HYDROLOGICAL SUMMARY FOR GREAT BRITAIN

Data for this review have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office. The recent areal rainfall figures are derived from a restricted network of raingauges and a significant proportion of the river flow data is of a provisional nature.

For a fuller appreciation of the water resources implications, this hydrological review should be considered alongside assessments of the current reservoir storage and water demand situations in each region.

Summary

The episodic nature of weather patterns over Great Britain has been associated with large fluctuations in rainfall amounts during the last couple of years and this has continued into 1990. Following the widespread flooding experienced in February a dry spell has extended to $10-12$ weeks in most regions away from north-western Britain. Over this period exceptionally warm and sunny conditions have prevailed. Consequently evaporation rates have been considerably above average and soil moisture deficits were at unseasonably high levels by early May. In a few eastern localities, where "rain-shadow" effects have been influential over a long period, a moderate to severe drought has become re-established.

Rainfall totals for the period beginning on 1st October 1989 are close to, or above, average in all regions (but not in all districts) and substantially greater than those recorded over the corresponding period in 1988/89. In water resources terms, however, the distribution of precipitation through the winter half-year can be almost as important as the actual amount. In 1989, heavy spring rainfall resulted in a belated but very valuable boost to severely depleted water resources. This year, much of the extraordinarily sustained rainfall in February ran off directly because reservoirs - at least in western areas - were already close to capacity.

Steep declines in runoff and recharge rates have obtained since the remarkable conditions of early February. Generally, river flows were well below average in April. However, only in eastern catchments and especially those rivers heavily dependent upon baseflow have accumulated runoff totals reached exceptionally low levels. Groundwater levels are mostly within the normal seasonal range but, again, substantial west-to-east contrasts are evident with some boreholes in Kent, East Anglia and eastern Yorkshire showing only modest recoveries from the remarkably low levels recorded in late-1989.

With little hydrologically effective rainfall since February, the seasonal decline in runoff and recharge rates and the drawdown of reservoirs became established much earlier than in a more typical year. A continuation of warm, dry conditions into the summer may be expected to result in notably low river flows. In addition, if the seasonal upturn in recharge rates is significantly delayed in the autumn, very depressed groundwater levels could obtain over wide areas. Currently, the water resources outlook is most fragile in eastern districts, where, even in a normal year, runoff and recharge totals are very modest and where the depletion of resources through the 1989 drought left a number of localities particularly vulnerable to below average rainfall in the $89 / 90$ winter.

Rainfall

April was a relatively dry month in most areas with above average rainfall restricted to the north-western and south-eastern extremities of Britain. Parts of central and north-eastern England received well below half their mean April rainfall and the remarkable clustering of dry months in some coastal districts of Northumbria and eastern Scotland continued.

Provisional data indicate that England and Wales experienced its third driest March and April period this century, following the wettest winter (Dec-Feb) since 1914/15. Large areas have registered below average rainfall for 17 , or more, months in the last 26 . Along the eastern seaboard a few localities
have recorded above-average rainfall in only three or four months since March 1988. Nonetheless, on a regional basis the abundant winter rainfall has ensured that no significant drought can yet be recognised in an intermediate timeframe (3-9 months) and longer term rainfall deficiencies are severe only in the Northumbrian NRA region.

Although February rainfall for Scotland was only a little above average the January-April total is remarkable; it easily eclipsed the record (established only last year) in a general rainfall series which begins in 1869. Principally, this reflects the inordinate rainfall experienced in western Scotland. However, such has been the exaggeration in the normal west to east rainfall gradient that a few eastern localities - for instance around the estuaries of the Don and the Tweed - are gripped by a notable meteorological drought.

The persistence of rain-shadow effects has been less marked in England but they remain an important causative factor in respect of the long-term rainfall deficiencies to be found in Northumbria, eastern Yorkshire and parts of East Anglia and Kent.

Evaporation and soil moisture deficits

Despite a few cold interludes, April was another warm and exceptionally sunny month. The relatively high rates of potential evaporation which were a feature of the 1989/90 winter continued in April and soil moisture deficits increased briskly through the month, especially after the Easter period. By month-end deficits in excess of 50 mm typified most southern, central and eastern (particularly north-eastern) areas of Britain. In Scotland, deficits increased rapidly eastwards with the maximum value for Britain ($>100 \mathrm{~mm}$) registered around St. Abb's Head, the latest in a remarkable sequence for this area.

For the first four months of 1990 computed potential evaporation totals in the MORECS bulletins have been well above average, typically by $20-40 \%$ in southern and eastern regions. Actual evaporation loses have been similarly enhanced; only in the last few weeks have they been significantly inhibited by increasing SMDs. Provisional figures suggest that in southern and eastern Britain evaporation losses since the beginning of October have been higher than for any corresponding period in the last 25 years.

The high evaporation rates have been an important factor influencing the rapid decline in runoff and groundwater recharge rates. With significant SMDs in most regions where groundwater is a major supply source, the scope for further infiltration before the autumn is very limited and probably unlikely.

Abstract

Runoff Monthly mean flows for April were well below average in all regions, with the exception of north-west Scotland. Typically, the April runoff total was the lowest since 1984 in northern Britain and the lowest since 1976 in southern Britain. For a few catchments, notably that of the Derbyshire Derwent, new April minima were established. Some measure of the steepness of the flow recessions over the last couple of months is provided by the April mean flow on the River Dee (North East RPB), which fell below the previous minimum in an 18 -year record; the February 1990 runoff had established a new maximum for the month. An extremely limited snowmelt contribution, combined with the lack of rainfall, resulted in depressed runoff rates throughout most of eastern Scotland. Still within the NERPB, the Don at Haughton registered a new April minimum mean flow and the Deveron recorded its lowest April runoff since 1961.

Exceptionally low April runoff also characterised a number of high baseflow rivers in eastern England, especially in parts of Yorkshire and Northumbria. April runoff for the River Greta, which drains to the Tees, was comparable with the minimum in a 30 -year record; runoff for the Yorkshire Derwent was only 30% of the April average and monthly mean flows have now been below average for each of the last 19 months, the longest such sequence since 1962-65. Accumulated runoff totals in such catchments are amongst the lowest on record for periods exceeding about $8-10$ months. In a similar timeframe some catchments in the Scottish Highlands, especially those draining to the west, have recorded inordinately high runoff totals. Generally, however, accumulated runoff totals elsewhere in

Britain are substantially - but not remarkably - below average. In the 12 and 18 month timeframes, which embrace the most severe drought sequences in the $1988-90$ period, combined runoff totals rarely approach the historical minima.

Groundwater

With the low rainfall of March and April, groundwater levels have receded from the maxima reached following the heavy February precipitation (Figure 3); only at the Washpit Farm site has the down-turn yet to appear, and is likely to be imminent. Little significant infiltration may be expected until October 1990 at the earliest. With the onset of the down-turns on the well hydrographs, it is possible to make an approximate estimate of the amount of recharge to the aquifers of England and Wales for the winter of 1989-90. Details for the indicator sites are given in Table 4.

TABLE 4. The recharge for the winter of $1989-90$ as calculated from the rise in groundwater levels and the mean annual ranges for certain indicator sites.

Site	Approximate rise in groundwater, m.	Mean annual range, m.	Percentage of mean annual recharge
Dalton Holme	3.7	7.1	52
Little Brocklesby	4.0	7.6	53
New Red Lion	9.3	9.2	101
Washpit Farm	1.6	2.9	55
Little Bucket Farm	10.6	11.4	93
Compton	31.8	21.8	146
Rockley	14.6	10.9	134
Bussels No. 7	1.9	1.2	158

Even on the basis of the very limited network of featured boreholes the deterioration in the storage situation from west to east is evident. In eastern areas and some other districts subject to rain-shadow influences, other factors have also contributed to the concern regarding the outlook: the 1989/90 winter recovery in storage has been generated from a very low base and, often, there has been limited spatial coherence to the amounts of recharge in recent months. In parts of north Kent, for instance, the water-table recovery has been substantially less encouraging than at the Little Bucket site (Figure 3). Of general relevance has been the very early onset of notably steep seasonal recessions; this has produced a rapid decrease in overall groundwater storage since late-February.

By early-May, groundwater levels in the Chalk of eastern England were for the most part substantially below the seasonal mean (Dalton Holme, Little Brocklesby and Washpit Farm). Despite near average recharge, the level at Little Bucket Farm remains below the seasonal mean. Since the groundwater levels reflect the amount of groundwater in storage, the situation in the Chalk outcrops of eastern England appears fragile; should the summer of 1990 be dry, and groundwater is pumped to supplement dwindling surface supplies, and if the onset of the winter recharge is again delayed until the end of December, the situation would be potentially serious.
$\begin{array}{llllllllllllll}\text { Mar Apr } & \text { May } & \text { Jun Jul } & \text { Aug } & \text { Sep } & \text { Oct } & \text { Nov } & \text { Dec } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } \\ 1989\end{array}$

England and	mm	92	83	20	55	38	58	41	98	61	133	116	141
Wales	$\%$	156	143	30	90	52	65	49	118	63	147	20	38
			135	217	34	66							

NRA REGIONS

North West	mm	144	87	37	82	33	116	29	146	84	103	178	187	39	52
	\%	200	113	45	99	32	93	24	124	69	86	159	231	55	68
Northumbrian	mm	63	58	22	51	19	77	20	71	35	61	110	132	30	28
	\%	121	105	34	84	25	76	25	95	37	81	138	200	46	51
Severn Trent	mm	66	91	25	53	40	44	38	82	52	126	113	110	19	30
	\%	127	175	39	95	62	54	57	126	66	181	164	207	37	58
Yorkshire	mm	78	78	19	69	43	41	20	77	45	93	106	112	23	24
	\%	147	138	31	119	61	46	28	112	51	126	138	175	43	42
Anglia	mm	49	75	14	56	41	35	30	41	35	95	52	74	16	36
	\%	123	188	30	114	72	55	58	79	56	180	100	177	40	36
Thames	mm	66	79	14	39	37	44	28	66	38	134	86	114	12	35
	\%	143	172	25	75	62	63	45	103	52	203	139	242	26	76
Southern	mm	76	81	5	41	28	29	37	79	49	137	110	135	5	44
	\%	146	169	9	82	54	40	52	101	52	169	145	238	10	91
Wessex	mm	90	77	21	32	37	43	49	101	59	174	124	157	17	35
	\%	155	143	31	59	60	52	62	123	61	193	147	265	33	64
South West	mm	126	87	12	40	31	62	107	148	100	192	181	236	25	47
	\%	150	123	14	62	37	61	103	131	75	142	140	262	29	65
Welsh	mm	165	98	25	67	48	91	62	179	100	189	211	214	36	46
	\%	190	114	27	82	51	76	50	139	73	130	155	223	41	53

$\begin{array}{lrrrrrrrrrrrrr}\text { Scotiand } & \mathrm{mm} & 188 & 63 & 54 & 76 & 49 & 184 & 96 & 187 & 61 & 95 & 218 & 268 \\ & \% & 204 & 70 & 59 & 83 & 44 & 143 & 70 & 126 & 43 & 61 & 97 & 159 \\ & & 258 & 199 & 108\end{array}$
RIVER PURIFICATION BOARDS

Highland	mm	233	60	68	90	66	222	118	252	83	107	290	364	382	148
	\%	204	53	66	82	52	150	75	135	49	55	177	274	335	130
North-East	mm	83	54	59	57	25	84	57	87	30	61	100	145	96	51
	\%	134	89	77	81	27	78	66	90	29	60	110	195	155	84
Tay	mm	173	45	42	58	31	140	84	135	53	87	230	249	160	62
	\%	211	60	44	70	30	119	73	111	45	65	195	270	195	83
Forth	mm	151	44	36	64	27	142	69	112	38	78	210	221	121	50
	\%	219	65	43	85	28	122	64	106	35	72	212	287	175	74
Tweed	mm	105	48	43	51	23	114	47	67	30	72	158	180	59	47
	\%	181	79	57	75	27	100	51	76	29	80	170	260	102	77
Solway	mm	195	87	35	71	43	177	78	146	58	117	270	282	100	50
	\%	214	99	38	79	39	136	52	101	40	77	193	303	110	57
Clyde	mm	229	82	46	90	64	249	120	240	74	107	320	343	221	144
	\%	218	80	47	87	49	175	69	131	44	58	199	304	210	140

Note: January, March and April figures for E and W for 1990 are based upon MORECS figures supplied by the Meteorological Office
Scottish RPB data for April 1990 are estimated from the isohyetal map of April rainfall in the MORECS bulletin.

TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

England and	mm	331		607		835		1240	
Wales	\% LTA	124	5-10	113	2-5	92	2-5	91	2-5

NRA REGIONS

North West	mm		457		772		1086		1721	
	\%	LTA	134	10-20	110	2-5	89	2-5	96	2-5
Northumbrian	mm		301		482		657		1021	
	\%	LTA	119	2-5	97	2-5	75	20-50	78	40-60
Severn Trent	mm		272		533		732		1061	
	\%	LTA	120	2-5	121	5-10	95	2-5	92	5-10
Yorkshire	mm		265		487		672		1027	
	\%	LTA	106	2-5	101	≤ 2	81	5-10	82	10-20
Anglia	mm		178		353		525		772	
	\%	LTA	102	≤ 2	104	≤ 2	86	5-10	86	5-10
Thames	mm		201		484		645		931	
	\%	LTA	123	5-10	120	5-10	92	2-5	89	5
Southern	mm		295		555		699		1006	
	\%	LTA	126	5-10	114	2-5	88	2-5	84	10
Wessex	mm		332		669		848		1207	
	\%	LTA	130	5-10	128	10-20	98	2-5	92	2-5
South West	mm		488		918		1180		1718	
	\%	LTA	131	5-10	121	5-10	99	2	94	2-5
Welsh	mm		506		959		1272		1915	
	\%	LTA	125	5-10	117	5-10	95	2-5	94	2-5
Scotland	mm		820		1125		1622		2566	
	\%	LTA	194	$\xrightarrow{2} 200$	129	40-60	113	5-10	119	50-100

RIVER PURIFICATION BOARDS

Highland	mm	1201		1643		2207		3189	
	\% LTA	229	≥ 200	153	>200	128	80-120	114	10-20
North-East	mm	386		564		846		1265	
	\% LTA	134	10-20	96	2-5	83	10-20	78	80-120
Tay	mm	732		1007		1362		2111	
	\% LTA	200	>200	136	20-50	109	2-5	106	2-5
Forth	mm	624		852		1190		1834	
	\% LTA	199	>200	134	40-60	107	2-5	105	2-5
Tweed	mm	446		615		893		1340	
	\% LTA	159	50-100	109	2-5	89	5	86	10
Solway	mm	679		1000		1404		2204	
	\% LTA	165	$\underline{200-500}$	117	5-10	99	2-5	97	2-5
Clyde	mm	1093		1514		2083		3194	
	\% LTA	227	$\xrightarrow{200}$	149	$\xrightarrow{200}$	125	40-60	119	$\underline{20-50}$

Return period assessments are based on tables provided by the Meteorological Office ${ }^{*}$. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less. "Wet" return periods underlined.
The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.
The April 1990 RPB values are estimated from the isopleth map within the April summary published in the Met. Office's MORECS bulletin.
${ }^{*}$ Tabony, R C, 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).

FIGURE 1. MONTHLY RAINFALL FOR 1989-1990 AS A PERCENTAGE OF THE 1941-1970 AVERAGE FOR ENGLAND AND WALES, SCOTLAND, AND THE NRA REGIONS

England and Wales

Anglian NRA Region

Southern NRA Region

Scotland

Thames NRA Region

Wessex NRA Region

FIGURE 1 (continued)

North West NRA Region

Severn-Trent NRA Region

South West NRA Region

Northumbrian NRA Region

Yorkshire NRA Region

Welsh NRA Region

015006	Tay at Ballathie
Monthly mean flows for May 1988-Apr 1990	
+ extremes and 30 day running mean for 1952-1987	

028009

Trent at Colwick
Monthly mean flows for May 1988-Apr 1990

+ extremes and 30 day running mean for 1958-1987

037005	Colne at Lexden
Monthiy maan flows for May 1988-Apr 1990	
+ extremes and 30 day running mean for 1959-1987	

039020	Coln at Bibury
Monthly mean flows for May 1988-Apr 1990	
+ extremes and 30 day running mean for 1963-1987	

039001	Thames at Kingston
Monthly mean flows for May 1988-Apr 1990	
+ extremes and 30 day running mean for 1883-1987	

054029 Teme at Knightsford Bridge
 Monthly mean flows for May 1988-Apr 1990

+ extremes and 30 day running mean for 1970-1987

067018

Dee at New Inn Monthly mean flows for May 1988-Apr 1990

+ extremes and 30 day running mean for 1969-1987

084005

Clyde at Blairston
Monthly mean flows for May 1988-Apr 1990

+ extremes and 30 day running mean for 1958-1987

River/ Station name	Oct 1989 mm \%LT	Nov	Dec		Feb	Mar	Apr Apr 1990		$\begin{gathered} 10 / 89 \\ \text { to } \\ 4 / 90 \end{gathered}$		$\begin{gathered} 5 / 89 \\ \text { to } \\ 4 / 90 \end{gathered}$		$\begin{aligned} & 11 / 88 \\ & \text { to } \\ & 4 / 90 \end{aligned}$	
		${\underset{\%}{\mathrm{mmLT}}}^{\mathrm{m}_{2}}$	${ }_{\underset{2}{m} \mathrm{LT}}$	$\begin{aligned} & \max _{\text {mLT }} \end{aligned}$	$\operatorname{mim}_{\text {\&iL }}$	$\begin{aligned} & \text { mim } \\ & \text { 2LT } \end{aligned}$								
Dee at Park	34	37	43	79 85	165	103			495	${ }^{3}$	626	2	1034	2
Tay at	99	106	65											
Ballathie	89	88	45	144	331	275	91 110		1239 147	38 138	1461	$\begin{array}{r} 35 \\ 137 \end{array}$	2414	$\begin{array}{r}37 \\ \hline 17\end{array}$
Tweed at	32	35	60	175	245	105	26	3	677	28	785	17	1289	13
Boleside	44	40	64	177	345	137	51	/29	121	129	105	128	105	128
Wharfe at Flint Mill Weir	$\begin{aligned} & 49 \\ & 76 \end{aligned}$	$\begin{aligned} & 39 \\ & 49 \end{aligned}$	$\begin{aligned} & 65 \\ & 67 \end{aligned}$	$\begin{aligned} & 126 \\ & 128 \end{aligned}$	$\begin{aligned} & 142 \\ & 192 \end{aligned}$	$\begin{aligned} & 59 \\ & 79 \end{aligned}$	20 37		499 92	$\begin{array}{r} 12 \\ / 35 \end{array}$	567 78		$\begin{gathered} 1008 \\ 84 \end{gathered}$	7
Derwent at Buttercrambe	29	35	18 43	22 43	37 86	21 45	${ }_{32}^{11}$		124 49	/17	167 49		$\begin{array}{r} 300 \\ 52 \end{array}$	${ }_{16}^{1}$
Trent at Colwick	$\begin{aligned} & 13 \\ & 54 \end{aligned}$	$\begin{aligned} & 17 \\ & 55 \end{aligned}$	$\begin{array}{r} 55 \\ 125 \end{array}$	45	$\begin{array}{r} 66 \\ 152 \end{array}$	29	15 47		241	12	304	${ }^{8}$	495	1
Dove at Marston on Dove	$\begin{aligned} & 16 \\ & 47 \end{aligned}$	$\begin{aligned} & 29 \\ & 60 \end{aligned}$	$\begin{aligned} & 59 \\ & 91 \end{aligned}$	$\begin{aligned} & 68 \\ & 98 \end{aligned}$	$\begin{array}{r} 78 \\ 142 \end{array}$	$\begin{aligned} & 41 \\ & 76 \end{aligned}$	$\begin{aligned} & 23 \\ & 54 \end{aligned}$		$\begin{array}{r} 313 \\ 86 \end{array}$	$\begin{array}{r} 6 \\ 129 \end{array}$	$\begin{array}{r} 392 \\ 79 \end{array}$	$\begin{array}{r} 4 \\ \hline \end{array}$	684 82	7
Lud at Louth	72	8 5	12 59	$\begin{aligned} & 12 \\ & 38 \end{aligned}$	$\begin{aligned} & 21 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 \\ & 55 \end{aligned}$	15 44	$r 2^{3}$	97 54	$\begin{array}{r} 3 \\ / 22^{3} \end{array}$	153 58	/21	243 56	${ }_{21}^{2}$
Witham at Claypole Mill	$\begin{array}{r} 5 \\ 57 \end{array}$	49	$\begin{array}{r} 20 \\ 105 \end{array}$	$\begin{aligned} & 20 \\ & 76 \end{aligned}$	$\begin{array}{r} 34 \\ 126 \end{array}$	$\begin{aligned} & 23 \\ & 86 \end{aligned}$	$\begin{aligned} & 10 \\ & 48 \end{aligned}$		$\begin{array}{r} 117 \\ 84 \end{array}$	$\begin{array}{r} 14 \\ / 31 \end{array}$	154 83	$\begin{array}{r} 14 \\ .31 \end{array}$	226	$13{ }^{6}$
Colne at Lexden	$\begin{array}{r} 3 \\ 34 \end{array}$	$\begin{array}{r} 5 \\ 39 \end{array}$	$\begin{aligned} & 14 \\ & 82 \end{aligned}$	$\begin{aligned} & 11 \\ & 46 \end{aligned}$	$\begin{array}{r} 35 \\ 193 \end{array}$	$\begin{array}{r} 9 \\ 48 \end{array}$	7 5		$\begin{aligned} & 86 \\ & 77 \end{aligned}$	$\begin{array}{r} 8 \\ \hline 81 \end{array}$	$\begin{array}{r} 109 \\ 78 \end{array}$	$\begin{array}{r} 6 \\ / 30 \end{array}$	$\begin{array}{r} 196 \\ 81 \end{array}$	/30 ${ }^{6}$
Mimram at Panshanger Park	$\begin{array}{r} 6 \\ 71 \end{array}$	$\begin{array}{r} 6 \\ 68 \end{array}$	$\begin{aligned} & 10 \\ & 98 \end{aligned}$	$\begin{aligned} & 10 \\ & 85 \end{aligned}$	$\begin{array}{r} 15 \\ 127 \end{array}$	$\begin{array}{r} 15 \\ 112 \end{array}$	12 94	$\begin{array}{r} 17 \\ / 38 \end{array}$	74 96	$\begin{array}{r} 17 \\ 137 \end{array}$	114 90	$\begin{array}{r} 12 \\ / 37 \end{array}$	$\begin{array}{r} 175 \\ 90 \end{array}$	/36
Thames at Kingston (natr.)	52	41	38 126	$\begin{aligned} & 35 \\ & 94 \end{aligned}$	$\begin{array}{r} 70 \\ 212 \end{array}$	$\begin{aligned} & 25 \\ & 80 \end{aligned}$	16 71		200		241 98	$\begin{array}{r} 52 \\ 107 \end{array}$	$\begin{array}{r} 361 \\ 86 \end{array}$	35 $/ 106$
Coln at Bibury	$\begin{aligned} & 10 \\ & 61 \end{aligned}$	$\begin{aligned} & 15 \\ & 60 \end{aligned}$	$\begin{aligned} & 39 \\ & 98 \end{aligned}$	$\begin{array}{r} 56 \\ 107 \end{array}$	$\begin{aligned} & 100 \\ & 184 \end{aligned}$	$\begin{array}{r} 71 \\ 132 \end{array}$	$\begin{aligned} & 36 \\ & 83 \end{aligned}$	$\begin{array}{r} 8 \\ \hline \end{array}$	$\begin{aligned} & 327 \\ & 115 \end{aligned}$	$\begin{array}{r} 19 \\ / 27 \end{array}$	$\begin{aligned} & 412 \\ & 104 \end{aligned}$	$\begin{aligned} & 16 \\ & / 26 \end{aligned}$	$\begin{array}{r} 571 \\ 86 \end{array}$	- ${ }^{6}$
Mole at Kinnersley Manor	$\begin{aligned} & 15 \\ & 38 \end{aligned}$	$\begin{aligned} & 15 \\ & 34 \end{aligned}$	$\begin{array}{r} 81 \\ 123 \end{array}$	$\begin{aligned} & 64 \\ & 85 \end{aligned}$	$\begin{aligned} & 153 \\ & 317 \end{aligned}$	$\begin{aligned} & 21 \\ & 42 \end{aligned}$	22 67	$\begin{array}{r} 7 \\ 17 \end{array}$	372 101	$\begin{array}{r} 10 \\ 115 \end{array}$	441 97	$/ 15$	$\begin{array}{r} 688 \\ 87 \end{array}$	/13
Medway at Teston	21	$\begin{array}{r} 5 \\ 16 \end{array}$	$\begin{aligned} & 28 \\ & 69 \end{aligned}$	$\begin{aligned} & 39 \\ & 78 \end{aligned}$	$\begin{aligned} & 115 \\ & 309 \end{aligned}$	$\begin{aligned} & 11 \\ & 35 \end{aligned}$	$\begin{aligned} & 10 \\ & 45 \end{aligned}$	$\begin{array}{r} 4 \\ 132 \end{array}$	$\begin{array}{r} 212 \\ 93 \end{array}$	$\begin{array}{r} 15 \\ / 29 \end{array}$	$\begin{array}{r} 236 \\ 85 \end{array}$	$\begin{array}{r} 10 \\ 126 \end{array}$	$\begin{array}{r} 343 \\ 71 \end{array}$	/25
Itchen at Highbridge+Allbrook	$\begin{aligned} & 21 \\ & 68 \end{aligned}$	$\begin{aligned} & 20 \\ & 57 \end{aligned}$	$\begin{aligned} & 29 \\ & 68 \end{aligned}$	$\begin{aligned} & 39 \\ & 79 \end{aligned}$	$\begin{array}{r} 74 \\ 150 \end{array}$	$\begin{array}{r} 61 \\ 117 \end{array}$	39 83	$\begin{array}{r} 4 \\ \\ \hline \end{array}$	283 93	$\begin{array}{r} 12 \\ / 32 \end{array}$	423 91	$/ 31^{8}$	$\begin{array}{r} 650 \\ 88 \end{array}$	$\begin{array}{r}7 \\ \hline 1\end{array}$
Stour at Throop Mill	$\begin{array}{r} 8 \\ 35 \end{array}$	$\begin{aligned} & 15 \\ & 46 \end{aligned}$	$\begin{array}{r} 74 \\ 134 \end{array}$	$\begin{array}{r} 66 \\ 106 \end{array}$	$\begin{aligned} & 154 \\ & 271 \end{aligned}$	$\begin{aligned} & 46 \\ & 89 \end{aligned}$	22 63	$\begin{array}{r} 4 \\ 18 \end{array}$	$\begin{aligned} & 387 \\ & 120 \end{aligned}$	$\begin{array}{r} 13 \\ 117 \end{array}$	$\begin{aligned} & 439 \\ & 111 \end{aligned}$	$\begin{array}{r} 10 \\ 17 \end{array}$	$\begin{array}{r} 626 \\ 90 \end{array}$	- 16
Tone at Bishops Hull	$\begin{aligned} & 13 \\ & 47 \end{aligned}$	$\begin{aligned} & 29 \\ & 68 \end{aligned}$	$\begin{array}{r} 91 \\ 136 \end{array}$	$\begin{array}{r} 88 \\ 108 \end{array}$	$\begin{aligned} & 170 \\ & 233 \end{aligned}$	$\begin{aligned} & 38 \\ & 66 \end{aligned}$	$\begin{aligned} & 19 \\ & 48 \end{aligned}$	130^{3}	$\begin{aligned} & 448 \\ & 115 \end{aligned}$	$\begin{array}{r} 23 \\ 129 \end{array}$	$\begin{aligned} & 503 \\ & 105 \end{aligned}$	$\begin{array}{r} 18 \\ / 29 \end{array}$	$\begin{array}{r} 747 \\ 89 \end{array}$	7 $/ 28$
Brue at Lovington	$\begin{array}{r} 6 \\ 20 \end{array}$	$\begin{aligned} & 16 \\ & 37 \end{aligned}$	$\begin{array}{r} 98 \\ 144 \end{array}$	$\begin{array}{r} 77 \\ 108 \end{array}$	$\begin{aligned} & 125 \\ & 213 \end{aligned}$	$\begin{aligned} & 26 \\ & 51 \end{aligned}$	12	$\begin{array}{r} 3 \\ \hline \end{array}$	361 101	$\begin{aligned} & 15 \\ & / 25 \end{aligned}$	$\begin{array}{r} 398 \\ 90 \end{array}$	$\begin{array}{r} 7 \\ \hline \end{array}$	$\begin{array}{r} 647 \\ 85 \end{array}$	/25 ${ }^{3}$
Severn at Bewdley	$\begin{aligned} & 14 \\ & .41 \end{aligned}$	$\begin{aligned} & 32 \\ & 59 \end{aligned}$	$\begin{array}{r} 89 \\ 143 \end{array}$	$\begin{array}{r} 86 \\ 120 \end{array}$	$\begin{aligned} & 123 \\ & 215 \end{aligned}$	$\begin{array}{r} 39 \\ 85 \end{array}$	$\begin{aligned} & 13 \\ & 41 \end{aligned}$	$\begin{array}{r} 88 \\ 770 \end{array}$	$\begin{aligned} & 397 \\ & 111 \end{aligned}$	$\begin{gathered} 48 \\ 169 \end{gathered}$	$\begin{array}{r} 437 \\ 97 \end{array}$	$\begin{array}{r} 32 \\ 169 \end{array}$	$\begin{array}{r} 701 \\ 90 \end{array}$	20 168
Teme at Knightsford Bridge	$\begin{array}{r} 4 \\ 19 \end{array}$	$\begin{aligned} & 17 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 188 \end{aligned}$	$\begin{array}{r} 93 \\ 138 \end{array}$	$\begin{aligned} & 118 \\ & 221 \end{aligned}$	$\begin{aligned} & 34 \\ & 66 \end{aligned}$	$\begin{aligned} & 16 \\ & 46 \end{aligned}$	$r 21^{4}$	$\begin{aligned} & 381 \\ & 121 \end{aligned}$	$\begin{array}{r} 19 \\ / 20 \end{array}$	$\begin{aligned} & 408 \\ & 108 \end{aligned}$	$\begin{aligned} & 14 \\ & / 20 \end{aligned}$	$\begin{array}{r} 586 \\ 88 \end{array}$	/19
Yscir at Pontaryscir	$\begin{aligned} & 90 \\ & 97 \end{aligned}$	$\begin{aligned} & 125 \\ & 101 \end{aligned}$	$\begin{aligned} & 210 \\ & 140 \end{aligned}$	$\begin{aligned} & 225 \\ & 152 \end{aligned}$	$\begin{aligned} & 228 \\ & 225 \end{aligned}$	$\begin{aligned} & 65 \\ & 59 \end{aligned}$	$\begin{aligned} & 31 \\ & 52 \end{aligned}$	148	$\begin{aligned} & 974 \\ & 119 \end{aligned}$	$\begin{array}{r} 17 \\ 17 \end{array}$	$\begin{array}{r} 1031 \\ 104 \end{array}$	$/ 17$	$\begin{array}{r} 1619 \\ 95 \end{array}$	+16
Cynon at Abercynon	$\begin{aligned} & 160 \\ & 132 \end{aligned}$	$\begin{array}{r} 139 \\ 90 \end{array}$	$\begin{aligned} & 238 \\ & 126 \end{aligned}$	$\begin{aligned} & 331 \\ & 175 \end{aligned}$	$\begin{aligned} & 393 \\ & 308 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 39 \end{aligned}$	$\begin{array}{r} 5 \\ / 32 \end{array}$	$\begin{array}{r} 1360 \\ 137 \end{array}$	$\begin{array}{r} 32 \\ / 32 \end{array}$	$\begin{array}{r} 1444 \\ 114 \end{array}$	$\begin{array}{r} 24 \\ / 30 \end{array}$	$\begin{array}{r} 2200 \\ 104 \end{array}$	16 130
Dee at New Inn	$\begin{aligned} & 228 \\ & 114 \end{aligned}$	$\begin{array}{r} 171 \\ 69 \end{array}$	$\begin{array}{r} 226 \\ 91 \end{array}$	$\begin{aligned} & 388 \\ & 161 \end{aligned}$	$\begin{aligned} & 344 \\ & 217 \end{aligned}$	$\begin{aligned} & 90 \\ & 51 \end{aligned}$	73	$\begin{array}{r} 8 \\ / 21 \end{array}$	$\begin{array}{r} 1520 \\ 110 \end{array}$	$\begin{array}{r} 16 \\ / 21 \end{array}$	$\begin{array}{r} 1671 \\ 92 \end{array}$	$\begin{array}{r} 8 \\ / 20 \end{array}$	$\begin{array}{r} 2763 \\ 92 \end{array}$	/20
Lune at Caton	$\begin{array}{r} 116 \\ 95 \end{array}$	$\begin{array}{r} 109 \\ 81 \end{array}$	$\begin{aligned} & 81 \\ & 52 \end{aligned}$	$\begin{aligned} & 266 \\ & 182 \end{aligned}$	$\begin{aligned} & 298 \\ & 332 \end{aligned}$	$\begin{aligned} & 77 \\ & 80 \end{aligned}$	$\begin{aligned} & 43 \\ & 58 \end{aligned}$	$\begin{array}{r} 188 \end{array}$	$\begin{aligned} & 990 \\ & 119 \end{aligned}$	$\begin{array}{r} 23 \\ 126 \end{array}$	$\begin{array}{r} 1080 \\ 95 \end{array}$	$\begin{array}{r} 13 \\ 126 \end{array}$	$\begin{array}{r} 1856 \\ 101 \end{array}$	$\begin{array}{r} 13 \\ 124 \end{array}$
Eden at Sheepmount	$\begin{aligned} & 44 \\ & 57 \end{aligned}$	$\begin{aligned} & 57 \\ & 67 \end{aligned}$	$\begin{aligned} & 64 \\ & 71 \end{aligned}$	$\begin{aligned} & 149 \\ & 147 \end{aligned}$	$\begin{aligned} & 253 \\ & 392 \end{aligned}$	$\begin{array}{r} 68 \\ 104 \end{array}$	$\begin{aligned} & 28 \\ & 60 \end{aligned}$	120	$\begin{aligned} & 664 \\ & 124 \end{aligned}$	$\begin{array}{r} 17 \\ 19 \end{array}$	$\begin{aligned} & 746 \\ & 108 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{array}{r} 1219 \\ 107 \end{array}$	10 17
Clyde at Blairston	$\begin{aligned} & 55 \\ & 68 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & 64 \\ & 62 \end{aligned}$	$\begin{aligned} & 200 \\ & 196 \end{aligned}$	$\begin{aligned} & 227 \\ & 319 \end{aligned}$	$\begin{aligned} & 143 \\ & 202 \end{aligned}$	$\begin{aligned} & 45 \\ & 99 \end{aligned}$	$\begin{aligned} & 16 \\ & 163 \end{aligned}$	$\begin{aligned} & 782 \\ & 135 \end{aligned}$	$\begin{array}{r} 31 \\ / 32 \end{array}$	$\begin{aligned} & 890 \\ & 116 \end{aligned}$	$\begin{array}{r} 25 \\ 131 \end{array}$	$\begin{array}{r} 1451 \\ 115 \end{array}$	25 131

Notes (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff as rank 1 ;
(iii) \%LT means percentage of long term average from the start of the record to 1988 . For the long periods (at the right of this table), the end date for the long term is 1990.

1987
1988
1989
1990
Max, MIn and Mean values calculated From years 1971 TO 1989

Site nome: WASHPIT FARM
National grid reference: TF 81381960 Well number, TF81/2

Aquifer: CHALK AND UPPER GREENSAND
Measuring level: 80.20

1987
1988
1989
1990
Hax. MIn and Mean values calculated from years 1950 TO 1989

Site nome: LITTLE BROCKLESBY
National grid reference: TA 13710888
Well number: TA10/40
Aquifer: CHALK AND UPPER GREENSAND
Measuring level: 44.33

$\begin{array}{cccc}1987 & 1988 & 1989 & 1990 \\ \text { Max, Min and Mean values calculated from years } & 1926 & \text { TO } & 1989\end{array}$

Site name: DALTON HOLME
Notional grid reference, SE 96514530
Hell number, SE94/5
Aquifer: CHALK AND UPPER GREENSAND
Meosurling level: $\quad 33.50$

FIGURE 4 LOCATION MAP OF GROUNDWATER INDEX WELLS

Groundwater Level
Observation Wells
molicator Sines

