable that little upturn has yet occurred. Some recently acquired values from a Chalk boreholes in the Canterbury district in Kent show that groundwater levels are rising, but remain at or below the minimum recorded values. As usual, the Oolitic Limestone aquifers of the Jurassic (the New Red Lion and Ampney Crucis sites) have shown a brisk response to rainfall and levels are close to the seasonal mean.

The state of groundwater resources is indicated by the groundwater levels. The degree of recharge in any given season is quantified by the rise from the trough at the end of the summer recession to the peak before the beginning of the recession in the following year. Since
the specific yield (or storativity)* within and between aquifers is very variable, the range through which groundwater levels may fluctuate also varies widely from one observation well to another. This makes a direct comparison meaningless. To circumvent this problem, the mean trough levels and the mean peak levels are determined for as long a period of record as possible (and not less than 10 years) for each observation site. The difference between these two values is defined as the mean annual range for that site and is, incidentally, assumed to be the rise in groundwater level which would be caused by the average annual infiltration. A change in groundwater level can be expressed as a percentage of the mean annual range, and the percentage values thus obtained can be compared between different observation sites.

On the accompanying table, details are given for 7 indicator well sites, showing the mean annual range, the levels for late January 1989, 1990 and 1976, (levels in metres above Ordnance Datum), and the difference between the latter levels as a percentage of the mean annual range.

Site	Mean Annual Range, m.	1989	1990	1976	Difference $\%$
Compton House	21.76	30.62	34.71	30.38	+20
Rockley	10.91	128.97	133.30	131.84	+40
Dalton Holme	7.10	11.35	11.07	12.70	-23
New Red Lion	9.21	9.63	12.32	8.52	+41
Ampney Crucis	3.07	100.60	102.44	100.37	+67
Bussels No. 7	1.17	23.52	24.11	23.23	+75
Peggy Elleron Farm	1.40	35.16	34.24	31.78	+175

Five of the sites show difference values of 20 to 75 percent, substantially above 1976 levels. At Peggy Ellerton Farm, the January 1976 levels were remarkably low even in the context of that year, but even so the difference of 175 percent is rather large and suggests that the mean annual range may need a re-evaluation. At the Dalton Holme site, the difference is negative, being 20 per cent below the 1976 value. The observation well near Waltham in Kent, one of those to which reference was made in a previous paragraph, provided data which, being analysed in the same manner, suggests that the percentage difference from 1976 is negligible. Unfortunately, it has not been possible to obtain data for January from the Washpit Farm observation well in East Anglia; at the end of December 1989, the groundwater level was near to the minimum recorded seasonal value, and it seems probable that the difference by late January would be of the order of 10 to 20 percent below the 1976 value.

From these calculations, if near average conditions are to be attained by the end of March 1990, when the summer recession is likely to start, then substantial steady, evenly distributed, rainfall will be required through February and March (very heavy rain may lead to increased runoff as it may exceed the infiltration capacity of the soil). Abnormally heavy rainfall would be necessary to attain the same object in East Yorkshire, in parts of East Anglia and in Kent. The early February rainfall has been encouraging in this regard.

Institute of Hydrology / British Geological Survey
16 February 1990

[^0]

England and	mm	44	78	84	85	22	63	41	60	40	95	62	135	116	313
Wales	$\%$	51	120	142	147	33	103	56	66	48	114	64	150	135	115

NRA REGIONS

North West	mm	68	123	113	92	33	102	34	118	28	136	75	103	178	356	181
	$\%$	61	152	157	119	40	123	33	94	22	115	62	86	159	101	
Northumbrian	mm	32	70	55	49	25	65	19	87	21	85	36	61	110	207	286
	$\%$	40	106	106	89	39	107	25	86	26	113	38	81	138	83	
Severn Trent	mm	35	65	69	87	23	53	37	40	37	83	51	126	113	290	101
	$\%$	51	123	133	167	36	95	57	49	54	128	65	181	164	133	
Yorkshire	mm	24	64	63	79	24	84	38	47	19	83	46	93	106	245	191
	$\%$	31	100	119	141	39	145	54	52	27	120	52	126	138	102	
Anglia	mm	31	34	48	74	14	62	44	37	29	43	37	95	52	184	120
	$\%$	60	81	120	185	30	127	77	57	56	83	60	180	100	110	
Thames	mm	31	60	65	77	14	46	38	40	32	66	37	134	86	257	135
	$\%$	50	128	141	167	25	88	63	57	51	103	51	203	139	128	
Southern	mm	29	62	75	81	11	50	32	28	29	80	44	137	110	291	226
	$\%$	38	109	144	169	20	100	54	39	41	102	47	169	145	116	
Wessex	mm	44	89	87	74	25	33	47	45	52	103	60	174	124	358	128
	$\%$	52	151	150	137	37	61	76	55	66	126	62	193	147	132	
South West	mm	65	135	115	92	18	38	36	63	99	141	97	192	181	470	206
	$\%$	50	150	137	130	21	58	43	62	96	125	72	142	140	118	
Welsh	mm	80	140	151	89	23	65	49	78	57	164	100	189	211	500	219

RIVER PURIFICATION BOARDS

Highland	mm	319	355	233	60	68	90	66	222	118	252	83	107	290	480	-357
	\%	195	267	204	53	66	82	52	150	75	135	49	55	177	91	
North-East	mm	52	113	83	54	59	57	25	84	57	87	30	61	100	191	341
	\%	57	153	134	89	77	81	27	78	66	90	29	60	110	65	
Tay	mm	156	197	173	45	42	58	31	140	84	135	53	87	230	370	25
	\%	132	214	211	60	44	70	30	119	73	111	45	65	195	100	
Forth	mm	133	158	151	44	36	64	27	142	69	112	38	78	210	326	13
	\%	134	205	219	65	43	85	28	122	64	106	35	72	212	103	
Clyde	mm	232	262	229	82	46	90	64	249	120	240	74	107	320	501	- 242
	\%	144	232	218	80	47	87	49	175	69	131	44	58	199	97	
Tweed	mm	71	105	105	48	43	51	23	114	47	67	30	72	158	260	239
	\%	76	152	181	79	57	75	27	100	51	76	29	80	170	91	
Solway	mm	139	157	195	87	35	71	43	177	78	146	58	117	270	445	66
	\%	99	169	214	99	38	79	39	136	52	101	40	77	193	102	

Note: Rainfalls have been provided by the Meteorologiical Office. Recent monthly values for England and Wales have been taken from the MORECS Bulletins; in Scotland data may be provisional and the January 1990 data have been estimated from the national map provided with the MORECS Bulletins

TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

		OCT 89 - JAN 90 Est Return Period		MAY 89 - JAN 90 Est Return Period		OCT 88 - JAN 90 Est Return Period	
England and	mm	408		633		1108	
Wales	\% LTA	114	<5	87	<5	87	5-10
NRA REGIONS							
North West	mm	493		807		1509	
	\% LTA	105	<5	82	5-10	89	5-10
Northumbrian	mm	292		509		943	
	\% LTA	90	<5	72	20-50	78	20-50
Severn Trent	mm	374		564		953	
	\% LTA	132	5-10	91	<5	90	<5
Yorkshire	mm	329		541		963	
	\% LTA	106	<5	82	5-10	84	10-20
Anglia	mm	228		413		709	
	\% LTA	104	<5	85	5-10	86	5-10
Thames	mm	324		493		836	
	\% LTA	122	5	87	<5	86	5-10
Southern	mm	371		521		903	
	\% LTA	113	<5	82	5-10	80	10-20
Wessex	mm	461		663		1113	
	\% LTA	130	5-10	95	<5	91	<5
South West	mm	611		865		1530	
	\% LTA	119	<5	91	<	90	<5
Welsh	mm	664		937		1664	
	\% LTA	120	5-10	88	<5	88	5-10
Scotand	mm	553		1025		2113	
	\% LTA	95	<5	89	5-10	105	<5

RIVER PURIFICATION BOARDS

Highland	mm	732		1296		2693	
	\% LTA	102	<5	95	<5	111	5-10
North-East	mm	271		559		1159	
	\% LTA	69	20-50	68	100-200	82	20-50
Tay	mm	505		860		1806	
	\% LTA	103	<5	85	5-10	103	<5
Forth	mm	438		776		1630	
	\% LTA	104	<5	86	5-10	106	<5
Clyde	mm	741		1310		2612	
	\% LTA	106	<5	97	<5	111	5-10
Tweed	mm	329		623		1147	
	\% LTA	88	<5	76	10-20	83	10-20
Solway	mm	591		995		1964	
	\% LTA	122	5-10	86	5-10	98	<5

Return period assessments are based on tables provided by the Meteorological Office. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less.
The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.
The January 1990 RPB totals are estimates taken from the isopleth map within the January summary published in the Meteorological Office's MORECS Bulletin.
${ }^{*}$ Tabony, R.C., 1977, The Variability of Long-duration Rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office, (HMSO)

FIGURE 1 HISTOGRAMS OF RAINFALL AS A PERCENTAGE OF THE MONTHLY MEAN

FIGURE 2 MONTHLY RIVER FLOW HYDROGRAPHS

015006	Tay at Ballathie
Monthly mean flows for Feb 1988-Jan 1990	
+ extremes and $\mathbf{3 0}$ day running mean for 1952-1987	

027041	Derwent at Buttercrambe Monthly mean flows for Feb 1988-Jan 1990
+ extremes and 30 day running mean for 1973-1987	

021006	Tweed at Boleside
Monthly mean flows for Feb 1988-Jan 1990	
+ extremes and 30 day running mean for 1961-1987	

037005
Colne at Lexden
Monthly mean flows for Feb 1988-Jan 1990

+ extremes and 30 day running mean for 1959-1987

038003
Monthly mean flows for Feb 1988-Jan 1990

+ extremes and 30 day running mean for 1952-1987

040003	Medway at Teston
Monthly mean flows for Feb 1988-Jan 1990	
+ extremes and 30 day running mean for 1956-1987	

042010 Itchen at Highbridge + Allbrook Monthly mean flows for Feb 1988-Jan 1990 + extremes and 30 day running mean for 1958-1987

052010	Brue at Lovington
Monthly 'mean flows for Feb 1988-Jan 1990	
+ extremes and 30 day running mean for 1964-1987	

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECIED PERIODS RANKED IN THE RECORD

River/ Station name	$\begin{aligned} & \operatorname{Jan} F \\ & \mathbf{1 0 8 9} \\ & \text { min } \end{aligned}$				May Jun mmm \%LT mid	un Ju	Jul	Aug Sep			Nov D $2 \mathrm{LT} \geqslant \mathrm{~L}$		$\begin{aligned} & \text { Jan } \\ & 1990 \\ & \text { mm } \\ & \text { \%LT } \end{aligned}$	$\begin{aligned} & 10 / 89 \\ & \text { to } \\ & 1 / 90 \\ & \text { man } \\ & \text { fLT } / \end{aligned}$	rank /yrs	$\begin{aligned} & 5 / 89 \\ & \text { to } \\ & 1 / 90 \\ & \text { min r } \\ & \text { \< } \end{aligned}$		$\begin{aligned} & \text { 11/88 } \\ & \text { to } \\ & 1 / 90 \\ & \text { nm } r \\ & \text { qLT } \end{aligned}$		$\begin{gathered} 10 / 88 \\ \text { to } \\ 1 / 90 \\ \min _{\text {mic }} \end{gathered}$	rank /yrs
Dee at Park	$\begin{aligned} & 79 \\ & 87 \end{aligned}$			$\begin{aligned} & 52 \\ & 64 \end{aligned}$	$\begin{aligned} & 48 \\ & 72 \end{aligned}$	$\begin{aligned} & 23 \\ & 60 \end{aligned}$	$\begin{aligned} & 11 \\ & 38 \end{aligned}$	$\begin{aligned} & 17 \\ & 50 \end{aligned}$	$\begin{aligned} & 29 \\ & 67 \end{aligned}$	$\begin{aligned} & 34 \\ & 41 \end{aligned}$	$\begin{aligned} & 37 \\ & 48 \end{aligned}$	$\begin{aligned} & 43 \\ & 47 \end{aligned}$	$\begin{aligned} & 79 \\ & 85 \end{aligned}$	$\begin{array}{r} 193 \\ 57 \end{array}$	$1 / 2$	$\begin{array}{r} 322 \\ 59 \end{array}$	$\begin{array}{r} 1 \\ / 17 \end{array}$	$\begin{array}{r} 729 \\ 70 \end{array}$	$1 / 17$	846 74	$\stackrel{1}{16}$
Tay at Ballathie	$\begin{aligned} & 192 \\ & 138 \end{aligned}$	21423	$\begin{array}{ll} 239 \\ 203 & 9 \end{array}$	99	$\begin{array}{ll} 47 & 3 \\ 66 & 6 \end{array}$	$\begin{aligned} & 30 \\ & 66 \end{aligned}$		54	$\begin{aligned} & 69 \\ & 97 \end{aligned}$	$\begin{aligned} & 9911 \\ & 89 \end{aligned}$	$\begin{array}{r} 106 \\ 88 \end{array}$		$\begin{aligned} & 201 \\ & 144 \end{aligned}$	$\begin{array}{r} 471 \\ 91 \end{array}$	$\begin{array}{r} 15 \\ / 38 \end{array}$	$\begin{array}{r} 692 \\ 87 \end{array}$	$\begin{array}{r} 9 \\ / 37 \end{array}$	$\begin{array}{r} 1645 \\ 108 \end{array}$	$\begin{array}{r} 28 \\ / 37 \end{array}$	$\begin{array}{r} 1863 \\ 114 \end{array}$	31 $/ 37$
Tweed at Boleside	$\begin{aligned} & 175 \\ & 177 \end{aligned}$	941 132181	$\begin{array}{lr} 140 \\ 182 & 10 \end{array}$	$\begin{array}{r} 55 \\ 107 \end{array}$	$\begin{array}{ll} 25 & 1 \\ 57 & 5 \end{array}$	$\begin{aligned} & 16 \\ & 56 \end{aligned}$	$\begin{aligned} & 11 \\ & 40 \end{aligned}$	$\begin{aligned} & 27 \\ & 68 \end{aligned}$	$\begin{aligned} & 29 \\ & 55 \end{aligned}$	$\begin{aligned} & 32 \\ & 44 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		$\begin{aligned} & 175 \\ & 177 \end{aligned}$	$\begin{array}{r} 301 \\ 86 \end{array}$	$\begin{array}{r} 7 \\ \hline \end{array}$	$\begin{array}{r} 409 \\ 76 \end{array}$	$\begin{array}{r} 4 \\ \hline \end{array}$	$\begin{array}{r} 913 \\ 90 \end{array}$	$\begin{array}{r} 7 \\ / 28 \end{array}$	$\begin{gathered} 992 \\ 91 \end{gathered}$	8 128
South Tyne at Haydon Bridge	$\begin{aligned} & 53 \\ & 54 \end{aligned}$	89 133 181	$\begin{array}{rr} 93 & 5 \\ 111 & 10 \end{array}$	$\begin{array}{r} 55 \\ 100 \end{array}$	$\begin{aligned} & 12 \\ & 32 \end{aligned}$	32	20	$\begin{aligned} & 19 \\ & 45 \end{aligned}$	15	$\begin{aligned} & 55 \\ & 79 \end{aligned}$	$\begin{aligned} & 42 \\ & 45 \end{aligned}$		140 144	320 90	/28	374 68	$/ 26$	$\begin{array}{r} 807 \\ 77 \end{array}$	$\begin{array}{r} 3 \\ / 26 \end{array}$	873 78	126
Wharfe at Flint Mill Weir	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & 64 \\ & 87 \\ & 1 \end{aligned}$	$\begin{array}{rr} 95 & 7 \\ 126 & 13 \end{array}$	$\begin{array}{r} 71 \\ 131 \end{array}$	$\begin{aligned} & 15 \\ & 38 \end{aligned}$	$\begin{aligned} & 13 \\ & 51 \end{aligned}$	$\begin{aligned} & 10 \\ & 37 \end{aligned}$	$\begin{aligned} & 14 \\ & 33 \end{aligned}$	$\begin{aligned} & 10 \\ & 21 \end{aligned}$	$\begin{aligned} & 39 \\ & 60 \end{aligned}$	$\begin{aligned} & 29 \\ & 36 \end{aligned}$		$\begin{aligned} & 126 \\ & 128 \end{aligned}$	$\begin{array}{r} 238 \\ 71 \end{array}$	$\begin{array}{r} 4 \\ \quad / 35 \end{array}$	$\begin{array}{r} 300 \\ 58 \end{array}$	$\begin{array}{r} 1 \\ / 34 \end{array}$	$\begin{array}{r} 713 \\ 72 \end{array}$	$\begin{array}{r} 1 \\ / 34 \end{array}$	790 75	134
Derwent at Buttercrambe	$\begin{aligned} & 17 \\ & 33 \end{aligned}$	$\begin{aligned} & 17 \\ & 40 \end{aligned}$	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 29 \\ & 85 \end{aligned}$	$\begin{aligned} & 13 \\ & 50 \end{aligned}$	$\begin{array}{r} 9 \\ 51 \end{array}$	$\begin{array}{r} 8 \\ 58 \end{array}$	$\begin{array}{r} 6 \\ 42 \end{array}$	$\begin{array}{r} 5 \\ 37 \end{array}$	$\begin{array}{r} 6 \\ 25 \end{array}$	$\begin{array}{r} 9 \\ 35 \end{array}$	$\begin{aligned} & 15 \\ & 36 \end{aligned}$	$\begin{aligned} & 22 \\ & 43 \end{aligned}$	$\begin{aligned} & 52 \\ & 39 \end{aligned}$	$\begin{array}{r} 1 \\ / 17 \end{array}$	$\begin{aligned} & 94 \\ & 43 \end{aligned}$	$\begin{array}{r} 1 \\ / 16 \end{array}$	$\begin{array}{r} 230 \\ 50 \end{array}$	$\begin{array}{r} 1 \\ / 16 \end{array}$	52	/16
Trent at Colwick	$\begin{aligned} & 21 \\ & 41 \end{aligned}$	$\begin{aligned} & 26 \\ & 601 \end{aligned}$	$\begin{gathered} 42 \\ 103 \\ 17 \end{gathered}$	$\begin{array}{r} 57 \\ 177 \end{array}$	$\begin{aligned} & 18 \\ & 70 \end{aligned}$	$\begin{aligned} & 13 \\ & 67 \end{aligned}$	$\begin{aligned} & 12 \\ & 74 \end{aligned}$	$\begin{aligned} & 10 \\ & 59 \end{aligned}$	$\begin{array}{r} 9 \\ 52 \end{array}$	$\begin{aligned} & 13 \\ & 54 \end{aligned}$	$\begin{aligned} & 17 \\ & 55 \end{aligned}$	$\begin{array}{r} 56 \\ 127 \end{array}$	$\begin{aligned} & 45 \\ & 88 \end{aligned}$	$\begin{array}{r} 131 \\ 88 \end{array}$	$\begin{array}{r} 12 \\ / 32 \end{array}$	$\begin{array}{r} 193 \\ 80 \end{array}$	$\begin{array}{r} 7 \\ \hline \end{array}$	$\begin{array}{r} 385 \\ 79 \end{array}$	$/ 31^{5}$	407 80	/31 ${ }^{6}$
Dove at Marston on Dove	$\begin{array}{r} 68 \\ 100 \end{array}$	$\begin{aligned} & 43 \\ & 78 \\ & \hline \end{aligned}$	$\begin{array}{r} 71 \\ 132 \end{array}$	$\begin{array}{r} 67 \\ 157 \end{array}$	$\begin{aligned} & 24 \\ & 66 \end{aligned}$	$\begin{aligned} & 17 \\ & 63 \end{aligned}$	$\begin{aligned} & 17 \\ & 73 \end{aligned}$	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 40 \end{aligned}$	$\begin{aligned} & 16 \\ & 47 \end{aligned}$	$\begin{aligned} & 29 \\ & 60 \end{aligned}$	$\begin{aligned} & 59 \\ & 91 \end{aligned}$	$\begin{aligned} & 68 \\ & 98 \end{aligned}$	$\begin{array}{r} 173 \\ 81 \end{array}$	$\begin{array}{r} 7 \\ \hline / 29 \end{array}$	$\begin{array}{r} 253 \\ 73 \end{array}$	$\begin{array}{r} 4 \\ \hline \end{array}$	$\begin{array}{r} 544 \\ 80 \end{array}$	$\quad / 27^{3}$	585 81	127
Lud at Louth	$\begin{aligned} & 15 \\ & 47 \end{aligned}$	$\begin{aligned} & 12 \\ & 33 \end{aligned}$	$\begin{aligned} & 16 \\ & 42 \end{aligned}$	$\begin{aligned} & 17 \\ & 50 \end{aligned}$	$\begin{aligned} & 15 \\ & 52 \end{aligned}$	$\begin{aligned} & 12 \\ & 56 \end{aligned}$	$\begin{aligned} & 10 \\ & 59 \end{aligned}$	$\begin{gathered} 9 \\ 64 \end{gathered}$	$\begin{array}{r} 8 \\ 69 \end{array}$	$\begin{array}{r} 9 \\ 72 \end{array}$	$\begin{array}{r} 8 \\ 53 \end{array}$	$\begin{aligned} & 12 \\ & 59 \end{aligned}$	$\begin{aligned} & 12 \\ & 38 \end{aligned}$	$\begin{aligned} & 41 \\ & 53 \end{aligned}$	122^{4}	$\begin{aligned} & 96 \\ & 50 \end{aligned}$	$/ 21^{2}$	$\begin{array}{r} 187 \\ 56 \end{array}$	$\begin{array}{r} 3 \\ 121 \end{array}$	201 58	/21
Witham at Claypole Mill	$\begin{array}{r} 8 \\ 30 \end{array}$	$\begin{array}{r} 8 \\ 30 \end{array}$	$\begin{aligned} & 12 \\ & 45 \end{aligned}$	$\begin{array}{r} 31 \\ 148 \end{array}$	$\begin{aligned} & 14 \\ & 87 \end{aligned}$	$\begin{array}{r} 8 \\ 80 \end{array}$	$\begin{array}{r} 6 \\ 84 \end{array}$	$\begin{array}{r} 4 \\ 56 \end{array}$	$\begin{aligned} & 4 \\ & 63 \end{aligned}$	$\begin{array}{r} 5 \\ 57 \end{array}$	$\begin{array}{r} 6 \\ 49 \end{array}$	$\begin{array}{r} 20 \\ 105 \end{array}$	$\begin{aligned} & 20 \\ & 76 \end{aligned}$	$\begin{aligned} & 51 \\ & 77 \end{aligned}$	$\begin{array}{r} 13 \\ / 31 \end{array}$	88	$\begin{array}{r} 14 \\ / 31 \end{array}$	$\begin{array}{r} 160 \\ 65 \end{array}$	7 $/ 30$	166	/30
Colne at Lexden	$\begin{aligned} & 13 \\ & 55 \end{aligned}$	$\begin{aligned} & 14 \\ & 77 \\ & 1 \end{aligned}$	$\begin{array}{r} 23 \\ 122 \end{array}$	$\begin{array}{r} 20 \\ 150 \end{array}$	$\begin{array}{r} 6 \\ 67 \end{array}$	$\begin{array}{r} 4 \\ 73 \end{array}$	$\begin{array}{r} 5 \\ 119 \end{array}$	7311	$\begin{array}{r} 5 \\ 115 \end{array}$	$\begin{array}{r} 3 \\ 34 \end{array}$	$\begin{array}{r} 5 \\ 39 \end{array}$	$\begin{aligned} & 14 \\ & 82 \end{aligned}$	$\begin{aligned} & 11 \\ & 46 \end{aligned}$	$\begin{aligned} & 34 \\ & 55 \end{aligned}$	$/ 31^{6}$	$\begin{aligned} & 57 \\ & 64 \end{aligned}$	$\begin{array}{r} 6 \\ \hline 60 \end{array}$	$\begin{array}{r} 145 \\ 75 \end{array}$	$\begin{array}{r} 6 \\ 130 \end{array}$	153 76	$\begin{array}{r}7 \\ \hline\end{array}$
Mimram at Panshanger Park	$\begin{aligned} & 9 \\ & 77 \end{aligned}$	$\begin{array}{r} 8 \\ 68 \end{array}$	$\begin{aligned} & 10 \\ & 74 \end{aligned}$	$\begin{array}{r} 14 \\ 110 \end{array}$	$\begin{aligned} & 11 \\ & 88 \end{aligned}$	$\begin{array}{r} 9 \\ 82 \end{array}$	$\begin{array}{r} 9 \\ 92 \end{array}$	$\begin{array}{r} 7 \\ 77 \end{array}$	$\begin{array}{r} 6 \\ 73 \end{array}$	$\begin{array}{r} 6 \\ 71 \end{array}$	$\begin{array}{r} 6 \\ 68 \end{array}$	$\begin{aligned} & 10 \\ & 98 \end{aligned}$	$\begin{aligned} & 11 \\ & 94 \end{aligned}$	$\begin{aligned} & 32 \\ & 83 \end{aligned}$	$\begin{array}{r} 10 \\ / 37 \end{array}$	$\begin{aligned} & 74 \\ & 83 \end{aligned}$	/37	$\begin{array}{r} 135 \\ 86 \end{array}$	$\begin{array}{r} 9 \\ \hline 136 \end{array}$	$\begin{array}{r} 146 \\ 88 \end{array}$	\% 9
Thames at Kingston (natr.)	$\begin{aligned} & 13 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 61 \end{aligned}$	$\begin{array}{r} 36 \\ 115 \end{array}$	$\begin{array}{r} 28 \\ 124 \end{array}$	$\begin{aligned} & 13 \\ & 74 \end{aligned}$	$\begin{array}{r} 9 \\ 71 \end{array}$	$\begin{array}{r} 7 \\ 74 \end{array}$	$\begin{array}{r} 6 \\ 68 \end{array}$	$\begin{array}{r} 6 \\ 67 \end{array}$	$\begin{array}{r} 7 \\ 52 \end{array}$	${ }_{41}^{9} 1$	$\begin{array}{r} 38 \\ 126 \end{array}$	$\begin{aligned} & 33 \\ & 88 \end{aligned}$	$\begin{aligned} & 86 \\ & 84 \end{aligned}$	$\begin{array}{r} 44 \\ / 107 \end{array}$	$\begin{array}{r} 127 \\ 79 \end{array}$	$\begin{array}{r} 36 \\ / 107 \end{array}$	247 74	$\begin{array}{r} 22 \\ / 106 \end{array}$	75	23 106
Coln at Bibury	$\begin{aligned} & 15 \\ & 29 \end{aligned}$	$\begin{aligned} & 19 \\ & 35 \end{aligned}$	$\begin{aligned} & 48 \\ & 89 \end{aligned}$	$\begin{array}{r} 44 \\ 101 \end{array}$	$\begin{aligned} & 30 \\ & 89 \end{aligned}$	$\begin{aligned} & 18 \\ & 66 \end{aligned}$	$\begin{aligned} & 15 \\ & 70 \end{aligned}$	$\begin{aligned} & 13 \\ & 76 \end{aligned}$	$\begin{aligned} & 10 \\ & 69 \end{aligned}$	$\begin{aligned} & 10 \\ & 61 \end{aligned}$	$\begin{aligned} & 15 \\ & 60 \end{aligned}$	$\begin{aligned} & 39 \\ & 98 \end{aligned}$	$\begin{array}{r} 56 \\ 107 \end{array}$	$\begin{array}{r} 120 \\ 91 \end{array}$	$\begin{aligned} & 11 \\ & / 27 \end{aligned}$	$\begin{array}{r} 205 \\ 84 \end{array}$	$\begin{array}{r} 8 \\ / 26 \end{array}$	$\begin{array}{r} 364 \\ 71 \end{array}$	$\begin{array}{r} 3 \\ 126 \end{array}$	378 72	126
Mole at Kinnersley Manor	$\begin{aligned} & 64 \\ & 89 \end{aligned}$	$\begin{array}{r} 55 \\ 114 \end{array}$	$\begin{gathered} 72 \\ 1421 \end{gathered}$	$\begin{array}{r} 61 \\ 185 \end{array}$	$\begin{aligned} & 16 \\ & 571 \end{aligned}$	$\begin{array}{r} 19 \\ 106 \end{array}$	$\begin{aligned} & 12 \\ & 93 \end{aligned}$	$\begin{aligned} & 11 \\ & 71 \end{aligned}$	$\begin{aligned} & 11 \\ & 61 \end{aligned}$	$\begin{aligned} & 15 \\ & 38 \end{aligned}$	$\begin{aligned} & 16 \\ & 36 \end{aligned}$	$\begin{array}{r} 81 \\ 123 \end{array}$	64 85	$\begin{array}{r} 176 \\ 79 \end{array}$	$\begin{array}{r} 5 \\ / 15 \end{array}$	244 79	$\begin{array}{r} 5 \\ / 15 \end{array}$	492 76	$/ 13$	518 75	/13
Medway at Teston	$\begin{array}{r} 7 \\ 14 \end{array}$	$\begin{aligned} & 17 \\ & 46 \end{aligned}$	$\begin{aligned} & 27 \\ & 851 \end{aligned}$	$\begin{array}{r} 41 \\ 185 \end{array}$	$\begin{array}{r} 7 \\ 47 \end{array}$	$\begin{array}{r} 6 \\ 60 \end{array}$	$\begin{array}{r} 4 \\ 62 \end{array}$	$\begin{array}{r} 3 \\ 41 \end{array}$	$\begin{array}{r} 4 \\ 40 \end{array}$	$\begin{array}{r} 4 \\ 21 \end{array}$	$\begin{array}{r} 5 \\ 16 \end{array}$	$\begin{aligned} & 28 \\ & 69 \end{aligned}$	$\begin{aligned} & 33 \\ & 66 \end{aligned}$	$\begin{aligned} & 70 \\ & 51 \end{aligned}$	$\begin{array}{r} 7 \\ \hline \end{array}$	94 50	$\begin{array}{r} 4 \\ / 26 \end{array}$	$\begin{gathered} 201 \\ 51 \end{gathered}$	$/ 25$	209 51	/25
Itchen at Highbridge+Allbrook	26 53	$\begin{aligned} & 26 \\ & 53 \end{aligned}$	$\begin{aligned} & 39 \\ & 74 \end{aligned}$	$\begin{aligned} & 40 \\ & 85 \end{aligned}$	$\begin{aligned} & 36 \\ & 84 \end{aligned}$	$\begin{aligned} & 27 \\ & 77 \end{aligned}$	22	$\begin{aligned} & 21 \\ & 73 \end{aligned}$	$\begin{aligned} & 20 \\ & 75 \end{aligned}$	$\begin{aligned} & 21 \\ & 68 \end{aligned}$	$\begin{aligned} & 22 \\ & 63 \end{aligned}$	29	39 79	$\begin{array}{r} 111 \\ 71 \end{array}$	132	236 74	131	420 71	131	48	/31
Stour at Throop Mill	$\begin{aligned} & 19 \\ & 31 \end{aligned}$	$\begin{aligned} & 28 \\ & 49 \end{aligned}$	$\begin{array}{r} 57 \\ 110 \end{array}$	$\begin{array}{r} 39 \\ 112 \end{array}$	$\begin{aligned} & 15 \\ & 62 \end{aligned}$	$\begin{aligned} & 11 \\ & 68 \end{aligned}$	$\begin{array}{r} 8 \\ 70 \end{array}$	$\begin{array}{r} 6 \\ 55 \end{array}$	$\begin{array}{r} 6 \\ 49 \end{array}$	$\begin{array}{r} 8 \\ 35 \end{array}$	$\begin{aligned} & 15 \\ & 46 \end{aligned}$	$\begin{array}{r} 74 \\ 134 \end{array}$	$\begin{array}{r} 66 \\ 106 \end{array}$	$\begin{array}{r} 164 \\ 96 \end{array}$	$\begin{array}{r} 10 \\ / 17 \end{array}$	$\begin{array}{r} 211 \\ 86 \end{array}$	/17	$\begin{array}{r} 388 \\ 71 \end{array}$	$\begin{array}{r} 1 \\ / 16 \end{array}$	73	/16
Tone at Bishops Hull	$\begin{aligned} & 25 \\ & 31 \end{aligned}$	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{array}{r} 80 \\ 139 \end{array}$	$\begin{array}{r} 40 \\ 102 \end{array}$	$\begin{aligned} & 19 \\ & 67 \end{aligned}$	$\begin{aligned} & 11 \\ & 61 \end{aligned}$	$\begin{aligned} & 10 \\ & 63 \end{aligned}$	$\begin{array}{r} 7 \\ 55 \end{array}$	$\begin{array}{r} 9 \\ 57 \end{array}$	$\begin{aligned} & 13 \\ & 47 \end{aligned}$	$\begin{aligned} & 29 \\ & 68 \end{aligned}$	$\begin{array}{r} 91 \\ 136 \end{array}$	$\begin{array}{r} 88 \\ 108 \end{array}$	$\begin{aligned} & 221 \\ & 102 \end{aligned}$	$\begin{array}{r} 15 \\ / 29 \end{array}$	277 90	$\begin{array}{r} 12 \\ / 29 \end{array}$	521 78	$\begin{array}{r} 5 \\ 128 \end{array}$	665 81	128
Brue at Lovington	$\begin{array}{r} 77 \\ 111 \end{array}$	$\begin{aligned} & 52 \\ & 89 \end{aligned}$	$\begin{array}{r} 73 \\ 143 \end{array}$	$\begin{array}{r} 45 \\ 151 \end{array}$	$\begin{aligned} & 15 \\ & 62 \end{aligned}$	$\begin{array}{r} 7 \\ 45 \end{array}$	$\begin{array}{r} 6 \\ 35 \end{array}$	$\begin{array}{r} 5 \\ 31 \end{array}$	$\begin{array}{r} 5 \\ 32 \end{array}$	$\begin{array}{r} 6 \\ 20 \end{array}$	$\begin{aligned} & 16 \\ & 37 \end{aligned}$	$\begin{array}{r} 98 \\ 144 \end{array}$	$\begin{array}{r} 77 \\ 108 \end{array}$	$\begin{array}{r} 198 \\ 93 \end{array}$	$\begin{aligned} & 11 \\ & / 25 \end{aligned}$	236 79	$\begin{array}{r} 4 \\ / 25 \end{array}$	$\begin{array}{r} 484 \\ 78 \end{array}$	$\begin{array}{r} 2 \\ \hline 25 \end{array}$	86	124
Severn at Bewdley	$\begin{aligned} & 29 \\ & 41 \end{aligned}$	$\begin{aligned} & 48 \\ & 84 \end{aligned}$	$\begin{array}{r} 77 \\ 168 \end{array}$	$\begin{array}{r} 48 \\ 152 \end{array}$	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	$\begin{array}{r} 7 \\ 39 \end{array}$	$\begin{array}{r} 8 \\ 56 \end{array}$	$\begin{array}{r} 7 \\ 40 \end{array}$	$\begin{array}{r} 6 \\ 27 \end{array}$	$\begin{aligned} & 14 \\ & 41 \end{aligned}$	$\begin{aligned} & 32 \\ & 59 \end{aligned}$	$\begin{array}{r} 81 \\ 130 \end{array}$	$\begin{array}{r} 84 \\ 118 \end{array}$	$\begin{array}{r} 210 \\ 95 \end{array}$	$\begin{array}{r} 29 \\ / 69 \end{array}$	$\begin{array}{r} 250 \\ 79 \end{array}$	$\begin{array}{r} 16 \\ / 69 \end{array}$	$\begin{array}{r} 511 \\ 80 \end{array}$	$\begin{array}{r} 13 \\ 168 \end{array}$	856	15 168
Teme at Knightsford Bridge	$\begin{array}{r} 93 \\ 144 \end{array}$	$\begin{aligned} & 29 \\ & 54 \end{aligned}$	$\begin{aligned} & 50 \\ & 98 \end{aligned}$	$\begin{array}{r} 49 \\ 141 \end{array}$	$\begin{aligned} & 12 \\ & 55 \end{aligned}$	$\begin{array}{r} 5 \\ 34 \end{array}$	$\begin{array}{r} 3 \\ 35 \end{array}$	${ }_{22}^{2}$	$\begin{array}{r} 2 \\ 23 \end{array}$	$\begin{array}{r} 4 \\ 19 \end{array}$	$\begin{aligned} & 17 \\ & 50 \end{aligned}$		$\begin{array}{r} 93 \\ 138 \end{array}$	$\begin{aligned} & 214 \\ & 122 \end{aligned}$	$\begin{array}{r} 16 \\ / 20 \end{array}$	239 101	$\begin{array}{r} 10 \\ / 20 \end{array}$	419 80	${ }_{19}^{2}$	48 82	119
Yscir at Pontaryscir		$\begin{aligned} & 130 \\ & 128 \end{aligned}$	$\begin{aligned} & 182 \\ & 165 \end{aligned}$	$\begin{array}{r} 72 \\ 120 \end{array}$	$\begin{aligned} & 18 \\ & 40 \end{aligned}$	$\begin{aligned} & 10 \\ & 32 \end{aligned}$	$\begin{aligned} & 11 \\ & 49 \end{aligned}$	$\begin{array}{r} 8 \\ 25 \end{array}$	$\begin{aligned} & 11 \\ & 22 \end{aligned}$	$\begin{aligned} & 90 \\ & 97 \end{aligned}$	$\begin{aligned} & 125 \\ & 101 \end{aligned}$	$\begin{aligned} & 209 \\ & 140 \end{aligned}$	$\begin{aligned} & 225 \\ & 152 \end{aligned}$	$\begin{aligned} & 649 \\ & 122 \end{aligned}$	$\begin{array}{r} 16 \\ / 17 \end{array}$	$\begin{aligned} & 707 \\ & 101 \end{aligned}$	$\begin{array}{r} 9 \\ \hline 17 \end{array}$	$\begin{array}{r} 1288 \\ 91 \end{array}$	$\begin{array}{r} 5 \\ / 16 \end{array}$	1379 91	16
Cynon at Abercynon			$\begin{aligned} & 232 \\ & 199 \end{aligned}$	$\begin{array}{r} 80 \\ 105 \end{array}$	$\begin{aligned} & 24 \\ & 39 \end{aligned}$	$\begin{aligned} & 16 \\ & 38 \end{aligned}$	$\begin{aligned} & 16 \\ & 46 \end{aligned}$	$\begin{aligned} & 12 \\ & 23 \end{aligned}$		$\begin{aligned} & 160 \\ & 132 \end{aligned}$	$\begin{array}{r} 139 \\ 90 \end{array}$		$\begin{aligned} & 331 \\ & 175 \end{aligned}$	$\begin{aligned} & 867 \\ & 132 \end{aligned}$	$\begin{array}{r} 28 \\ / 32 \end{array}$	$\begin{aligned} & 950 \\ & 102 \end{aligned}$	$\begin{array}{r} 18 \\ 130 \end{array}$	$\begin{array}{r} 1711 \\ 96 \end{array}$	$\begin{array}{r} 14 \\ / 30 \end{array}$	1811 95	11 130
Dee at New Inn	$\begin{array}{r} 133 \\ 55 \end{array}$	215	333 189	129 125	23 32	34 57	23 33	34 35	36 25	226	169	224 90	388 161	$\begin{array}{r} 1007 \\ 108 \end{array}$	14 121	1156 84	120	$\begin{array}{r} 2237 \\ 87 \end{array}$	5 120	2393 87	120
Lune at Caton	$\begin{aligned} & 94 \\ & 64 \end{aligned}$	$\begin{aligned} & 167 \\ & 186 \end{aligned}$	$\begin{aligned} & 196 \\ & 203 \end{aligned}$	$\begin{array}{r} 82 \\ 110 \end{array}$	$\begin{aligned} & 20 \\ & 39 \end{aligned}$	$\begin{aligned} & 14 \\ & 34 \end{aligned}$	$\begin{aligned} & 12 \\ & 23 \end{aligned}$	$\begin{aligned} & 44 \\ & 61 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{array}{r} 121 \\ 99 \end{array}$	$\begin{aligned} & 81 \\ & 60 \end{aligned}$	$\begin{aligned} & 84 \\ & 54 \end{aligned}$	$\begin{aligned} & 266 \\ & 182 \end{aligned}$	$\begin{array}{r} 552 \\ 98 \end{array}$	$\begin{aligned} & 13 \\ & / 26 \end{aligned}$	$\begin{array}{r} 655 \\ 75 \end{array}$	$\begin{array}{r} 3 \\ 126 \end{array}$	$\begin{array}{r} 1430 \\ 91 \end{array}$	$\begin{array}{r} 7 \\ / 24 \end{array}$	1559 92	124
Eden at Sheepmount		$\begin{array}{r} 98 \\ 152 \end{array}$	$\begin{aligned} & 127 \\ & 194 \end{aligned}$	$\begin{array}{r} 53 \\ 114 \end{array}$	$\begin{aligned} & 19 \\ & 56 \end{aligned}$	$\begin{aligned} & 14 \\ & 53 \end{aligned}$	$\begin{aligned} & 11 \\ & 39 \end{aligned}$	$\begin{aligned} & 24 \\ & 75 \end{aligned}$	$\begin{aligned} & 15 \\ & 33 \end{aligned}$	$\begin{aligned} & 44 \\ & 57 \end{aligned}$	$\begin{aligned} & 45 \\ & 53 \end{aligned}$	$\begin{aligned} & 52 \\ & 58 \end{aligned}$	$\begin{aligned} & 149 \\ & 147 \end{aligned}$	$\begin{array}{r} 291 \\ 84 \end{array}$	$\begin{array}{r} 7 \\ \hline 19 \end{array}$	$\begin{array}{r} 374 \\ 74 \end{array}$	$\begin{array}{r} 4 \\ 118 \end{array}$	$\begin{array}{r} 847 \\ 89 \end{array}$	$\begin{array}{r} 5 \\ 17 \end{array}$	917 89	17

Notes (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that the lowest runoff is rank 1.
(iii) \%LT means percentage of the long term average from the start of the record to 1988 . For the long periods (at the right of this table) the end date for the long term is 1989.

SIte nome: COMPTON HOUSE
Notlonal grid reference: SU 77551490
Hell number: SU71/23
Aquifer: CHALK AND UPPER GREENSAND Measuring level, 81.37

Max, Min and Meon values calculated From years 1894 T0 1989

SIte name, ROCKLEY
Noblonal grid reference: SU 16557174
Hell number: SUI7/57
Aquifer: CHALK AND UPPER GREENSAND Meosuring level, 146.39

SIte nome, HASHPIT FARM
National orld reference, If 81381960 Well number: TF81/2
Aquifer. CHALK AND UPPER GREENSAND Meosuring level, 80.20

sIte name. NEW RED LION
Noblonal orld reference: TF 08853034 Hell number: TF03/37

Aquifer: LINCOLNSHIRE LITESTONE Heasuring level, 33.82

Max. Min and Hean volues colculabed From yeors 1964 to 1989

Site nome, drPNEY CRUCIS
National grid reference, SP 05950190
Well number. SP00/62
Aquifer: MIODLE JURASSIC Heosuring levele 109.70

1986	1987	1988	1989
Max. Min and theon values calculobed from yeors	1958	TO	1989

SIte name: BUSSELS NO. 74
Nablonal orld reference: SX 95289872
Well number: 5X99/378
Aquifer: PERMO-TRIASSIC SANDSTONE Measuring level, 26.07

Max. Min and Mean values caleulated From years 1980 TO 1989

SIte name, PEGGY ELLERTON FARM.HAZLEWOOD
Natlonal grid reference: SE 45353964
Hell number, SE43/9
Aquifer: MAGNESIAN LIMESTONE
Meosuring level, 51.40

[^0]: * Specific Yield in an unconfined aquifer is the ratio of the volume of water drained by gravity from a mass of the aquifer to the volume of that mass.

