HYDROLOGICAL SUMMARY FOR GREAT BRITAIN FEBRUARY 1991

Data for this report have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office. The recent areal rainfall figures are derived from a restricted network of rain gauges (particularly in Scotland) and a proportion of the river flow data is of a provisional nature. Reservoir contents information for England and Wales has been supplied by the Water Services Companies.

A map (Figure 5) is provided to assist in the location of monitoring sites.

Summary

Whilst the range of weather conditions experienced in February was certainly unusual, rainfall and temperatures were much closer to the normal than in 1989 or 1990. For all regions - but not all areas - rainfall over the winter half-year (thus far) has been well within the normal range. Precipitation since the beginning of October has served to terminate, or greatly ameliorate, drought conditions throughout much of northern and western England; a particularly brisk decline in drought severity has occurred, since mid-December, in Yorkshire.

By contrast the dry soils and depressed water-tables in lowland England - a legacy of the 1990 drought has robbed the winter rainfall of much of its hydrological effectiveness and the much delayed seasonal recoveries in runoff and recharge rates, first signalled at the turn of the year, have been patchy and relatively sluggish. A significant hydrological drought still embraces large areas of the English lowlands with severity broadly increasing in a south-easterly direction. February runoff rates were amongst the lowest on record throughout a substantial proportion of East Anglia, the Thames Valley and in other parts of southern England but the fragility of the water resources outlook is most evident in relation to groundwater levels. Long-term rainfall deficiencies - which are the key to the existing hydrological conditions - are greatest in those regions of England principally dependent on groundwater supplies. A water-table recovery is underway in almost all areas but, as a result of the exceptionally low base from which the upturns needed to be generated, levels remain very depressed in much of lowland England especially so in a zone from Kent to Lincolnshire.

The drought has entered a crucial phase. With soils at, or close to, saturation there is considerable scope for further improvements in water resources through and beyond the current unsettled spell. Nonetheless, even with average rainfall in March and April groundwater levels in eastern England will fall well short of the normal spring peak and baseflow contributions to summer and autumn river flows may be expected to be limited for the third successive year. However, sustained spring rainfall resulting in an extension of the recharge season - as happened, for instance, in 1989 - would be especially beneficial and help to allay concern regarding the water resources outlook for the summer and autumn of 1991.

Rainfall

February was a month of exceptionally varied weather conditions. A persistent anticyclone centred over Scandinavia increasingly dominated weather patterns early in the month and the associated easterly airstream brought substantial snowfall in mid-month accompanied by extreme cold. A gentle thaw ensued as a more westerly, or south-westerly, airstream became established bringing mild, damp conditions to much of Britain.

Notwithstanding the unsettled pattern of the weather, the Great Britain rainfall total for February was below average, albeit marginally. The relatively high proportion of precipitation falling as snow, and the showery nature of much of the rainfall especially in the latter half of the month, made for difficulties in accurately assessing areal totals. Nonetheless, it is clear that local and regional variations in rainfall totals were substantial especially in southern England. Only around half the February mean was registered in parts of Dorset and Kent. Modest precipitation totals were also found in the southern Pennines and parts of western Scotland. By contrast much of north-eastern Britain was very wet.

Accumulated precipitation totals for the winter half-year for all regions of Great Britain are well within the normal range. Provisional data indicate that only the Thames and Wessex regions have shortfalls exceeding 10 per cent. But some districts in adjacent regions - Anglian especially - have also been relatively dry; where, as in parts of Lincolnshire and Cambridgeshire, winter rainfall of only around three-quarters of the average has reinforced a long term deficiency, the current drought is particularly severe.

In many regions winter rainfall substantially above the long-term mean was required to make good deficiencies built up over the spring and summer of 1990. Thus within the 12-month, and longer, timeframes notable droughts may still be recognised. The March 1990-February 1991 rainfall total for England and Wales is, with the exception of 1933/34, the lowest for over 100 years. The percentage deficiencies in this timeframe are far from uniform. There is a distinct regional pattern to the drought; the return periods given in Table 2 testify to substantial meteorological droughts in Wessex, the South-East and East Anglia where local variations in severity are also considerable - a zone of particular drought intensity may be traced from north of London to beyond the Wash. Rainfall for each of the last 12 months has been below average in the Anglian region as a whole and over the Thames catchment, the 12-month rainfall total is the lowest (for the March-February period), by an appreciable margin, in a record extending back to Long-term rainfall deficiencies extend beyond lowland England with many areas, including central 1883. Wales, registering only 5 or 6 months with above average rainfall since May 1989. In western Britain the summers of 1989 and 1990 were dry but deficiencies in some parts of the east have embraced the last three winters also with substantial implications for runoff and recharge (see below).

Evaporation and Soil Moisture Deficits

February was the coldest month for at least four years throughout much of Great Britain with some notably low daytime temperatures early in the month. Sunshine amounts were also mostly below average. Consequently evaporative losses - normally very modest in February anyway - were generally below average. Accumulated evaporation losses reflect the very warm and sunny conditions which have been a feature of the weather for much of the last three years. Winter (from October 1st) Potential Evaporation (PE) and Actual Evaporation (AE) totals were close to the highest on record (in the MORECS series from 1961) in much of the English lowlands and parts of the North-East but around the average elsewhere. Over the last 12 months calculated PE losses have also been exceptionally high (although generally lower than 1989/90) but due to sustained high soil moisture deficits (SMDs), AE losses in much of southern Britain were the lowest on record with the exception of 1975/76.

Soils throughout Great Britain were at, or very close to, field capacity at the end of February. The elimination of the residual deficits (mostly in East Anglia) will allow infiltration to recommence in some districts for the first time in about a year.

Runoff

Runoff totals for February showed a significant decline from the January rates over large parts of western and northern Britain but with the exception of south-west England and rivers draining from the Highlands of Scotland, flows were close to, or above, the seasonal average. In the English lowlands, flows generally declined only moderately but February runoff totals in permeable catchments were among the lowest on record albeit normally well above those registered in February 1976 (often 1973 and 1965 also).

A relatively gentle thaw from mid-month resulted in a few isolated flood alerts (e.g. in the East Midlands) but heavy rainfall in the Welsh mountains on the 22nd - exceeding 100 mm in some localities - caused very brisk runoff increases in the headwaters of the Severn and a number of other rivers. Elsewhere bankfull, or above, flow rates were largely confined to northern England and the Borders. Spate conditions were experienced in parts of Northumbria and North Yorkshire late in the month; severe flooding was reported in the Ure Valley following rainfall totals exceeding 200 mm over 48 hours in the headwaters. Provisional data suggest that the peak flow - on the 24th - at Westwick Lock on the Ure exceeded 600 cumecs, the highest flow in a 33-year record.

In contrast to the winter rainfall, runoff accumulations - apart from some western and northern catchments - over the period from October 1st are well below average; a consequence largely of the dry autumn soils and, in the lowlands, the moderate baseflow contribution. Low to very low runoff accumulations, for a wide range of durations, characterise many catchments in eastern and southern England. Some rivers sustained principally by groundwater have remained below average for 28 or more consecutive months (examples include the Lud and the Witham) and the overall runoff deficiency is unprecedented for many gauging stations commissioned over the last 15 years. Where longer historical data series are available the long-term deficiencies (for instance over 22 and 31 months) are often comparable with, but rather less than, the most severe drought sequence over the period 1972-4 or 1963-65.

Although significantly less than in late December and in January, further reservoir replenishment occurred through February and, by early March most reservoirs were close to, or at, capacity in the west and north of Britain. In Wales, for instance, the Vyrnwy and Clywedog Reservoirs were full and the combined storages in the major South Wales impoundments exceeded 90% of capacity around month-end. The upturn in runoff rates from mid-December also facilitated very healthy inflows to some pumped storage reservoirs in the lowlands (for example in the Thames Valley where the contrast between surface and groundwater resources is very marked - see below). In parts of East Anglia and southern England, stocks in a number of important reservoirs remain well below the seasonal average.

Groundwater

February precipitation was below average over most southern and central aquifer units. Where above average rainfall was registered in the east, residual soil moisture deficits often limited infiltration especially early in the month. Nonetheless, a belated recovery in groundwater levels is underway in almost all areas; the snowmelt around mid-month provided a useful impetus with upturns continuing during the mild unsettled spell over the last fortnight.

In most aquifers in the western half of the country groundwater levels are within the normal range - see, for instance, the hydrographs for Ashton Farm, West Woodyates and Bussels. Within-region variations are considerable and, following a decline during February, levels in a number of observation boreholes in Wales and the South-West were approaching their winter minimum. Some healthy increases in level have been recorded in parts of the Chalk outcrop also. At Dalton Holme (Humberside) and Little Bucket (Kent) the water-table remains well below average but by early March, levels had reached their highest for over two years. The recovery in Kent has, thus far, been both limited and patchy and to the north, levels in the Chalk - from the Chilterns to Lincolnshire - remain exceptionally low. At Little Brocklesby, Washpit Farm and Fairfields, each having records which include the 1976 drought, levels are close to or below the February minimum and close to the lowest recorded for any month. At these sites, as elsewhere in eastern England, the depressed groundwater levels reflect not simply the limited infiltration so far over the 1990/91 winter but the modest recharge during the preceding two winters also. In some districts the steep natural decline in the water-table through the summers of 1989 and 1990 was exacerbated by substantial groundwater abstraction.

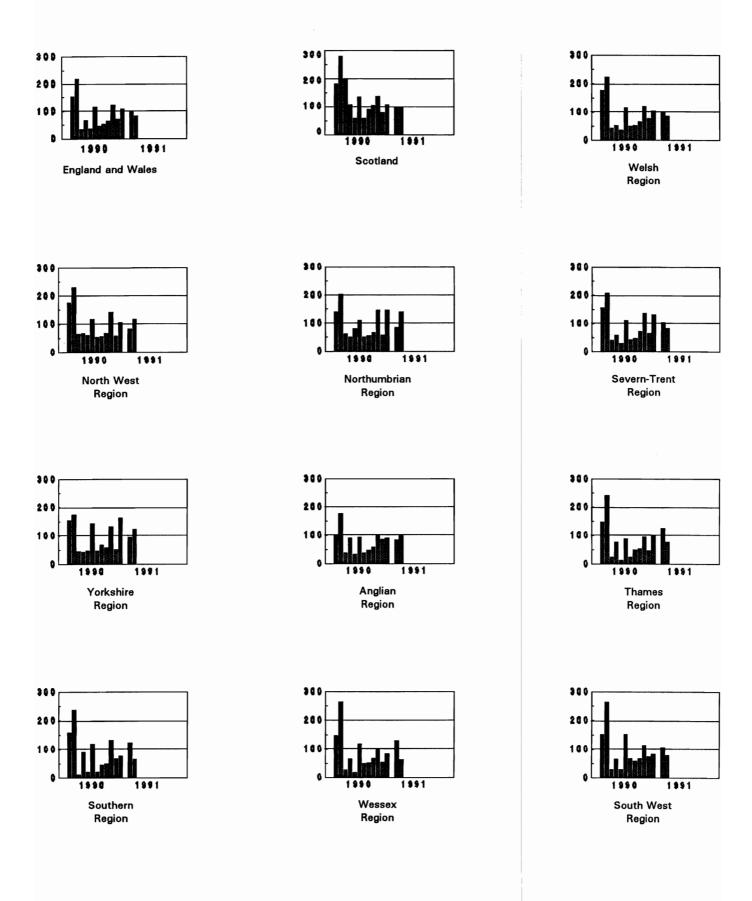
The prediction in the January Hydrological Summary that around 150% of average precipitation would be required through until the end of March to restore groundwater levels to near-average early April levels still holds good for southern and eastern England. In these districts, water-tables still have a long way to rise to the mean peak values at the start of the summer recession. The abrupt termination of recharge at the beginning of the spring last year was a major factor heralding the exceptionally low groundwater levels later in the year. Further persistent rainfall this year - forestalling the onset of the seasonal decline - is essential to avoid a further period of low water-tables and much reduced spring flows.

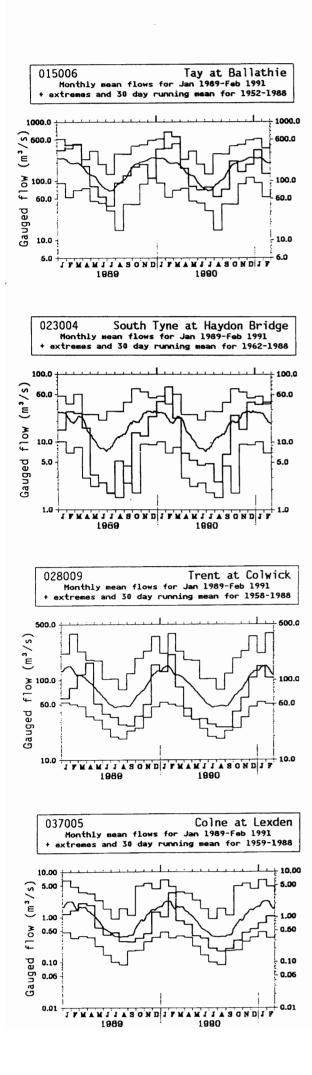
IH/BGS 13.03.91

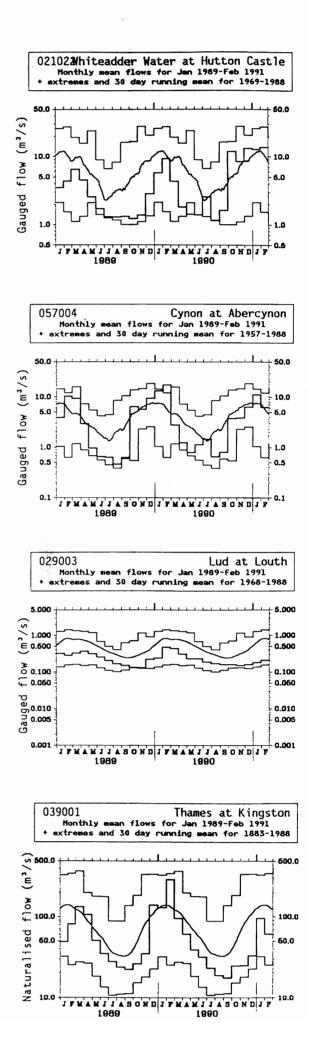
		Feb 1990	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 1991	Feb 1991
England and Walcs	mm %	142 219	23 39	38 66	25 37	72 118	35 47	45 50	50 60	100 120	65 67	97 108	86 100	55 84
NRA REGIO	, -	212	0,7		0.					120	••	100	200	
	NN 3													
North West	mm	193	45 63	57 74	49 60	99 119	58 56	68 54	81 66	164 139	68 56	142 118	95 84	95 117
	%	238	05	/4	00	119	50	54	00	139	50	110	04	117
Northumbria	mm	135	32	25	51	69	40	53	53	106	61	109	68	92
	%	205	62	45	80	113	52	52	66	141	65	145	85	140
Severn Trent	mm	109	18	30	19	63	27	37	47	93	52	92	72	45
	%	206	35	58	30	113	42	46	70	143	66	131	105	84
Yorkshire	mm	112	23	25	29	83	32	46	39	92	55	121	72	78
	%	175	43	45	48	143	46	51	54	133	62	163	94	123
Anglia	mm	75	15	34	16	45	21	31	32	51	52	48	43	40
	%	179	38	85	34	92	37	48	62	98	84	91	83	96
Thames	mm	114	12	35	7	47	17	35	34	59	34	65	77	36
	%	242	26	76	13	90	28	50	55	91	47	99	124	77
Southern	mm	136	6	48	10	61	13	33	38	105	59	63	94	37
Southern	<i>%</i>	237	12	100	18	122	22	45	54	135	63	77	123	65
XX /		150	14	35	12	62	31	41	48	87	52	74	108	27
Wessex	mm %	158 268	14 24	55 65	12 18	115	50	41 50	40 61	106	52 54	83	108	37 63
South West	mm %	238 264	25 30	46 65	25 30	99 152	61 73	59 58	68 65	126 112	107 80	112 83	137 106	71 79
	70	204	50	05	30	152	15	50	05	112	00	05	100	13
Welsh	mm	215	37	48	34	98	53	65	85	149	109	152	139	84
	%	224	43	56	37	1 2 0	56	55	68	116	76	105	102	87
Scotland	mm	294	247	96	54	128	75	119	147	211	101	184	135	102
	%	283	268	107	59	139	67	92	107	142	71	108	99	98
RIVER PUR	IFICA	FION B	OARDS											
Highland	mm	365	409	136	54	140	95	157	230	220	144	221	180	100
	%	274	359	119	52	127	75	106	146	118	85	113	110	75
North-East	mm	149	87	45	49	110	47	79	85	138	94	88	72	93
	%	201	140	74	64	157	51	74	98	142	91	86	79	126
Гау	mm	287	178	61	44	128	39	74	67	187	65	140	132	124
	mm %	288	217	81	46	154	38	63	58	153	55	104	112	135
Forth		222	142	55	39	125	51	81	65	185	57	131	106	
Forth	mm %	222 288	142 206	55 81	39 46	125 167	51 52	81 70	60 60	185	57 53	131 120	106	112 145
_														
Tweed	mm	178	52	31 51	46 61	106 156	54 61	61 54	68 72	159 181	52 50	114 127	98 105	117
	%	258	90	51	61	156	61	54	73	181	50	127	105	170
Solway	mm	285	94	72	76	121	75	105	81	216	79	208	143	112
	%	306	103	82	83	134	68	82	54	150	54	138	102	120
Clyde	mm	341	295	127	57	138	95	149	173	297	90	190	148	102
	%	302	281	123	59	134	73	105	99	162	54	102	92	90
The re	cont	monthly	rainfall	figures		haged		haged	linon	MODE	to data	oundia		he Meteorological

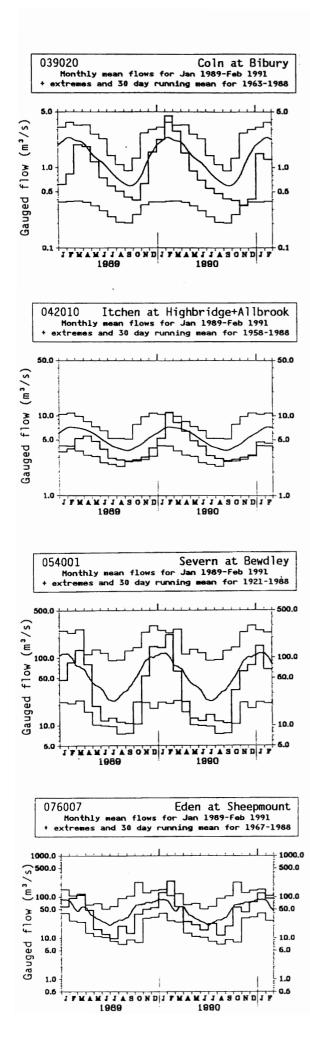
TABLE 1 1990/91 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE

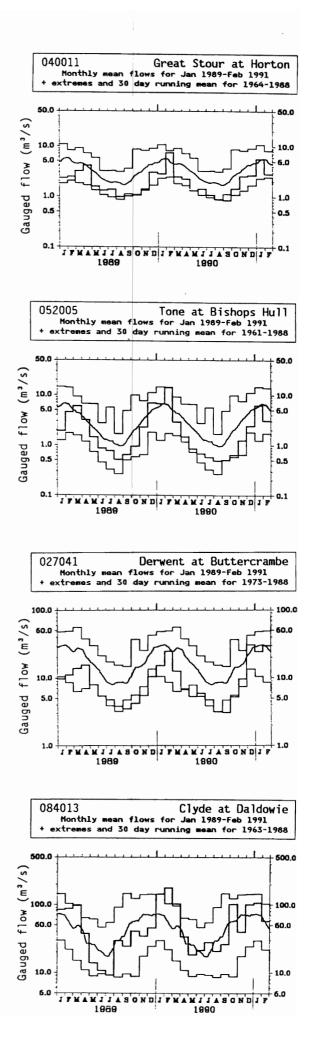
Note: The recent monthly rainfall figures are based are based upon MORECS data supplied by the Meteorological Office. Earlier areal figures are derived from a far denser raingauge network. Scottish RPB data for February 1991 were estimated from the monthly isohyetal map provided with the MORECS bulletins.

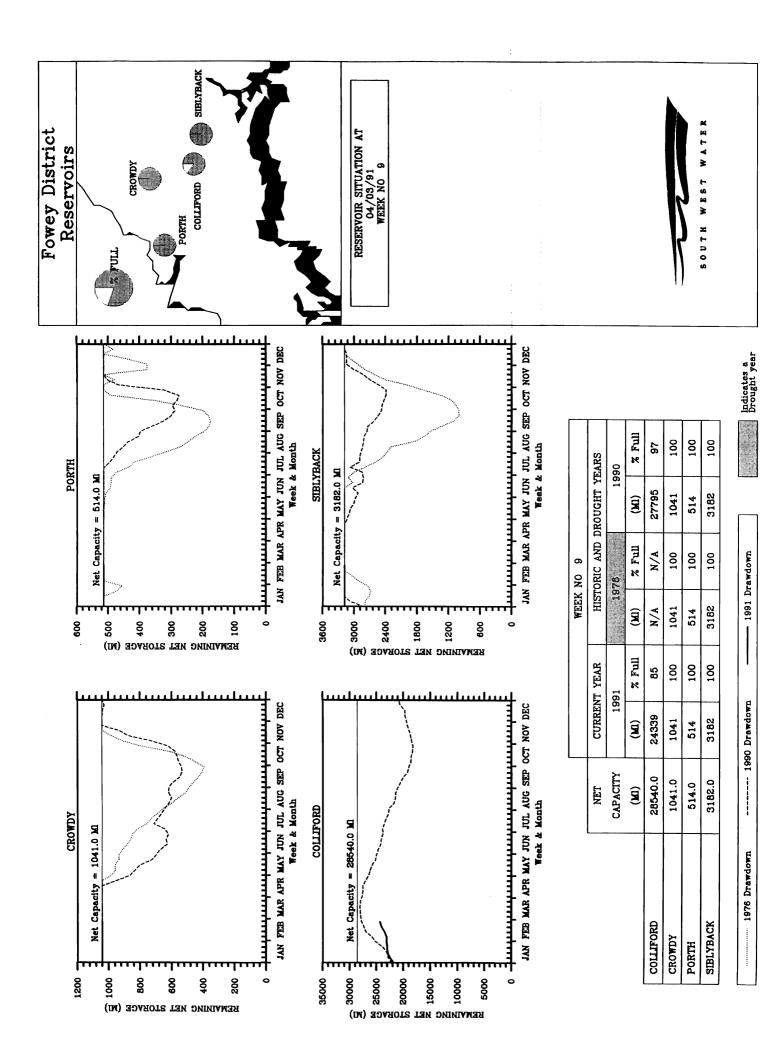

		Est	OCT 90 - FEB 91 Est Return Period, years		90 - FEB 91 st Return riod, years	Est	89 - FEB 91 Return od, years	AUG 88 - FEB 9 Est Return Period, years	
England and Wales	mm % LTA	402 95	2-5	690 76	30-40	1470 86	10-20	2113 87	10-20
NRA REGION									
NKA KEGIUN	42								
North West	mm	564		1021		2037		3047	
	% LTA	102	2-5	84	5-10	89	5-10	94	2-5
Northumbria	mm	436		759		1376		1975	
	% LTA	112	<u>2-5</u>	86	5-10	83	20-30	85	20-30
Severn Trent	mm	354		595		1279		1784	
	% LTA	105	2-5	77	15-25	89	5-10	88	10
orkshire		419	_	696		1338		1922	
orksnire	mm % LTA	112	2-5	84	5-10	86	10-15	1922 87	10-20
			25		5 10		10 15		10-20
nglia	mm	235		429	FO FO	907		1286	<i>co</i> 00
	% LTA	90	2-5	70	50-70	80	25-35	80	60-80
Thames	mm	271		458		1069		1518	
	% LTA	87	2-5	65	80-120	81	15-30	82	30-50
outhern	mm	358		567		1235		1718	
	% LTA	93	2-5	71	25-35	83	10-20	81	40-60
Vessex	mm	358		601		1389		1978	
WESSEX	% LTA	87	2-5	69	40-60	85	5-15	86	10-20
									20 20
South West	mm	553	2.5	936	10.20	2065	25	2941	F
	% LTA	92	2-5	78	10-20	92	2-5	92	5
Welsh	mm	633		969		2205		3226	
	% LTA	98	<2	78	15-20	92	2-5	93	2-5
cotland	mm	733		1599		2945		4380	
	% LTA	106	<u>2-5</u>	112	<u>5-10</u>	110	5-15	115	<u>60-8</u> 0
IVER PURIF	TCATION BOA	RDS							
lighland	mm	873		2094		3761		5630	
	% LTA	103	2-5	122	20-40	117	40-60	112	>>200
orth-East		470		972	Withdressen	1679		2423	
oi III-East	mm % LTA	470 101	<2	972 95	2-5	1079 87	10-20	2423 90	5-15
			<u><2</u>		23		10 20		5-15
ay	mm	676 116	25	1267	2	2419	25	3631	F 40
	% LTA	116	<u>2-5</u>	101	2	103	2-5	109	<u>5-10</u>
orth	mm	611		1169		2183		3206	
	% LTA	122	<u>5-10</u>	105	<u>2-5</u>	104	<u>2-5</u>	108	<u>5-10</u>
weed	mm	583		1001		1799		2522	
	% LTA	131	10-20	100	<2	95	2-5	95	2-5
hway	mm	736		1360		2623		3939	
Solway	mm % LTA	109	2-5	95	2-5	2023 98	2-5	104	2-5
			<u></u>		23		2-5		<u>2-5</u>
lyde	mm	893		1927	10.17	3579	4.5.65	5297	10
	% LTA	110	<u>2-5</u>	116	10-15	115	15-30	119	60-80


TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

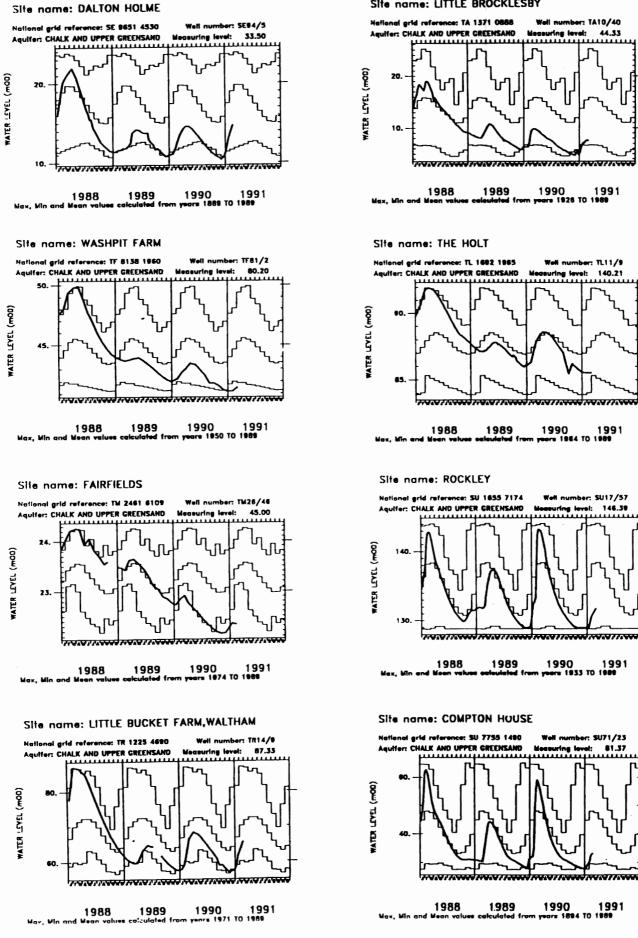

Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a given month; return periods for a start in any month will be very substantially lower. "Wet" return periods underlined. The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate. The February 1991 RPB values are estimated from the isopleth map within the February summary published in the Met. Office's MORECS bulletin. February figures for England and Wales are based on MORECS figures.


* Tabony, R C, 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO)


FIGURE 1. MONTHLY RAINFALL FOR 1990-1991 AS A PERCENTAGE OF THE 1941-1970 AVERAGE



RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PERIODS RANKED IN THE RECORD TABLE 3


River/ Station name	Sep 1990	Oct	Nov	Dec	Jan 1991	Feb 1991		10/90 to 2/91		3/90 to 2/91	5/89 to 2/91	8/88 to 2/91
	mm %LT	mm %LT	mm %LT	mm %LT	mm %LT	mm %LT	rank /yrs	mm ra %LT /yı		nm rank %LT /yrs	mm rank %LT /yrs	mm rank %LT /yrs
Dee at	23	78	61	69	83	59	8	350	4	617 2	1106 1	1739 1
Park	54	97	82	77	91	85	/19	84 /:	.8	79/18	78 /17	83/16
Tay at	41	124	80	108	193	69	8		14 1	195 27	2241 30	3652 35
Ballathie	58	111	67	76	137	63	/39		39	107 /38	110 /37	/36 /36
Whiteadder Water at	8	62	43	70	67	65	17		20	383 9	528 6	478 4
Hutton Castle	50	235	116	157	111	134	/22		22	97/21	75 /20	74 /19
South Tyne at	23	87	52	137	127	125	28		27	714 11	1289 8	1882 7
Haydon Bridge	44	126	57	142	133	185	/29		29	94 /27	93/25	91 /23
Derwent at	5	9	16	52	41	45	21		L3	231 3	369 1	558 1
Buttercrambe	38	39	64	128	84	113	/30		30	70 /29	62 /28	64 /27
Trent at	9	14	21	38	53	34	14	161	8	256 3	515 4	762 3
Colwick	53	59	68	85	105	79	/33	84 /	33	72 /32	80 /31	81 /30
Lud at	8	8	7	8	9	9	2	40	2	123 1	231 1	365 1
Louth	70	65	47	40	29	25	/23	37 /	23	47 /22	51 /21	55 /21
Witham at	3	5	5	7	19	19	12	55	8	110 4	232 6	321 4
Claypole Mill	48	58	41	37	74	72	/32	61 /	32	60 /31	72/31	68 /30
Bedford Ouse at Bedford	3	8	5	6	18	12	7	49	8	97 4	308 17	485 15
	60	79	25	21	50	36	/59	39 /	58	45 /58	80 /57	84 /56
Colne at	2	3	5	6	8	10	8	33	4	64 2	155 2	261 4
Lexden	47	35	40	35	34	55	/32	42 /	32	46 /31	64 /30	73 /29
Mimram at	5	5	5	5	7	6	3	28	2	90 4	178 5	271 7
Panshanger Park	62	60	57	49	60	51	/39	56 /	38	72 /38	79 /37	85 /36
Thames at	5	7	6	9	26	15	13	63		138 8	340 24	493 15
Kingston (natr.)	56	52	28	30	70	46	/109	46 /1		56 /108	78 /107	76 /106
Blackwater at	9	12	12	19	35	21	12	99	6 1	199 4	451 14	649 11
Swallowfield	68	61	49	62	99	74	/39	71 /	39	76 /38	95 /37	93 /36
Coln at	10	10	8	10	37	29	4	93	4 2	276 4	581 5	782 3
Bibury	70	61	33	25	73	55	/28	51 /	28	70 /27	83 /26	77 /25
Great Stour at	6	11	19	21	43	20	6	114	5 1	192 1	355 1	509 1
Horton	43	53	71	61	104	60	/27	72 /	26	65 /24	66 /23	65 /21
Itchen at	20	21	22	24	35	30	4	132	1 3	870 2	680 3	942 1
Highbridge+Allbrook	76	69	64	57	72	62	/33	65 /	33	80 /32	82 /31	80 /30
Stour at	5	8	10	19	59	26	3	123	3 2	231 2	604 3	834 1
Throop Mill	42	37	32	34	99	47	/19	54 /	18	60 /18	86 /17	80 /16
Piddle at	8	12	13	16	35	29	3	104	3 2	273 3	577 4	785 1
Baggs Mill	52	58	44	38	67	50	/28	52 /	27	68 /26	81 /24	74 /22
Exe at	10	44	90	111	160	71	11		11 é	514 4	1287 8	1956 6
Thorverton	25	58	94	83	123	69	/35		35	74 /34	85 /34	86 /33
Tone at	7	8	16	32	82	37	7	175	32	273 2	719 5	1043 2
Bishops Hull	45	29	38	47	103	51	/31	61 /	30	58 /30	84 /29	82 /28
Severn at	6	19	37	48	91	37	20		20 3	323 4	706 16	1076 16
Bewdley	27	56	69	77	129	65	/70		70	71 /69	85 /69	88 /68
Wye at	121	252	234	291	226	196	23		19 18	813 6	3603 10	5439 11
Cefn Brwyn	73	121	93	104	93	116	/37		37	88 /33	93 /28	97 /25
Cynon at	19	94	94	158	280	140	18		L3 9	985 6	2329 14	3406 15
Abercynon	28	77	61	83	150	107	/33		33	78 /31	100 /29	99 /27
Dee at	66	222	198	277	175	164	14	1036 - 1		34 4	2942 5	4614 7
New Inn	48	111	81	112	74	102	/22	94 / 1		79 /21	88 /20	93 /20
Lune at	36	142	73	93	146	183	27	637 1		16 6	1876 6	3024 9
Caton	41	116	54	61	101	197	/29	96 /2		80 /27	89 /25	98 /23
Clyde at	35	143	54	141	150	73	15	560 2		07 22	1620 23	2428 23
Daldowie	60	177	56	147	147	104	/28	122 /2		19 /27	115 /26	116 /25

Notes

(i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff as rank 1;
(iii) %LT means percentage of long term average from the start of the record to 1989. For the long periods (at the right of this table), the end date for the long term is 1990.

FIGURE 4 GROUNDWATER HYDROGRAPHS

Site name: LITTLE BROCKLESBY

r: TA10/40

44.33

N777

m: TL11/9

: 140.21

1990 1991 years 1926 TO 1969

Wali

Measuring level:

1990 1991

-

1990 1991 mere 1933 TO 1989

SU71/23

1990 1991

81.37

.

lessuring le

r: SU17/57

146.39

....

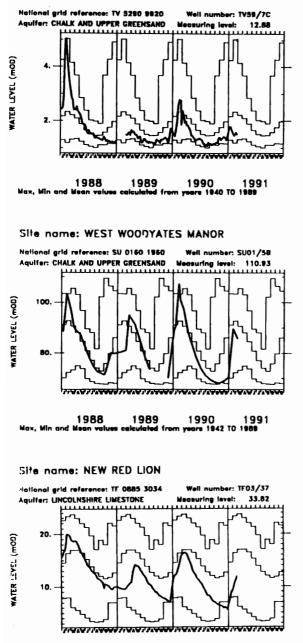
Well n

1-

1989

..........

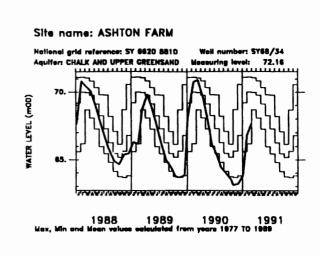
1989

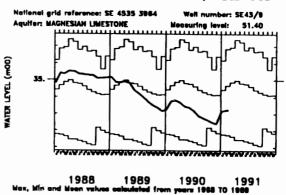

........

1989

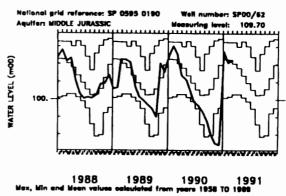
1.989

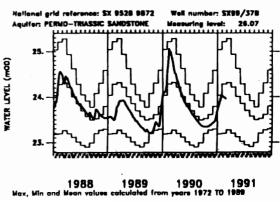
ng le





Site name: LLANFAIR DC




Site name: PEGGY ELLERTON FARM, HAZLEWOOD

Site name: AMPNEY CRUCIS

Site name: BUSSELS NO.7A

Borehole	Aquifer	First year of	Av. Feb level	Feb 1976		Feb 1991 (March)		No. of years of record	Lowest recorded level	
		record		Day	level	Day	level	with Feb levels ≤ 1991	before 1991 for any month	
Dalton Holme	C & U.G.	1889	18.91	28	13.80	21	14.67	20	10.34	
L. Brocklesby	••	1926	15.22	10	6.70	27	7.57	3	4.56	
Washpit Farm	••	1950	44.46	01	43.20	05*	41.64	0	41.24	
The Holt		1964	87.36	26	86.68	01*	85.54	1	83.90	
Fairfields		1974	23.39	24	23.22	13	22.33	0	22.15	
Rockley		1933	138.13	29	128.86	27	131.58	4	128.78 dry	
L. Bucket Farm		1971	69.61	02	66.88	25	65.43	6	56.77	
Compton House		1894	48.10	26	30.40	26	33.08	4	27.64	
West Dean	••	1940	2.32	27	1.59	25	1.66	7	1.01	
Limekiln Way		1969	125.35	15	124.64	28	124.65	2	124.09	
Ashton Farm	"	1977	69.57	02	64.84	01*	67.60	2	63.10	
West Woodyates	"	1942	92.75	01	72.22	05*	85.90	8	67.62	
Peggy Ellerton	Magnesian Limestone	1968	34.63	23	31.73	18	33.23	2	31.10	
New Red Lion	L.L.	1964	16.26	27	7.97	26	11.77	4	3.29	
Ampney Crucis	M.J.	1958	102.28	29	100.34	04*	102.21	13	97.38	
Llanfair Dc	PTS	1972	80.11	01	79.63	05	79.59	0	78.85	
Bussels 7A	PTS	1972	24.31	24	23.23	26	23.96	4	22.90	
Alstonfield	С.В.	1974	199.46	26	185.13	13	188.30	3	174.22	

TABLE 4 A COMPARISON OF FEBRUARY GROUNDWATER LEVELS: 1991 AND 1976

Groundwater levels are in metres above Ordnance Datum

C & U.G.	Chalk and Upper Greensand;
L.L.	Lincolnshire Limestone
PTS	Permo-Triassic Sandstones
M.J.	Middle Jurassic Limestone
C.B.	Carboniferous Limestone

* March levels

