DECEMBER 1991

Rainfall

Countrywide, only a little over 60% of average and notably dry in much of southern Britain. The latter half of 1991 witnessed a re-intensification of the drought in lowland England. Long term rainfall deficiencies are remarkably large, without parallel this century in parts of East Anglia.

River flows

Some moderate flooding in mid-month but runoff totals were below average in almost all areas. Flows are very depressed in the eastern lowlands where, in some catchments, monthly runoff totals have remained below average for over three years.

Groundwater

In most western aquifers some modest increases in level were recorded. By contrast, recessions continue in the east and over a substantial proportion of the Chalk the water-table remains at historical depressed levels.

General

The seasonal recovery in runoff and recharge rates is still awaited in much of lowland England where the drought is now of a remarkable duration. Reservoir stocks remain relatively healthy but groundwater levels are exceptionally low and the stream network has contracted appreciably since early 1988. Large parts of eastern and central England now require a very wet episode, extending well into the spring, to alleviate concern for water resources over the latter half of 1992.

HYDROLOGICAL SUMMARY FOR GREAT BRITAIN - DECEMBER 1991

Data for this report have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office. Reservoir contents information has been supplied by the Water Services Companies, the NRA and, in Scotland, the Lothians Regional Council. The most recent areal rainfall figures are derived from a restricted network of raingauges (particularly in Scotland) and a proportion of the river flow data is of a provisional nature.

A map (Figure 4) is provided to assist in the location of the principal monitoring sites.

Rainfall

December was a cool, and generally dry month throughout much of Britain. Media attention tended to focus on the wet interludes in mid-month and around year-end when flooding was reported from a number of regions; weather conditions were especially boisterous in northern Scotland. Of greater hydrological significance was the dominance of anticyclonic conditions in southern Britain which produced a notable rainless episode - beginning in the third week of November and extending over 25 days or more in some districts - and a further largely dry spell over the last ten days of December. This resulted in a re-intensification of the drought at a time when recoveries in runoff and recharge rates are normally gathering momentum.

Above average rainfall totals in December were largely confined to parts of western and central Scotland and the southern Peninnes. Exceptionally low totals characterised much of southern Britain south of a line from the Wash to Cardigan many localities registered less than 30 per cent of the December average and for some districts it was the second driest December in the last 30 years. Generally, over the first half of 1991 the large long term rainfall deficiencies in eastern England were moderated. However, the drought reasserted itself from early August and is once again severe over much of the English lowlands. Provisional data indicate that only in 1947 and 1933 have lower August-December rainfall totals been recorded this century for England and Wales as a whole. More importantly, the five-month rainfall deficiencies tend to be greatest in those areas suffering the most severe long term drought.

Countrywide annual rainfall totals were within the normal range but 1991 totals were well below average throughout much of the English lowlands - extending as far west as the Cheshire Plain. Near to the Wash, some annual totals were closely comparable with those for 1990 - itself the second driest year this century (after 1921). With above average rainfall in such areas restricted to eight or nine individual months since the summer of 1988, accumulated rainfall deficiencies are of an unprecedented magnitude. Similarly in the Thames Valley, the catchment rainfall totals over very long durations (for instance, in the 30-46 months range) are the lowest, or close to the lowest (irrespective of start month) in a catchment rainfall record from 1883. Figures presented in Table 2 confirm the remarkable duration of the drought in parts of eastern and southern England and its exceptional magnitude in the Anglian and Thames regions, and in adjacent areas.

Long-term accumulated rainfall totals for western Scotland remain notably high and the remarkably sustained accentuation in the normal north-west to south-east rainfall gradient across Britain provides the backcloth for the depressed runoff and recharge rates in the English lowlands (see below). Very substantial rainfall will be required over the next four months to avoid a further episode of extremely low groundwater levels and contracting river networks in 1992.

Evaporation and Soil Moisture Deficits (SMDs)

Temperatures were appreciably below average throughout much of the South-East in December but above average in northern Scotland. Total sunshine hours generally displayed an opposing pattern although spatial variability was large. Evaporation losses in December were modest and well within the normal range for early winter. For the year as a whole, potential evaporation losses were also fairly typical albeit generally below average, notably so in central Wales. 1991 stands in marked contrast to the remarkable evaporation conditions experienced over the previous two years when annual losses were $100-150 \mathrm{~mm}$ greater over wide areas. Except for parts of the English lowlands AE losses were also below those of 1990 but still within the normal range in most regions.

By late December, significant soil moisture deficits were largely confined to the English lowlands, a few appreciable SMDs persist along Britain's north-eastern seaboard. A zone with substantially above average SMDs encompasses eastern Yorkshire, much of the Midlands, large parts of East Anglia and the lower Thames Valley. This region, where SMDs remain at least 30 mm above average, effectively delineates the area of maximum drought severity. In some districts (e.g. Cambridgeshire), remaining deficits are around 50 mm above average and equivalent to about five weeks average winter rainfall. This emphasises the critical importance of late winter/early spring precipitation in 1992 in determining the future of an already remarkably sustained drought (particularly in relation to groundwater storage).

Runoff

Large spatial variations in rainfall together with regional differences in soil moisture conditions produced wide variations in runoff rates during December. Around the 20-22nd, heavy rainfall - well over 75 mm in places - in the southern Pennines, produced flooding and widespread washland inundation in the Dove and Derwent Valleys and in South Yorkshire. New record peak river levels were recorded on the Dove (Derbyshire) and the neighbouring River Manifold; return periods exceeding 100 years were ascribed to flow rates in some reaches. Also on the 22nd, the River Clyde (at Daldowie) registered its second highest flow in a 28 -year record. Subsequently, spate conditions became increasingly widespread in Scotland heralding significant flooding early in 1992.

Such notable runoff events were atypical of December, especially in lowland Britain. There was no general consolidation of the improvement in runoff rates experienced in November. Most rivers were in recession throughout much of December and, with few exceptions, monthly runoff totals were appreciably below those for November and greatly below the seasonal average. Rivers registering new minimum December mean flows showed a wide distribution. Examples include the Soar (Leicestershire), the Kennet (Berkshire), the Kenwyn (Cornwall), the Cynon, the Little Ouse and, notably, the Lea at Feilds Weir (Hertfordshire) where the naturalised December runoff was the lowest in a 108 -year record. Elsewhere in the lowlands, flows were often similar to those experienced in 1975 or 1964; more recently runoff rates were also depressed in December 1988.

One measure of the persistence of the runoff drought is the sequence of low December flows recorded on the Itchen: four of the five lowest December runoff totals in a 30 -year record have been registered since 1987. The accumulated runoff totals presented in Table 3 confirm the singular nature of the drought over large parts of eastern and southern Britain. Apart from some rivers draining upland catchments in Scotland and in the northern Pennines, runoff totals for 1991 are well below average in East Anglia less than half the average is typical. The full magnitude of the runoff deficiency becomes evident over durations of 20 months or more. Flows on the River Lud, for instance, have been below average for 38 successive months and for durations greater than about 18 months (beginning in any month) accumulated runoff totals are without recorded precedent; a similar picture emerges from analyses of runoff series for the Little Ouse and some other eastern rivers.

Following healthy replenishments in November, natural inflows to reservoirs were generally much reduced in December and in eastern and southern England stocks registered only a modest improvement over the month. By contrast, relatively dramatic increases were reported for some Pennine impoundments; in the Derwent Valley system, for example, stocks rose by almost 40 per cent over the month. Overall, reservoir contents are appreciably greater than a year ago and the outlook for surface water resources, given rainfall within the normal range, remains reasonably healthy - in sharp contrast to the groundwater picture in the lowlands (see below).

Groundwater

The modest upturn in levels noted for some western aquifers last month has been followed by further limited rises in December (see, for instance, the hydrograph traces for Bussels and West Woodyates). However, the situation deteriorates in an easterly direction. Water-tables remain in recession throughout the greater part of the Chalk and the Permo-Triassic sandstones of the Midlands.

Evidence of the unprecedented magnitude of the current drought in groundwater terms is provided by the current levels at a number of long term index wells. Levels at Dalton Holme have declined to below any registered before 1990 (in a 103 -year record). At Little Brocklesby, levels are closely comparable with the minimum in a series from 1926 and at Therfield - a deep well near Royston (Herts) - groundwater levels have declined over 20 metres since the spring of 1988 and now stand at their lowest level since the borehole was last dry in 1923. Levels at Washpit Farm and Redlands are unprecedented in records of 42 and 28 years respectively. Taking into consideration the inordinate nature of the long term rainfall deficiencies in a broad zone from north of the Humber estuary to Hertfordshire, it appears probable that the scale of the groundwater depletion in the Chalk of this region is without parallel this century. Away from this area, drought conditions ameliorate but groundwater levels remain well below average throughout most of the Chalk, in Kent especially. Levels in the Lincolnshire Limestone remain depressed also - at the New Red Lion borehole the December minimum established in 1990 was closely approached in December 1991.

In the Middle Jurassic of the Cotswolds (Ampney Crucis) levels are close to the seasonal average, a picture repeated in the Chalk and the Permo-Triassic sandstones of the West Country. Reports suggest a similar situation in the Permo-Triassic aquifers of north-west England but the situation in the Midlands and North Wales is more difficult to interpret. The Weeford Flats well remains dry (it was also dry in 1976) and at Llanfair DC the dry December halted the recovery in levels and by midmonth the pre-1990 monthly minimum had been eclipsed. The hydrographs for these latter sites confirm the existence of a second zone of substantially depressed groundwater levels extending across much of the Midlands and the Cheshire Plain.

Sustained rainfall - well above average - will be required over the remainder of the winter to generate a substantial recovery in groundwater levels in the English lowlands. A wet spring will also be essential to delay the onset of the 1992 groundwater level recession, in order for there to be any realistic hope of levels returning within the normal range during 1992. Average rainfall in the east will serve only to herald a fourth (in some districts, a fifth) successive year with notably low summer and autumn groundwater levels - and very limited baseflow to support spring-fed rivers through the latter half of the year.

Institute of Hydrology/British Geological Survey 13 January 1992

TABLE 1 1990/91 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE

	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	
1990	1991													
1991														

England and	mm	101	92	65	75	69	14	90	69	30	62	75	90
Wales	$\%$	112	107	100	127	119	21	148	95	33	75	90	92

NRA REGIONS

North West	mm	151	98	94	110	67	18	105	65	65	68	111	152	105
	\%	126	88	116	153	87	22	127	63	52	55	94	126	88
Northumbria	mm	127	83	113	85	41	22	69	55	37	42	75	105	71
	\%	169	104	171	163	75	34	113	71	37	53	100	112	95
Severn-Trent	mm	87	77	43	59	67	11	74	77	21	55	54	69	38
	\%	124	112	81	113	129	17	132	118	26	82	83	87	54
Yorkshire	mm	121	71	88	63	49	14	73	37	21	40	63	93	60
	\%	164	92	138	119	88	23	126	53	23	56	91	104	81
Anglian	mm	47	44	39	29	45	13	77	38	18	62	26	53	23
	\%	89	85	93	73	113	28	157	67	28	119	50	85	44
Thames	mm	68	80	38	45	63	13	96	79	19	52	36	66	16
	\%	103	129	81	98	137	23	185	132	27	84	56	90	25
Southern	mm	65	98	39	59	56	17	125	87	15	50	51	81	23
	\%	80	129	68	113	117	31	250	147	21	70	65	86	28
Wessex	mm	78	108	40	81	72	10	107	73	20	70	84	71	31
	\%	87	129	68	140	133	15	198	118	24	89	102	73	34
Scuth West	mm	124	153	82	127	100	9	127	91	32	84	123	112	47
	\%	92	119	91	151	141	11	195	108	32	81	109	84	35
Welsh	mm	163	151	94	127	124	15	111	98	53	85	153	138	66
	\%	112	111	98	146	144	16	135	103	45	68	119	97	45
Scotland	mm	191	151	83	127	123	41	122	92	67	129	162	222	123
	\%	122	110	80	138	137	45	133	82	52	94	109	156	79

RIVER PURIFICATION BOARDS

Highland	mm	241	180	71	141	131	63	125	108	84	181	191	294	161
	\%	123	110	53	124	115	61	114	85	57	115	103	174	82
North-East	mm	97	60	77	81	62	46	131	57	33	57	116	129	52
	\%	95	66	104	131	102	60	187	62	31	66	120	125	51
Tay	mm	149	154	90	117	110	23	135	91	41	108	146	147	103
	\%	111	131	98	143	147	24	163	89	35	94	120	124	77
Forth	mm	143	133	86	103	90	18	110	96	39	99	109	112	92
	\%	131	134	112	149	132	21	147	98	34	92	103	104	84
Tweed	mm	152	110	102	93	62	21	90	65	35	66	99	120	75
	\%	169	118	148	160	102	28	132	73	31	71	113	115	83
Solway	mm	191	144	108	150	148	17	122	77	69	79	175	198	136
	\%	126	103	116	165	168	18	136	70	53	52	122	137	90
Clyde	mm	226	187	90	156	184	33	129	110	86	157	190	274	190
	\%	122	116	80	149	179	34	125	85	61	90	104	164	102

Nole: The most recent monthly rainfall figures for England and Wales correspond to the MORECS areal assessments derived by the Meteorological Office; for the Scottish RPBs the December 1991 totals were estimated from the isohyetal map provided with the MORECS bulletin. The regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.

TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

		Aug-Dec 91 Est Return Period, years		Jan-Dec 91 Est Return Period, years		Mar 90 - Dec 91 Est Return Period, years		Nov 88 - Dec 91 Est Return Period, years	
England and	mm	299		776				2525	
Wales	\% LTA	67	20-30	85	5-10	80	40-60	86	30-40
NRA REGIONS									
North West	mm	501		1058		1924		3574	
	\% LTA	83	2-5	87	5-10	86	5-15	92	5-10
Northumbria	mm	330		798		1416		2397	
	\% LTA	78	5-10	91	2-5	88	5-10	85	30-40
Severn Trent	mm	237		645		1117		2130	
	\% LTA	65	15-25	83	5-10	78	40-60	86	20-30
Yorkshire	mm	277		672		1219		2216	
	\% LTA	70	10-20	81	10-20	80	30-45	83	50-70
Anglian	mm	182		467		812		1537	
	\% LTA	64	20-30	77	15-25	72	>200	79	>200
Thames	mm	189		603		950		1845	
	\% LTA	56	40-50	86	5-10	73	100-140	82	40-60
Southern	mm	220		701		1143		2118	
	\% LTA	55	40-50	88	2-5	79	30-40	83	35-50
Wessex	mm	276		767		1226		2374	
	\% LTA	64	10-20	88	2-5	77	40-60	85	20-30
South West	mm	398		1087		1829		3497	
	\% LTA	68	10-20	91	2-5	84	10-20	91	5-10
Welsh	mm	495		1215		2061		3940	
	\% LTA	75	5-10	91	2-5	85	10-20	92	5-10
Scotland	mm	703		1442		2816		5106	
	\% LTA	99	<2	101	2-5	107	5-10	111	20-30
RIVER PURIFICATION BOARDS									
Highland	mm	911		1730		3462		6441	
	\% LTA	106	2-5	100	<2	109	5-10	116	100-140
North-East	mm	387		901		1711		2837	
	\% LTA	78	5-10	88	5-10	91	5-10	87	30-40
Tay	mm	545		1265		2252		4153	
	\% LTA	90	2-5	101	2-5	98	2-5	103	2-5
Forth	mm	451		1087		2038		3696	
	\% LTA	82	5-10	97	2-5	99	<2	104	2-5
Tweed	mm	395		938		1698		2943	
	\% LTA	81	5-10	94	2-5	93	2-5	92	5-10
Solway	mm	657		1423		2510		4573	
	\% LTA	91	2-5	100	<2	96	2-5	100	<2
Clyde	mm	897		1786		3359		6122	
	\% LTA	105	2-5	107	2-5	109	5-10	114	40-50

Return period assessments are based on tables provided by the Meteorological Office* and are tabulated for guidance only. These assume a start in a specified month; return periods for a start in any month may be expected to be about an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods underlined.
The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.

[^0]FIGURE 1. MONTHLY RAINFALL FOR 1990-1991 AS A PERCENTAGE OF THE 1941-1970 AVERAGE

England and Males

North West
Region

Yorkshire Region

Southern
Region

Scotland

Northumbria
Region

Anglian
Region

Hessex
Region

Nelsh Region

Severn-Trent Region

Thames
Region

South Mest Region

FIGURE 2 MONTHLY RIVER FLOW HYDROGRAPHS

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELLECTED PERIODS RANKED IN THE RECORD

River/ Station name	Aug	Sept	Oct 1	Nov	Dec 1991		$\begin{gathered} 6 / 91 \\ \text { to } \\ 12 / 91 \end{gathered}$		$\begin{gathered} 1 / 91 \\ \text { to } \\ 12 / 91 \end{gathered}$		$\begin{gathered} 5 / 90 \\ \text { to } \\ 12 / 91 \end{gathered}$		$\begin{gathered} 5 / 89 \\ \text { to } \\ 12 / 91 \end{gathered}$	
	$\begin{gathered} \mathrm{mm} \\ \text { \%LT } \end{gathered}$	$\begin{gathered} \text { mm } \\ \text { \%LT } \end{gathered}$	$\begin{array}{r} \mathrm{mm} \% \\ \text { LT } \end{array}$	$\begin{gathered} \mathrm{mm} \\ \text { \%LT } \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	rank /yrs	$\begin{gathered} \mathrm{mm} \\ \text { \%LT } \end{gathered}$	rank /yrs	$\begin{array}{r} \mathrm{mm} \\ \text { \%LT } \end{array}$	rank /yrs	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank lyrs	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	rank /yrs
Dee at Park	$\begin{array}{r} 17 \\ 53 \end{array}$	17 41	70 87	122 165	44 50	120	367 96	$\begin{array}{r}9 \\ \hline 19\end{array}$	779 100	/19	1116 90	/18	1742 85	/17
Tay at Ballathie	34 66	54 77	$\begin{aligned} & 124 \\ & 111 \end{aligned}$	173 145	118 84	19 140	613 105	26 139	1246 111	29 139	1763 99	19 138	3217 111	28 137
Whiteadder Water at Hutton Castle	7 45	7 4	32	$\begin{aligned} & 35 \\ & 94 \end{aligned}$	30 66	6 123	106	122^{5}	346 88	$\begin{array}{r}8 \\ \hline 82\end{array}$	564 95	121	742 75	120
South Tyne at Haydon Bridge	17 43	15 29	$\begin{aligned} & 55 \\ & 79 \end{aligned}$	$\begin{aligned} & 148 \\ & 165 \end{aligned}$	125 128	21 130	399 98	13 128	817 108	20 128	1175 97	14 126	1853 93	8 124
Wharfe at Flint Mill Weir	15 37	15 33	36 56	117 149	91 94	19 137	315 83	10 136	668 93	13 136	968 85	7 135	1555 83	$\begin{array}{r}3 \\ \hline\end{array}$
Derwent at Buttercrambe	6 42	5 37	7 34	17 60	14 35	/31	69 48	130	238 73	130	351 70	3 129	522 63	128
Trent at Colwick	11 66	10 60	10 43	19 63	25 56	4 134	103 63	$1 / 33$	252 71	133	377 69	132	680 75	131
Lud at Louth	$5{ }^{7}$	88 71	7 58	7 48	7 36	2 124	53 53	/23	103 40	123	273 45	122	317 50	121
Witham at Claypole Mill	4 57	5 81	5 59	7 59	7 38	r ${ }^{5}$	38 56	9 133	116 63	/32	156 58	6 132	312 69	/31
Little Ouse at Abbey Heath	4 5	4 54	40	5 41	6 36	1 124	33 46	2 124	78 46	/23	119 46	/23	230 54	/22
Colne at Lexden	3 74	3 71	3 36	5 41	5 30	/33	29 52	4 132	65 48	3 132	94 47	131	202 61	130
Thames at Kingston (natr.)	$8{ }^{7}$	6 67	6 45	12 56	10 33	8 1109	62 59	19 $/ 109$	152 62	11 $/ 109$	208 57	/108	452 74	11 1107
Blackwater at Swallowfield	11 96	11 84	12 62	19	14 46	r ${ }^{2}$	99 80	10 139	216 83	10 $/ 39$	313 77	6 138	612 91	11 137
Coln at Bibury	14 83	118	11 69	23 96	27 70	9 129	122 79	9 128	300 77	5 128	402 69	127	815 83	126
Great Stour at Horton	11 82	8 58	9 44	25 94	16 47	3 127	104 76	5 126	211 72	124	304 67	3 124	503 67	122
Itchen at Highbridge + Allbrook	23 82	21 80	23 76	25 73	26 63	3 134	176 79	4 133	354 77	4 133	552 76	/32	969 81	131
Stour at Throop Mill	9 88	8 69	13 61	29 95	25 46	+ ${ }^{5}$	114 75	[${ }^{5}$	312 82	4 119	389 68	118	831 86	117
Piddle at Baggs Mill	15 97	16 106	23 113	30 105	28 68	129	155 96	15 128	348 87	+27	459 77	4 126	861 85	4 124
Exe at Thorverton	$\begin{aligned} & 15 \\ & 53 \end{aligned}$	$\begin{aligned} & 14 \\ & 36 \end{aligned}$	$\begin{aligned} & 56 \\ & 75 \end{aligned}$	$\begin{aligned} & 128 \\ & 134 \end{aligned}$	$\begin{aligned} & 75 \\ & 57 \end{aligned}$	$\begin{array}{r} 7 \\ 136 \end{array}$	$\begin{array}{r} 345 \\ 84 \end{array}$	$\begin{array}{r} 12 \\ / 36 \end{array}$	$\begin{array}{r} 755 \\ 91 \end{array}$	$\begin{array}{r} 12 \\ / 35 \end{array}$	$\begin{array}{r} 1063 \\ 83 \end{array}$	$\begin{array}{r} 7 \\ \hline / 35 \end{array}$	$\begin{array}{r} 1809 \\ 86 \end{array}$	5 134
Tone at Bishops Hull	$\begin{array}{r} 8 \\ 65 \end{array}$	11 72	$\begin{aligned} & 25 \\ & 94 \end{aligned}$	$\begin{array}{r} 54 \\ 130 \end{array}$	$\begin{aligned} & 32 \\ & 48 \end{aligned}$	$/ 31^{5}$	$\begin{array}{r} 156 \\ 80 \end{array}$	$\begin{array}{r} 10 \\ / 31 \end{array}$	$\begin{array}{r} 389 \\ 82 \end{array}$	$\begin{array}{r} 6 \\ 130 \end{array}$	$\begin{array}{r} 487 \\ 70 \end{array}$	130^{2}	$\begin{array}{r} 989 \\ 84 \end{array}$	r ${ }^{5}$
Severn at Bewdley	12 70	8 37	17 51	54 101	39 62	13 171	150 69	10 171	399 88	19 $/ 70$	542 78	170	976 85	11 169
Wye at Cefn Brwyn	$\begin{aligned} & 178 \\ & 125 \end{aligned}$	102	167 80	315 126	192 68	9 139	1157 93	14 135	1976 96	13 134	3170 92	/30	5165 94	/25
Cynon at Abercynon	24 48	27 40	$\begin{array}{r} 120 \\ 99 \end{array}$	$\begin{aligned} & 182 \\ & 120 \end{aligned}$	$\begin{aligned} & 63 \\ & 33 \end{aligned}$	1 134	516 78	8 132	1310 105	17 132	1764 90	8 130	3208 99	15 128
Dee at New Inn	$\begin{aligned} & 54 \\ & 59 \end{aligned}$	43 32	$\begin{array}{r} 146 \\ 72 \end{array}$	$\begin{aligned} & 260 \\ & 107 \end{aligned}$	$\begin{array}{r} 189 \\ 76 \end{array}$	7 123	$\begin{array}{r} 823 \\ 78 \end{array}$	5 122	$\begin{array}{r} 1497 \\ 83 \end{array}$	r ${ }^{5}$	$\begin{array}{r} 2443 \\ 83 \end{array}$	121^{3}	4119 86	120
Eden at Sheepmount	16 52	17 39	38 51	$\begin{aligned} & 132 \\ & 162 \end{aligned}$	$\begin{aligned} & 83 \\ & 92 \end{aligned}$	$\begin{array}{r} 11 \\ 122 \end{array}$	$\begin{array}{r} 332 \\ 92 \end{array}$	$\begin{array}{r} 10 \\ 121 \end{array}$	$\begin{aligned} & 775 \\ & 112 \end{aligned}$	$\begin{array}{r} 14 \\ / 21 \end{array}$	$\begin{array}{r} 1105 \\ 103 \end{array}$	$\begin{array}{r} 12 \\ 19 \end{array}$	$\begin{array}{r} 1811 \\ 103 \end{array}$	10 117
Clyde at Daldowie	20 49	28 49	58 70	$\begin{aligned} & 151 \\ & 160 \end{aligned}$	$\begin{aligned} & 140 \\ & 143 \end{aligned}$	25 129	$\begin{aligned} & 453 \\ & 106 \end{aligned}$	15 128	877 115	23 128	$\begin{array}{r} 1372 \\ 111 \end{array}$	20 127	2274 114	22 126

Notes: (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff as rank 1 .
(iii) sLT means percentage of long term average from the start of the record to 1991 . For the long periods (at the right of this table), the end date for the long term is 1991.

TABLE 4 START-MONTH RESERVOIR STORAGES UP TO JANUARY 1991

Area	$\begin{gathered} \text { Reservoir (R)/ } \\ \text { Group (G) } \end{gathered}$		Capacity ${ }^{*}$ (MI)	Aug	Sep (\%) \downarrow	Oct	Nov	Dec	$\begin{array}{r} 1992 \\ \text { Jan } \end{array}$	$\begin{array}{r} 1991 \\ \text { Jan } \end{array}$
North West	Northern Command Zone ${ }^{1}$ Vyrnwy	(G) (R)	133375 55146	55 83	43 85	33 71	41 82	72 85	79 95	69 87
Northumbria	Teesdale ${ }^{2}$ Kielder	(G) (R)	$\begin{array}{r} 87936 \\ \text { 199175* } \end{array}$	52	39	$\begin{array}{r} 31 \\ 85^{*} \end{array}$	$\begin{array}{r} 41 \\ 85^{*} \end{array}$	$\begin{array}{r} 68 \\ 96^{*} \end{array}$	$\begin{array}{r} 88 \\ 99 * \end{array}$	$\begin{array}{r} 96 \\ 92^{*} \end{array}$
Severn-Trent	Clywedog Derwent Valley ${ }^{3}$	(R) (G)	$\begin{aligned} & 44922 \\ & 39525 \end{aligned}$	$\begin{aligned} & 94 \\ & 66 \end{aligned}$	$\begin{aligned} & 91 \\ & 53 \end{aligned}$	74 35	75 32	82	87	$\begin{array}{r} 91 \\ 100 \end{array}$
Yorkshire	Washburn ${ }^{4}$ Bradford supplys	(G) (G)	$\begin{aligned} & 22035 \\ & 41407 \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \end{aligned}$	$\begin{aligned} & 46 \\ & 50 \end{aligned}$	$\begin{aligned} & 36 \\ & 38 \end{aligned}$	$\begin{aligned} & 28 \\ & 37 \end{aligned}$	$\begin{aligned} & 48 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 86 \end{aligned}$	$\begin{aligned} & 64 \\ & 89 \end{aligned}$
Anglian	Grafham Rutland	(R) (R)	$\begin{array}{r} 58707 \\ 130061 \end{array}$	$\begin{aligned} & 95 \\ & 81 \end{aligned}$	$\begin{aligned} & 88 \\ & 70 \end{aligned}$	81	$\begin{aligned} & 76 \\ & 63 \end{aligned}$	81 63	$\begin{aligned} & 88 \\ & 63 \end{aligned}$	$\begin{aligned} & 61 \\ & 60 \end{aligned}$
Thames	London ${ }^{6}$ Farmoor ${ }^{7}$	(G) (G)	$\begin{array}{r} 206232 \\ 13843 \end{array}$	$\begin{array}{r} 90 \\ 100 \end{array}$	80 89	66 82	57 89	71 97	75 99	60
Southern	Bewl Ardingly	(R) (R)	$\begin{array}{r} 28170 \\ 4627 \end{array}$	$\begin{array}{r} 75 \\ 100 \end{array}$	73 81	62 84	54 81	58 85	58 88	38
Wessex	Clatworthy Bristol WW ${ }^{8}$	(R) (G)	$\begin{aligned} & 5364 * \\ & 36620 \end{aligned}$	$\begin{array}{r} 59 * \\ 71 \end{array}$	47* 57	40* 46	59 39	89 50	87 53	66 38
South West	Colliford Roadford Wimbleball ${ }^{10}$ Stithians	(R) (R) (R) (R)	$\begin{array}{r} 28540 \\ 34500 \\ 21320 \\ 5205 \end{array}$	90 95 73 66	86 89 63 53	81 84 52 40	79 81 57 34	83 86 69 34	83 85 73 37	73 689 48 49
Welsh	Celyn + Brenig Brianne Big Five ${ }^{11}$ Elan Valley ${ }^{12}$	(G) (R) (G) (G)	$\begin{array}{r} 131155 \\ 62140 \\ 69762 \\ 99106 \end{array}$	89 93 92 87	79 92 92 85	68 84 69 77	71 89 73 90	84 100 87 94	94 100 93 94	92 100 71 100
Lothian	Edinburgh/Mid Lothian West Lothian East Lothian	(G) (G) (G)	$\begin{array}{r} 97639 \\ \\ 5613 \\ 10206 \end{array}$						95 90 95	

- Live or usable capacity (unless indicated otherwise)
* Gross storage/percentage of gross storage

1. Includes Haweswater, Thirlmere, Stocks and Barnacre.
2. Cow Green, Selset, Grassholme, Balderhead, Blackton and Hury.
3. Howden, Derwent and Ladybower.
4. Swinsty, Fewston, Thruscross and Eccup.
5. The Nidd/Barden group (Scar House, Angram, Upper Barden, Lower Barden and Chelker) plus Grimwith.
6. Lower Thames (includes Queen Mother, Wraysbury, Queen Mary, King George VI and Queen Elizabeth II) and Lee Valley (includes King George and William Girling) groups - pumped storages.
7. Farmoor 1 and 2 -pumped storages.
8. Blagdon, Chew Valley and others.
9. The new Roadford reservoir was still filling after impounding.
10. Shared between South West (river regulation for abstraction) and Wessex (direct supply).
11. Usk, Talybont, Llandegfedd (pumped storage), Taf Fechan, Taf Fawr.
12. Claerwen, Caban Coch, Pen y Garreg and Craig Goch.
[^1]FIGURE 3 GROUNDWATER HYDROGRAPHS
Site name: DALTON HOLME

Site name: WASHPIT FARM

Site name: FAIRFIELDS

Max, Min and Moan valuas calculated from voare 1974 to 1889

Site name: ROCKLEY
 Max, MIn and Mean valuas calculaled from veare l933 to 1989

Site name: LITTLE BROCKLESBY
Naflonal grid reference: TA 13710888 Well number: TA10/40 Aquilior: CHALK AND UPPER GREENSAND Measuring laval: 42.97

Site name: THE HOLT

$1988 \quad 1989 \quad 1990$
1991
Max, Min and Mean values calculated from years 1964 TO 1989

Site name: REDLANDS HALL,ICKLETON
Notlonal grid reference: TL 4522482 Well number: TL44/12 Aquifor: CHALK AND UPPER GREENSAND Measuring leval: 76.19


```
            1988 1989 1990
1991 Max, Min and Mean values calculated from years 1964 to 1989
A break in the dota line indiestoe a reoording inferval of greoter than in wooks
```

Site name: LITTLE BUCKET FARM, WALTHAM

1988	1989	1990	1991
Max, MIn and Mean values calculated fram years	1971	to	1989

Site name: COMPTON HOUSE

Site name: NEW RED LION

Site name: LLANFAIR DC

A break in the data Mne indieatoe oc reocording interval of greater then 8 meoke

Slte narne: BUSSELS NO.7A

Site name: WEST WOODYATES MANOR

A break in the data Mine indioctean a reoording lnterval af greater than I weoks

Site name: AMPNEY CRUCIS
National grid referenca: SP 05950190 Well number: SP00/62 Aquifar: MIDDLE JURASSIC Measuring leval: 109.54

Site name: WEEFORD FLATS,WEEFORD
Natlonal grid reference: SK 14400464 Well number: SK10/9 Aquifer: PERMO-TRIASSIC SANDSTONE Measuring leval: 96.21
 $1988 \quad 1989 \quad 1990 \quad 1991$ Max, Min and Mean values calculated from years 1866 TO 1989

Site name: ALSTONFIELD


```
rom 1974 то 1988
```

TABLE 5 A COMPARISON OF DECEMBER GROUNDWATER LEVELS : 1991, 1990 AND 1989

Site	Aquifer	Records commence	Average December Level	December 1989		$\begin{gathered} \text { December } \\ 1990 \end{gathered}$		December and January 1991-92		No of years December levels <1991	Lowest pre-1991 level (any month)
				Day	Level	Day	Level	Day	Level		
Dalton Holme	C \& UGS	1889	15.79	28/12	10.89	06/12	10.34	3/01	10.62	1	10.34
Little Brocklesby	C \& UGS	1926	11.85	29/12	6.31	27.12	4.86	27/12	4.60	0	4.56
Washpit Farm	C \& UGS	1950	43.40	4/12	42.13	4/12	41.31	6/01	40.51	0	41.24
The Holt	C \& UGS	1964	86.79	21/12	86.04	6/12	85.81	5/01	84.74	2	83.90
Fairfields	C \& UGS	1974	23.01	18/12	22.77	6/12	22.16	10/12	22.05	0	22.15
Redlands Farm	C \& UGS	1964	39.36	27/12	35.68	21/12	34.04	24/12	32.46	0	34.04
Rockley	C \& UGS	1933	133.82	31/12	130.10	31/12	$\begin{aligned} & 128.94 \\ & \text { dry } \end{aligned}$	5/01	130.11	>10	$\begin{aligned} & \text { dry } \\ & \text { (below } \\ & 128.94 \text {) } \end{aligned}$
Little Bucket Farm	C \& UGS	1971	64.05	6/12	57.81	31/12	57.63	27/12	61.97	7	56.77
Compton House	C \& UGS	1894	39.77	29/12	31.02	28/12	27.96	2/01	30.87	>10	27.64
West Dean	C \& UGS	1940	1.97	29/12	1.68	28/12	1.39	24/12	1.72	>10	1.01
Lime Kiln Way	C \& UGS	1969	124.92	9/12	124.27	5/12	124.69	2/01	124.18	0	124.09
Ashton Farm	C \& UGS	1974	67.15	15/12	63.80	5/12	63.20	30/12	68.60	9	63.10
West Woodyates	C \& UGS	1942	86.19	27/12	83.10	3/12	68.90	2/01	83.80	>10	67.62
New Red Lion	LLst	1964	12.70	18/12	7.20	31/12	5.49	17/12	5.68	1	3.29
Ampney Crucis	Mid Jur	1958	101.97	10/12	101.54	10/12	97.38	9/12	101.94	> 10	97.38
Dunmurry (ND)	PTS	1985	28.24	30/12	27.79	31/12	28.53	19/12	28.02	2	27.47
Llanfair DC	PTS	1972	79.92	26/12	79.74	1/12	79.16	10/12	79.25	1	78.85
Morris Dancers	PTS	1969	32.61	11/12	32.20	28/12	32.11	19/12	32.11	3	30.87
Weeford Flats	PTS	1966	89.92	19/12	89.15	17/12	89.05	06/12	$\begin{aligned} & 88.61 \\ & \text { dry } \end{aligned}$	1	$\begin{gathered} \text { (dry) } \\ \text { (below } \\ 88.61 \text {) } \end{gathered}$
Bussels 7A	PTS	1972	23.79	17/12	23.60	19/12	23.46	31/12	23.63	>10	22.90
Rusheyford NE	MgLst	1967	75.84	15/12	74.99	17/12	74.37	6/12	74.80	>10	64.77
Peggy Ellerton	MgLst	1968	34.14	11/12	33.15	06/12	32.40	10/12	32.71	2	31.10
Alstonfield	CLst	1974	192.33	12/12	175.96	18/11	186.64	10/12	178.23	2	174.22

Groundwater levels are in metres above Ordnance Datum

C \& UGS	Chalk and Upper Greensand	Mid Jur	Middle Jurassic limestones
LLst	Lincolnshire Limestone	MgLst	Magnesian Limestone
PTS	Permo-Triassic sandstones	CLst	Carboniferous Limestone

FIGURE 4 LOCATION MAP OF GAUGING STATIONS AND GROUNDWATER INDEX WELLS

[^0]: * Tabony, R.C., 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).

[^1]: Note: Variations in storage depend on the balance between inputs (from catchment rainfall and any pumping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategies for making the most efficient use of water stocks will further affect reservoir storages. Table 4 provides a link between the hydrological conditions described elsehwere in the report and the water resources situation.

