Hydrological Summary for Great Britain

NOVEMBER 1991

Rainfall

Around 110% of average for GB but somewhat below the 1941-70 mean over large parts of England and Wales. Some amelioration in drought conditions in much of lowland England but long term rainfall deficiencies remain exceptionally large, in East Anglia especially.

River flows

November witnessed an increase in mean flows in almost all areas and monthly runoff totals were above average in most of western and northern Britain. By contrast, very modest flow increases characterised many lowland chalk rivers where runoff rates are among the lowest on record.

Groundwater

A seasonal recovery was evident in some western aquifers but water-tables continued to decline in the east and groundwater levels are unprecedented in many boreholes from Lincolnshire to the Thames Estuary.

General

Near-average rainfall (and normal temperatures) for 1991 thus far have reduced the area subject to drought conditions considerably. Although spatially restricted, the drought remains extreme in groundwater terms in parts of the English lowlands. Generally, reservoir stocks are healthy and the water resources outlook is better than in late 1990 but above average winter rainfall will be essential to avoid a further fragile episode for groundwater resources in 1992.

HYDROLOGICAL SUMMARY FOR GREAT BRITAIN - NOVEMBER 1991

Data for this report have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office. Reservoir contents information for England and Wales has been supplied by either the Water Services Companies or the NRA. The most recent areal rainfall figures are derived from a restricted network of raingauges (particularly in Scotland) and a proportion of the river flow data is of a provisional nature.

A map (Figure 4) is provided to assist in the location of the principal monitoring sites.

Rainfall

November was generally a cool, damp month. Very unsettled conditions characterised much of the first three weeks but a developing anticyclone began to dominate weather patterns towards month-end. A slow-moving depression brought substantial rainfall to all areas on the 18th/19th - triggering the removal of hosepipe bans in some districts - but precipitation thereafter was largely restricted to occasional drizzle and fog-drip in many eastern areas.

Rainfall totals for November - on average the wettest month of the year throughout much of Britain were within the normal range in most regions and, for Britain as a whole, it was the wettest month for over a year. Parts of Scotland were notably wet, some western areas recording more than twice the November average. By contrast, much of southern Britain had slightly below average rainfall. Importantly from the drought viewpoint, a substantial proportion of the English lowlands once again failed to reach average rainfall totals.

Despite the below average monthly totals, the November rainfall was generally sufficient to ameliorate, albeit modestly, meteorological droughts in much of eastern Britain. Table 2 confirms that only in Yorkshire (on a regional basis) can a notable rainfall deficiency be identified over the period since the late spring. For the year thus far, rainfall totals are within the usual range in all regions but still around 20 per cent below average in parts of eastern England and the Midlands. Such deficiencies are not uncommon over a twelve-month period but shortfalls of a similar magnitude extending beyond three years are indicative of remarkably sustained drought conditions (see Table 2). An illustration of the extreme nature of the drought in parts of eastern England is provided by the catchment rainfall figures for the River Partney Lymn (Lincolnshire). Without inordinate rainfall over the remainder of December, the annual total will be less than in 1989 and 1990 -themselves the driest two years in a 30 -year record. The accumulated rainfall total from December 1988 is considerably lower than ANY 36 -month totals ending before 1990. Long term raingauges confirm the singular nature of the current drought in a zone from Humberside and the East Midlands to Hertfordshire.

Whilst November rainfall has laid the foundation for a recovery in runoff and recharge rates, the dry interlude over the last 20 days or so has served to highlight the need for substantial rainfall over the next three months, in particular to generate a sustainable rise in groundwater levels.

Evaporation and Soil Moisture Deficits (SMDs)

Temperatures and sunshine hours were generally a little below average in November and, apart from northern Britain, evaporative losses fell somewhat short of the November mean. In most regions potential evaporation totals for 1991 are below the long term average, notably so in a few districts; actual evaporation totals (for grass) are also below average, substantially so in parts of East Anglia.

The area over which soil moisture deficits have been effectively eliminated increased steadily in November and by the end of the third week significant deficits (greater than 50 mm) were restricted to parts of the eastern lowlands from the Tyne to the Thames estuaries - generally embracing the area where the drought has achieved its greatest severity. In much of this zone, month-end deficits were $15-40 \mathrm{~mm}$ above average but generally well below the corresponding figures for 1990; exceptions include parts of the South-East, North Midlands and the Cheshire Plain. Notwithstanding modest increases in SMDs from around the 20th November, soil moisture conditions are such as to allow a realistic expectation - given average rainfall - of appreciable percolation in almost all areas by early 1992.

Runoff

Substantial rainfall over the week beginning around the 29th October reinforced the seasonal recovery in runoff rates throughout much of northern and western Britain and the heavy rainfall on the 18th/19th generated a sharp increase in flows extending across most of the lowlands; localised (and minor) flooding was reported from parts of London. However, steep recessions generally became established from around the 20th.

Away from the English lowlands, November runoff totals were generally approaching the average or above, markedly so in northern Britain - the average flow on the Dee (at Park), for instance, was the second highest in a twenty-year record. Below average runoff totals were largely confined to eastern England where, particularly in a zone stretching from Yorkshire to the Thames Estuary, flows remain very depressed in rivers supported principally from groundwater. The November runoff total for the Mimram (Hertfordshire), for example, was the lowest in a 40-year record with the exception of 1973. Other eastern Chalk streams also remained close to or below historical minima. In central and northern parts of East Anglia (extending into adjacent areas) runoff rates were depressed for the fourth successive year. On the Lud (Lincolnshire) three of the five lowest totals in a 24 -year record have occurred since 1988 and November was the thirty-seventh successive month to register below average flows.

The accumulated runoff totals presented on Table 3 confirm the remarkable persistence of the drought in eastern and central England. Over the longer timeframes, a clear accentuation in the normal NW/SE runoff gradient is also evident. Considering three-year periods ending in November, the River Tay runoff for 1989-91 is surpassed only by the overlapping sequence ending in 1990 (the culmination of a notably wet period in Scotland stretching back to the late-1970s). In contrast the three-year runoff totals for the Lud, Little Ouse, Kent Stour and the Itchen, amongst others, are the lowest on record.

Healthy improvements in reservoir stocks were recorded in almost all areas during November. Impoundments in the Lake District and the Pennines registered rapid increases over the first three weeks - a particularly welcome improvement in Yorkshire where levels were low in late-October. The need to retain some flood alleviation storage moderated the increases in parts of Wales and very modest runoff failed to reverse the decline in stocks in lowland reservoirs in the Trent basin. On a regional basis, however, stocks are considerably greater than in early December 1990.

Groundwater

The November rainfall produced brisk recoveries in the Permo-Triassic sandstones of North Wales, the Cotswolds and in much of the Chalk in south-western England. In these areas the early-winter groundwater levels are mostly within the normal range. Elsewhere, recessions have eased but increases in level, where they can be identified, are marginal. Generally, the picture is still one of
gently declining water-tables and groundwater levels in eastern, central and parts of southern England remain exceptionally depressed.

The effect of the droughts of 1989 and 1990 ensured that the summer recession of 1991 started at levels generally much below normal in most lowland areas. The failure of any, other than very localised, recoveries to be underway by late November has left groundwater levels in the Chalk standing at historically low levels over much of the eastern outcrop from southern Yorkshire to north Kent. In the Triassic sandstones of the Midlands, levels are reportedly still very depressed in the Nottingham area, and the well at Weeford Flats remains dry.

Near to the eastern seaboard, and more extensively in East Anglia, water-tables have remained well below average levels for much of the last three years. One measure of the remarkable persistence and severity of the drought is provided by the series of annual minima for the Dalton Holme borehole (in the Yorkshire Wolds) which was commissioned in 1889. As foreshadowed in the October report, the continuing decline in levels through the autumn has resulted in the November level being below any recorded prior to 1988; the four lowest annual minimum have all been registered since 1987. Less dramatic, but still remarkable hydrograph traces characterise the Washpit Farm and Redlands Farm boreholes. At both sites, the annual minima (in records of 40 and 27 years) established in 1990 were clearly eclipsed in November 1991.

As is common in November, the seasonal groundwater recovery is markedly more evident in the west than the east. The exceptional base from which the increase in the lowlands needs to be generated emphasises the need both for above average precipitation through the winter followed by further rainfall well into the spring to avoid a fourth year of fragile groundwater resources and shrunken river networks.

IH/BGS
12 December 1991

TABLE 1 1990/91 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE

Nov 1990	Dec	$\begin{gathered} \text { Jan } \\ 1991 \end{gathered}$	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov 1991

England and	mm	67	101	92	65	75	69	14	92	69	30	62	75
Wales	$\%$	69	112	107	100	127	119	21	151	95	33	75	90

NRA REGIONS

North West	mm	73	151	98	94	110	67	18	96	65	65	68	111	167
	\%	60	126	88	116	153	87	22	116	63	52	55	94	138
Northumbria	mm	61	127	83	113	85	41	22	73	55	37	42	75	115
	\%	65	169	104	171	163	75	34	120	71	37	53	100	122
Severn-Trent	mm	52	87	77	43	59	67	11	74	77	21	55	54	66
	\%	66	124	112	81	113	129	17	132	118	26	82	83	83
Yorkshire	mm	55	121	71	88	63	49	14	74	37	21	40	63	88
	\%	62	164	92	138	119	88	23	128	53	23	56	91	99
Anglian	mm	53	47	44	39	29	45	13	77	38	18	62	26	53
	\%	85	89	85	93	73	113	28	157	67	28	119	50	85
Thames	mm	34	68	80	38	45	63	13	96	79	19	52	36	65
	\%	47	103	129	81	98	137	23	185	132	27	84	56	89
Southern	mm	63	65	98	39	59	56	17	125	87	15	50	51	80
	\%	67	80	129	68	113	117	31	250	147	21	70	65	85
Wessex	mm	51	78	108	40	81	72	10	106	73	20	70	84	76
	\%	53	87	129	68	140	133	15	196	118	24	89	102	79
South West	mm	106	124	153	82	127	100	9	127	91	32	84	123	108
	\%	79	92	119	91	151	141	11	195	108	32	81	109	80
Welsh	mm	112	163	151	94	127	124	15	110	98	53	85	153	137
	\%	78	112	111	98	146	144	16	134	103	45	68	119	96
Scotland	mm	102	191	151	83	127	123	41	121	92	67	129	162	215
	\%	72	122	110	80	138	137	45	132	82	52	94	109	152

RIVER PURIFICATION BOARDS

Highland	mm	147	241	180	71	141	131	63	124	108	84	181	191	294
	\%	87	123	110	53	124	115	61	113	85	57	115	103	174
North-East	mm	95	97	60	77	81	62	46	128	57	33	57	116	135
	\%	92	95	66	104	131	102	60	183	62	31	66	120	131
Tay	mm	63	149	154	90	117	110	23	136	91	41	108	146	139
	\%	53	111	131	98	143	147	24	164	89	35	94	120	117
Forth	mm	56	143	133	86	103	90	18	108	96	39	99	109	111
	\%	52	131	134	112	149	132	21	144	98	34	92	103	103
Tweed	mm	53	152	110	102	93	62	21	89	65	35	66	99	124
	\%	51	169	118	148	160	102	28	131	73	31	71	113	119
Solway	mm	77	191	144	108	150	148	17	121	77	69	79	175	213
	\%	53	126	103	116	165	168	18	134	70	53	52	122	147
Clyde	mm	94	226	187	90	156	184	33	129	110	86	157	190	287
	\%	56	122	116	80	149	179	34	125	85	61	90	104	172

Note: The most recent monthly rainfall figures for England and Wales correspond to the MORECS areal assessments derived by the Meteorological Office; for the Scottish RPBs the November 1991 totals were estimated from the isohyetal map provided with the MORECS bulletin. The regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.

TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

		May-Nov 91 Est Return Period, years		Jan-Nov 91 Est Return Period, years		$\text { Mar } 90 \text { - Nov } 91$ Est Return Period, years		Nov 88 - Nov 91 Est Return Period, years	
England and	mm	433		734		1297		2483	
Wales	\% LTA	78	5-15	89	2-5	82	30-40	88	15-20
NRA REGIONS									
North West	mm	590		959		1825		3475	
	\% LTA	78	5-15	87	5	86	5-15	9.2	5-10
Northumbrian	mm	419		741		1359		2340	
	\% LTA	76	10-15	92	2-5	88	5-10	86	20-30
Severn Trent	mm	358		604		1076		2089	
	\% LTA	75	10-15	86	5-10	79	30-45	87	15-20
Yorkshire	mm	337		608		1155		2152	
	\% LTA	66	40-50	80	10-15	80	30-40	83	40-60
Anglia	mm	287		444		789		1514	
	\% LTA	75	10-15	80	10-15	74	120-170	80	110-150
Thames	mm	360		586		933		1828	
	\% LTA	82	5	92	2-5	76	40-60	84	20-35
Southern	mm	425		677		1119		2094	
	\% LTA	89	2-5	95	2-5	81	15-25	85	15-25
Wessex	mm	439		740		1200		2347	
	\% LTA	84	2-5	95	2-5	80	20-30	87	20-30
South West	mm	574		1036		1778		3446	
	\% LTA	84	2-5	98	2-5	87	5-10	93	2-5
Welsh	mm	651		1147		1193		3872	
	\% LTA	83	5-10	96	2-5	87	5-10	93	5
Scotland	mm	827		1311		2685		4975	
	\% LTA	97	2-5	103	2-5	109	5-10	112	30-50

RIVER PURIFICATION BOARDS

Highland	mm	1045		1568		3300		6279	
	\% LTA	104	2-5	103	2-5	111	5-10	117	140-180
North-East	mm	572		852		1656		2782	
	\% LTA	90	2-5	93	2-5	93	2-5	88	15-25
Tay	mm	684		1155		2150		4051	
	\% LTA	91	2-5	103	2-5	99	<2	104	2-5
Forth	mm	580		992		1944		3602	
	\% LTA	83	5-10	98	2-5	100	<2	104	2-5
Tweed	mm	499		866		1622		2867	
	\% LTA	79	5-15	95	2-5	93	2-5	93	5
Solway	mm	751		1301		2373		4436	
	\% LTA	87	2-5	102	2-5	96	2-5	100	<2
Clyde	mm	992		1609		3169		5932	
	\% LTA	99	<2	109	2-5	110	5-10	115	45-65

Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less. "Wet" return periods underlined.
The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.

* Tabony, R.C., 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).

FIGURE 1. MONTHLY RAINFALL FOR 1990-1991 AS A PERCENTAGE OF THE 1941-1970 AVERAGE

England and Vales

North Vest
Region

Yorkshire
Region

Southern
Region

Scotland

Morthubriria
Region

Anglian
Region

Hessex
Region都

Nelsh Region

Severn-Trent Region

Thanes
Region

South liest
Region

FIGURE 2 MONTHLY RIVER FLOW HYDROGRAPHS

> | 021022 hiteadder Water at Hutton Castle |
| :--- |
| Monthly mean flows for Dec 1989-Nov 1991 |
| + extremes and 30 day running mean for 1969-1988 |

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PERIODS RANKED IN THE RECORD

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{1991} \& Oct \& \multicolumn{2}{|r|}{Nov

1991} \& \multicolumn{2}{|c|}{$$
\begin{gathered}
\text { 6/91 } \\
\text { to } \\
11 / 91
\end{gathered}
$$} \& \multicolumn{2}{|c|}{\[

$$
\begin{gathered}
1 / 91 \\
\text { to } \\
11 / 91
\end{gathered}
$$

\]} \& \multicolumn{2}{|c|}{\[

$$
\begin{gathered}
5 / 90 \\
60 \\
11 / 91
\end{gathered}
$$

\]} \& \multicolumn{2}{|c|}{\[

$$
\begin{gathered}
5 / 89 \\
\text { to } \\
11 / 91
\end{gathered}
$$
\]}

\hline \& $$
\begin{gathered}
\mathrm{mm} \\
\mathrm{~F}_{\mathrm{LLT}}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\mathrm{mm} \\
\underset{\mathrm{LLT}}{ }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{mm} \\
\text { \%LT }
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\text { mm\% } \\
\text { LT }
\end{array}
$$

\] \& \[

\underset{\%LT}{\mathrm{mm}}

\] \& \[

$$
\begin{gathered}
\text { rank } \\
/ y r s
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\mathrm{mm} \\
\text { \%LT }
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\text { rank } \\
\text { /yrs }
\end{gathered}
$$

\] \& \[

\underset{\%LT}{\mathrm{mm}}

\] \& \[

$$
\begin{gathered}
\text { rank } \\
/ y_{r s}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\mathrm{mm} \\
\boldsymbol{\% L T}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\text { rank } \\
\text { /yrs }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{mm} \\
\text { \%LT }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { rank } \\
& / \mathrm{yrs}
\end{aligned}
$$
\]

\hline Dee at Park \& $$
\begin{array}{r}
42 \\
149
\end{array}
$$ \& 17

53 \& $$
\begin{aligned}
& 17 \\
& 41
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 70 \\
& 87
\end{aligned}
$$
\] \& 122

165 \& 19
$/ 20$ \& 323

109 \& $$
\begin{array}{r}
12 \\
/ 19
\end{array}
$$ \& 735

106 \& 12
$/ 19$ \& 1072
92 \& 6
$/ 18$ \& 1698
86 \& 3
117

\hline Tay at Ballathie \& $$
\begin{array}{r}
58 \\
146
\end{array}
$$ \& 34

66 \& 54

77 \& $$
\begin{aligned}
& 124 \\
& 111
\end{aligned}
$$ \& 173

145 \& 34
140 \& 494

112 \& $$
\begin{array}{r}
29 \\
/ 39
\end{array}
$$ \& 1127

115 \& 32
139 \& 1644 \& 21
138 \& 3098
112 \& 30
137

\hline Whiteadder Water at Hutton Castle \& 9
70 \& 7
45 \& 7
44 \& 32 \& 35
94 \& 12
$/ 23$ \& 77
61 \& 122 \& 316
91. \& $\begin{array}{r}8 \\ \hline 12\end{array}$ \& 534
97 \& /21 \& 712
75 \& 5
$/ 20$

\hline South Tyne at Haydon Bridge \& 14
48 \& 17 \& 15
29 \& 55
79 \& 148
165 \& 28
130 \& 274
89 \& 11
$/ 28$ \& 692
106 \& 17

$/ 28$ \& $$
\begin{array}{r}
1050 \\
95
\end{array}
$$ \& $\begin{array}{r}12 \\ \hline 126\end{array}$ \& 1728

92 \& 7
124

\hline Wharfe at Flint Mill Weir \& 18
67 \& 15
37 \& 15
33 \& 36
56 \& 117
149 \& $\begin{array}{r}32 \\ \hline 137\end{array}$ \& 225
80 \& 10
136 \& 578
93 \& 14
136 \& 877 \& 5
$/ 35$ \& 1464 \& 3
134

\hline Derwent at Buttercrambe \& $$
\begin{array}{r}
8 \\
56
\end{array}
$$ \& 6

42 \& 5
37 \& 7
34 \& 17
60 \& /31 \& 56

52 \& $$
130
$$ \& 224

78 \& 6
130 \& 337
73 \& (29 \& 508
64 \& $1 / 28$

\hline Trent at Colwick \& $$
\begin{aligned}
& 14 \\
& 88
\end{aligned}
$$ \& 11

66 \& $$
\begin{aligned}
& 10 \\
& 60
\end{aligned}
$$ \& 10

43 \& 19
63 \& 11
$/ 34$ \& 78
65 \& 5
133 \& 227
73 \& /33 \& 352
70 \& /32 \& 655
76 \& /31

\hline Lud at Louth \& $$
\begin{array}{r}
8 \\
49
\end{array}
$$ \& $5{ }^{7}$ \& 8

71 \& 8
66 \& 78
48 \& r ${ }^{3}$ \& 46
56 \& /23 \& 96
40 \& 123 \& 166 \& /22 \& 309
50 \& 121

\hline Witham at Claypole Mill \& 75 \& $\begin{array}{r}4 \\ \hline\end{array}$ \& 5

81 \& $$
\begin{array}{r}
5 \\
59
\end{array}
$$ \& 7

59 \& $$
\begin{array}{r}
15 \\
/ 33
\end{array}
$$ \& 32

64 \& +113 \& 110 \& /32 \& 150
60 \& 136 \& 306 \& /31

\hline Little Ouse at Abbey Heath \& $$
\begin{array}{r}
4 \\
48
\end{array}
$$ \& 54 \& \[

$$
\begin{array}{r}
4 \\
54
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
4 \\
40
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5 \\
41
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
2 \\
/ 24
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 28 \\
& 50
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
2 \\
/ 24
\end{array}
$$
\] \& 72 \& /23 \& 113 \& /23 \& 224

54 \& 122

\hline Colne at Lexden \& $$
\begin{array}{r}
4 \\
96
\end{array}
$$ \& \[

$$
\begin{array}{r}
3 \\
74
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3 \\
71
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3 \\
36
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5 \\
41
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
11 \\
/ 33
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 24 \\
& 63
\end{aligned}
$$
\] \& /32 \& 61

51 \& /32 \& 89

49 \& $$
\begin{array}{r}
4 \\
\hline
\end{array}
$$ \& 198

62 \& $13{ }^{1}$

\hline Thames at Kingston (natr.) \& $$
\begin{array}{r}
10 \\
106
\end{array}
$$ \& 7

80 \& $\begin{array}{r}6 \\ \hline\end{array}$ \& \[
$$
\begin{array}{r}
6 \\
45
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 12 \\
& 56
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
38 \\
/ 109
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 52 \\
& 70
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
29 \\
/ 109
\end{array}
$$
\] \& 142

66 \& 16
$/ 109$ \& 198
59 \& / ${ }^{9}$ \& 442
76 \& 14
$/ 107$

\hline Blackwater at Swallowfield \& 15
131 \& 11
96 \& 11
84 \& 12
62 \& 19
79 \& 18
$/ 40$ \& 85
90 \& 18
$/ 39$ \& 202
88 \& 11
$/ 39$ \& 299
79 \& 9
138 \& 598
93 \& 12
137

\hline Coln at Bibury \& 17
81 \& 14
83 \& 11
78 \& 11. \& 23
96 \& 17
$/ 29$ \& 95
81 \& 9
128 \& 272
78 \& 5
128 \& 375

69 \& $$
\begin{array}{r}
4 \\
/ 27
\end{array}
$$ \& 788

83 \& $$
\begin{array}{r}
6 \\
/ 26
\end{array}
$$

\hline Great Stour at Horton \& 19
135 \& 11
82 \& 9
65 \& 9
44 \& 25
94 \& 16
$/ 28$ \& 88
85 \& 10
126 \& 195
75 \& /25 \& 289
68 \& 4
124 \& 487
67 \& /22

\hline Itchen at Highbridge+Allbrook \& 27
89 \& 23
82 \& 21
80 \& 23
76 \& 25
73 \& 8
134 \& 150
82 \& / ${ }^{5}$ \& 327
78 \& /35 \& 526 \& /32 \& 943
82 \& /31

\hline Stour at Throop Mill \& 14
128 \& 9

88 \& $$
\begin{array}{r}
8 \\
69
\end{array}
$$ \& \[

$$
\begin{aligned}
& 13 \\
& 61
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29 \\
& 95
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
/ 19
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 89 \\
& 90
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
/ 19
\end{array}
$$
\] \& 288

88 \& $$
\begin{array}{r}
5 \\
/ 19
\end{array}
$$ \& 364

71 \& $$
\begin{array}{r}
3 \\
/ 18
\end{array}
$$ \& \[

$$
\begin{array}{r}
806 \\
88
\end{array}
$$
\] \& /17

\hline Piddle at Baggs Mill \& 21
118 \& 15
97 \& 16
106 \& 23
113 \& 30
105 \& 18
129 \& 127
106 \& 18
$/ 28$ \& 320
89 \& 8
$/ 27$ \& 431

78 \& $$
\begin{array}{r}
4 \\
/ 26
\end{array}
$$ \& 833

86 \& $$
\begin{array}{r}
6 \\
/ 24
\end{array}
$$

\hline Exe at Thorverton \& $$
\begin{array}{r}
32 \\
155
\end{array}
$$ \& \[

$$
\begin{aligned}
& 15 \\
& 53
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14 \\
& 36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 75
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 128 \\
& 134
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
29 \\
/ 36
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
270 \\
96
\end{array}
$$
\] \& 17

$/ 36$ \& 681

98 \& $$
\begin{array}{r}
16 \\
/ 35
\end{array}
$$ \& 988

86 \& $$
\begin{array}{r}
11 \\
/ 35
\end{array}
$$ \& \[

$$
\begin{array}{r}
1735 \\
88
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
7 \\
\hline 134
\end{array}
$$
\]

\hline Tone at Bishops Hull \& $$
\begin{aligned}
& 12 \\
& 78
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
8 \\
65
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 11 \\
& 72
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25 \\
& 94
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
54 \\
130
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
22 \\
/ 31
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
124 \\
96
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
17 \\
/ 31
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
357 \\
88
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
9 \\
/ 30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
455 \\
72
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3 \\
/ 30
\end{array}
$$
\] \& 957

86 \& 6
129

\hline Severn at Bewdley \& $$
\begin{aligned}
& 10 \\
& 71
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 12 \\
& 70
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
8 \\
37
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 17 \\
& 51
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
54 \\
101
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
42 \\
/ 71
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
112 \\
71
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
18 \\
/ 71
\end{array}
$$
\] \& 360

93 \& $$
\begin{array}{r}
27 \\
/ 70
\end{array}
$$ \& 503

79 \& 170 \& 938
86 \& 14
$/ 69$

\hline Wye at Cefn Brwyn \& 107

98 \& $$
\begin{aligned}
& 178 \\
& 125
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
102 \\
62
\end{array}
$$
\] \& 167

80 \& $$
\begin{aligned}
& 315 \\
& 126
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
29 \\
/ 39
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 965 \\
& 101
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
19 \\
/ 35
\end{array}
$$
\] \& 1784

101 \& $$
\begin{array}{r}
16 \\
/ 34
\end{array}
$$ \& \[

$$
\begin{array}{r}
2978 \\
95
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
12 \\
/ 30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
4973 \\
96
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
8 \\
/ 25
\end{array}
$$
\]

\hline Cynon at Abercynon \& $$
\begin{array}{r}
47 \\
138
\end{array}
$$ \& \[

$$
\begin{aligned}
& 24 \\
& 48
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 27 \\
& 40
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
120 \\
99
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 182 \\
& 120
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
25 \\
134
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
452 \\
96
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 15^{\circ} \\
& / 32
\end{aligned}
$$
\] \& 1246

118 \& $$
\begin{array}{r}
24 \\
/ 32
\end{array}
$$ \& \[

$$
\begin{array}{r}
1701 \\
96
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
12 \\
/ 30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3144 \\
103
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
16 \\
128
\end{array}
$$
\]

\hline Dee at New Inn \& $$
\begin{aligned}
& 63 \\
& 94
\end{aligned}
$$ \& 54

59 \& 43
32 \& 146
72 \& 260
107 \& 13
123 \& 633
79 \& /22 \& 1308

84 \& /22 \& $$
\begin{array}{r}
2254 \\
84
\end{array}
$$ \& \[

$$
\begin{array}{r}
2 \\
\hline 21
\end{array}
$$
\] \& 3930

87 \& 120

\hline Eden at Sheepmount \& 19
70 \& 16

52 \& $$
\begin{aligned}
& 17 \\
& 39
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 38 \\
& 51
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 132 \\
& 162
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
19 \\
/ 22
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
249 \\
92
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
121
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 691 \\
& 115
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
16 \\
/ 21
\end{array}
$$
\] \& 1022

104 \& $$
\begin{array}{r}
12 \\
/ 19
\end{array}
$$ \& 1728

104 \& 10
117

\hline Clyde at Daldowie \& $$
\begin{array}{r}
32 \\
117
\end{array}
$$ \& \[

$$
\begin{aligned}
& 20 \\
& 49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 28 \\
& 49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 58 \\
& 70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 151 \\
& 160
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
24 \\
/ 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
313 \\
96
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
13 \\
128
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 737 \\
& 111
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
19 \\
/ 28
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1232 \\
109
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
17 \\
/ 27
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
2134 \\
113
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
21 \\
/ 26
\end{array}
$$
\]

\hline
\end{tabular}

Notes: (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff as rank 1.
(iii) sLT means percentage of long term average from the start of the record to 1991 . For the long periods (at the right of this table), the end date for the long term is 1991.

Site name: DALTON HOLME

Site name: WASHPIT FARM

Site name: FAIRFIELDS

Site name: ROCKLEY

Sife name: LITTLE BROCKLESBY

Site name: THE HOLT

$$
\begin{array}{cccc}
1988 & 1989 & 1990 & 1991
\end{array}
$$

Site name: REDLANDS HALL,ICKLETON

$$
\begin{array}{cccc}
1988 & 1989 & 1990 & 1991 \\
\text { Mox, Min ond Moan values calculated from yoors } 1964 & \text { to } & 1989
\end{array}
$$

Site name: LITTLE BUCKET FARM, WALTHAM
Natlonal grid reforence: TR 12254690 Well number: TR14/9

Site name: COMPTON HOUSE

$\begin{array}{llll} & 1988 & 1989 & 1990 \\ \text { Max, Min and Meon valuas calculated from rears } & 1964 \text { to } & 1989\end{array}$

Sife name: LLANFAIR DC

Site name: BUSSEL.S NO.7A

$$
\begin{array}{cccc}
1988 & 1989 & 1990 & 1991 \\
\text { Max, MIn ond Mean values calculated irom years } 1872 \text { to } 1989
\end{array}
$$

Site name: WEST WOODYATES MANOR
Nofional grid reference: SU 0160 1960 Woll number: SU01/58 Aquifor: CHALK AND UPPER GREENSAND Meosuring level: 110.88

$\begin{array}{ccccc} & 1988 & 1989 & 1990 & 1991\end{array}$

Site name: AMPNEY CRUCIS
National grid raference: SP 05950190
Well number: SP00/62 Aquifor: MIDDLE JURASSIC Measuring level: Measuring level: 109.54

Site name: WEEFORD FLATS, WEEFORD
Natlenisl grid reforence: SK 14100464 Well number: SK10/9 Aquife: PERMD-TRIASSIC SANDSTONE Mnonuring Invel: 96.2.

$$
\begin{array}{cccc}
& 1988 & 1989 & 1990 \\
\text { Max, Min and Man valuez caleulated from years } & 1965 \text { to } 1989
\end{array}
$$

Site name: ALSTONFIELD

$$
\begin{array}{ccccc}
1988 & 1989 & 1990 & 1991
\end{array}
$$

TABLE 4 START-MONTH RESERVOIR STORAGES UP TO DECEMBER 1991

Area	Reservoir (R)/ Group (G)		Capacity ${ }^{\bullet}$ (M1)	Jul	Aug	1991 Sep (\%)	Oct	Nov	Dec	1990 Dec
North West	Northern Command Zone ${ }^{1}$ Vyrnwy	(G) (R)	$\begin{array}{r} 133375 \\ 55146 \end{array}$	68 86	55 83	43 85	33 71	41 82	72 85	66 77
Northumbria	Teesdale ${ }^{2}$ Kielder	(G) (R)	$\begin{array}{r} 87936 \\ \text { 199175* } \end{array}$	61	52	39	81 ${ }^{3}$	81 ${ }^{\text {8 }}$	$\begin{array}{r} 68 \\ 96 * \end{array}$	77
Severn-Trent	Clywedog Derwent Valley ${ }^{3}$	(R) (G)	$\begin{aligned} & 44922 \\ & 39525 \end{aligned}$	$\begin{aligned} & 99 \\ & 74 \end{aligned}$	94 66	91 53	74 35	75 32	82	84
Yorkshire	Washburn ${ }^{4}$ Bradford supply ${ }^{5}$	(G) (G)	$\begin{aligned} & 22035 \\ & 41407 \end{aligned}$	$\begin{aligned} & 72 \\ & 76 \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \end{aligned}$	$\begin{aligned} & 46 \\ & 50 \end{aligned}$		28	$\begin{aligned} & 48 \\ & 70 \end{aligned}$	42 69
Anglian	Grafham Rutland	(R) (R)	$\begin{array}{r} 58707 \\ 130061 \end{array}$	$\begin{aligned} & 96 \\ & 80 \end{aligned}$	95 81	88	81	76 63	81	59 60
Thames	London ${ }^{6}$ Farmoor ${ }^{7}$	(G) (G)	$\begin{array}{r} 206232 \\ 13843 \end{array}$	$\begin{array}{r} 91 \\ 100 \end{array}$	90 100	80 89	66 82	57 89	71	52 52
Southern	Bewl Ardingly	(R) (R)	$\begin{array}{r} 28170 \\ 4627 \end{array}$	$\begin{array}{r} 73 \\ 100 \end{array}$	75 100	73 81	62 84	54 81	58 85	34 54
Wessex	Clatworthy Bristol WW	(R) (G)	$\begin{aligned} & 5364 * \\ & 36620 \end{aligned}$	$\begin{array}{r} 71 * \\ 79 \end{array}$	$59 *$ 71	47*	$40 *$ 46	59 39	89 50	47 27
South West	Colliford Roadford Wimbleball ${ }^{10}$ Stithians	(R) (R) (R) (R)	$\begin{array}{r} 28540 \\ 34500 \\ 21320 \\ 5205 \end{array}$	89 94 75 77	90 95 73 66	86 89 63 53	81 84 52 40	79 81 57 34	83 86 69 34	68 619 39 29
Welsh	Celyn + Brenig Brianne Big Five ${ }^{11}$ Elan Valley ${ }^{12}$	(G) (R) (G) (G)	$\begin{array}{r} 131155 \\ 62140 \\ 69762 \\ 99106 \end{array}$	$\begin{aligned} & 94 \\ & 93 \\ & 94 \\ & 91 \end{aligned}$	89 93 92 87	79 92 92 85	68 84 69 77	71 89 73 90	84 100 87 94	76 100 49 90

- Live or usable capacity (unless indicated otherwise)
* Gross storage/percentage of gross storage

1. Includes Haweswater, Thirlmere, Stocks and Barnacre.
2. Cow Green, Selset, Grassholme, Balderhead, Blackton and Hury.
3. Howden, Derwent and Ladybower.
4. Swinsty, Fewston, Thruscross and Eccup.
5. The Nidd/Barden group (Scar House, Angram, Upper Barden, Lower Barden and Chelker) plus Grimwith.
6. Lower Thames (includes Queen Mother, Wraysbury, Queen Mary, King George VI and Queen Elizabeth II) and Lee Valley (includes King George and William Girling) groups - pumped storages.
7. Farmoor 1 and 2 - pumped storages.
8. Blagdon, Chew Valley and others.
9. The new Roadford reservoir was still filling after impounding.
10. Shared between South West (river regulation for abstraction) and Wessex (direct supply.
11. Usk, Talybont, Llandegfedd (pumped storage), Taf Fechan, Taf Fawr.
12. Claerwen, Caban Coch, Pen y Garreg and Craig Goch.

Note: Variations in storage depend on the balance between inputs (from catchment rainfall and any pumping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategies for making the most efficient use of water stocks will further affect reservoir storages. Table 4 provides a link between the hydrological conditions described elsehwere in the report and the water resources situation.

TABLE 5 A COMPARISON OF NOVEMBER GROUNDWATER LEVELS : 1991, 1976 AND 1973

Site	Aquifer	Records commence	Average November Level	November 1973		November 1976		November and December 1991		No of years November levels < 1991	Lowest pre1991 level (any month)
				Day	Level	Day	Level	Day	Level		
Dalton Holme	C \& UGS	1889	15.12	24/11	15.60	27/11	15.07	11/11	11.18	2	10.34
Little Brocklesby	C \& UGS	1926	11.03	14/11	9.07	26/11	7.09	26/11	4.90	1	4.56
Washpit Farm	C \& UGS	1950	43.31	1/11	41.25	1/11	41.50	02/12	40.61	0	41.24
The Holt	C \& UGS	1964	87.03	25/11	84.04	24/11	84.16	24/11	84.88	2	83.90
Fairfields	C \& UGS	1974	22.97	-	-	30/11	23.08	12/11	22.12	0	22.15
Redlands Farm	C \& UGS	1964	39.23	1/11	35.89	1/11	35.30	25/11	32.71	0	34.04
Rockley	C \& UGS	1933	131.62	25/11	129.83	26/11	129.12	24/11	129.12	9	$\begin{aligned} & \text { dry } \\ & \text { (below } \\ & 128.78 \text {) } \end{aligned}$
Little Bucket Farm	C \& UGS	1971	62.91	28/11	58.74	$1 / 11$	56.77	28/11	60.83	6	56.77
Compton House	C \& UGS	1894	35.76	29/11	28.22	4/11	29.90	26/11	31.11	>10	27.64
West Dean	C \& UGS	1940	1.76	23/11	1.27	26/11	2.13	29/11	1.64	>10	1.01
Lime Kiln Way	C \& UGS	1969	124.87	30/11	124.53	15/11	124.42	05/12	124.24	0	124.09
Ashton Farm	C \& UGS	1974	65.93	-	-	25/11	68.85	29/11	68.20	>10	63.10
West Woodyates	C \& UGS	1942	79.84	25/11	70.65	22/11	93.00	29/11	81.80	> 10	67.62
New Red Lion	LLst	1964	11.86	25/11	9.45	26/11	10.6	25/11	6.11	1	3.29
Ampney Crucis	Mid Jur	1958	101.22	18/11	99.70	28/11	101.76	11/11	101.39	>10	97.38
Dunmurry (NI)	PTS	1985	28.28	-	-	-	-	26/11	28.10	3	27.47
Llanfair DC	PTS	1972	79.78	1/11	72.29	1/11	79.47	25/11	79.45	3	78.85
Morris Dancers	PTS	1969	32.60	28/11	32.18	23/11	31.81	12/11	32.11	3	30.87
Weeford Flats	PTS	1966	89.90	30/11	89.94	25/11	88.61	06/12	dry	1	(dry)
Bussels 7A	PTS	1972	23.60	28/11	23.36	30/11	24.30	04/12	23.56	>10	22.90
Rusheyford NE	MgLst	1967	75.80	1/11	64.83	30/11	68.18	12/11	75.04	>10	64.77
Peggy Ellerton	MgLst	1968	34.12	$29 / 11$	32.72	22/11	32.34	11/11	32.86	5	31.10
Alstonfield	CLst	1974	186.07	-	-	25/11	182.08	06/11	175.08	2	174.22

Groundwater levels are in metres above Ordnance Datum

C \& UGS	Chalk and Upper Greensand	Mid Jur	Middle Jurassic limestones
LLst	Lincolnshire Limestone	MgLst	Magnesian Limestone
PTS	Permo-Triassic sandstones	CLst	Carboniferous Limestone

FIGURE 4 LOCATION MAP OF GAUGING STATIONS AND GROUNDWATER INDEX WELLS

