Hydrological Summary for Great Britain

JANUARY 1993

Rainfall

Around 150% of average for GB, the wettest month nationwide for almost three years. Provisional data indicate that Scotland registered its second highest monthly precipitation total in a record from 1869. A few districts in eastern England recorded below average rainfall but, regionally, only modest long term deficiencies can now be recognised.

River flows

As in December, flooding was widespread. Around midmonth runoff rates in large parts of Scotland were remarkable and floodplain inundation was extensive. The maximum daily mean flow on the Tay established a new record for the national River Flow Archive. In the English lowlands greatly increased baseflows helped to continue the recovery in runoff rates and winter runoff thus far is notably high over wide areas.

Groundwater

Some further dramatic recoveries occurred in the Chalk but water-tables in a few eastern localities remain appreciably below average. The benefits of late-1992 infiltration are now widely evident and the transformation in groundwater resources since last summer is very notable.

General

The water resources outlook in late January was very healthy in almost all areas. The subsequent dry spell has directed attention to the need for sufficient rainfall, well into the spring, to avoid the early onset of a steep deterioration in resources as occurred in 1990.

Institute of Hydrology

HYDROLOGICAL SUMMARY FOR GREAT BRITAIN - January 1993

Data for this report have been provided principally by the regional divisions of the National Rivers Authority in England and Wales, the River Purification Boards in Scotland and by the Meteorological Office. Reservoir contents information has been supplied by the Water Services Companies, the NRA or, in Scotland, the Lothians Regional Council. The most recent areal rainfall figures are derived from a restricted network of raingauges (particularly in Scotland) and a proportion of the river flow data is of a provisional nature.

A map (Figure 3) is provided to assist in the location of the principal monitoring sites.

Rainfall

January was generally mild and notably unsettled particularly in Scotland where severe gales and blizzard conditions punctuated the month. The boisterous weather extended into southern Britain in mid-month and many areas recorded fewer than six rainless days in January. In eastern England individual daily rainfall totals were often modest but a series of vigorous Atlantic frontal systems brought widespread and heavy rainfall across Scotland which experienced a remarkably wet month with extensive flooding.

The provisional January rainfall total for Britain is around 150% of the 1941-70 average but the spatial distribution demonstrated a marked accentuation in the normal NW/SE rainfall gradient. Based on a very limited network of raingauges the monthly precipitation total for Scotland - more than twice the long term average nationwide with some central areas exceeding 300% - ranks January 1993 as the second wettest month on record for Scotland (marginally eclipsed by February 1990) in a general rainfall series from 1869. For England and Wales, January rainfall totals were generally above average in the west and close to the 1941-70 mean in eastern areas. Importantly however, rainfall in a few districts where full terminations to the drought are awaited (e.g. parts of northern Kent, Lincolnshire and the lower Trent Valley), fell a little below average, parts of the north-eastern seaboard were also relatively dry.

On a regional basis, accumulated rainfall totals are above, to well above, average within the twelvemonth timeframe and, over wide areas, notably high over the period beginning in the summer of 1992. England and Wales experienced its second wettest July-January period since 1961 and in the Thames Valley the seven-month total is the third highest in over 50 years; other parts of eastern England received less abundant precipitation and a few moderate long term deficiencies remain. For Scotland, the August-January period is the second wettest six-month sequence (for ANY start month) on record and accumulated totals over longer timespans are also remarkable - the 60-month rainfall total (beginning in February 1988), for example, is unprecedented and appreciably greater than any recorded 60-month sequence prior to 1980.

Rainfall over the last eleven months has served to end the meteorological drought in regional terms; a full termination is still awaited in a few districts in the eastern lowlands. The recent persistence of high pressure over the English lowlands provides a timely reminder that - as over the first third of 1990 - transformations in the water resources outlook can occur relatively rapidly in the late winter and spring. Average rainfall is needed through into April to consolidate the very substantial improvements in water resources since the summer of 1992.

Runoff

With evaporation rates very moderate and catchments saturated for much of the month, the January precipitation was especially hydrologically effective. Rivers were in spate over wide areas, and in the fortnight beginning around the 9th, flooding occurred from the Thames Valley to the Scottish Highlands.

Widespread floodplain inundation was heralded by the passage of a particularly intense depression (the central pressure fell below 920 millibars) on the 10/11th - subsequently overbank flows were common in western Scotland and Wales. Thereafter, flood alerts extended across into the English lowlands and blizzards in northern Britain produced substantial snow accumulations. On the 16/17th the passage of a warm front resulted in a rapid thaw in Scotland and the snowmelt, together with significant rainfall, produced exceptional runoff rates in many rivers; flows were particularly remarkable in rivers draining from the Highlands. Many gauging stations in the Tay basin registered new maximum flows around mid-month - by which time the January precipitation total for Lochearnhead had exceeded 400 mm . On the River Tay itself (at Ballathie) a peak flow assessed at around $2200 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was recorded on the 17th; this is the second highest flow registered on the national River Flow Archive (surpassed only by the Findhorn flood of August 1970), the daily mean flow at Ballathie, which closely approached $2000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, established a new record. As with the February 1990 event, the flood peak on the Tay was attenuated by upstream spillage over the flood banks but the flood damage in Perth was considerable; historical data indicate that the water level was the highest since 1814. Many eastward-draining Scottish rivers recorded unprecedented flow rates. The Earn (at Kinkell Bridge, Perthshire) exceeded its previous maximum by a very wide margin, the River Teith, Central Region, also surpassed its previous maximum flow and a return period exceeding 50 years was ascribed to the peak on the Allan Water (at Bridge of Allan, Central Region). Floodplain inundation was very extensive and transport disruption was severe.

Monthly runoff totals for January were close to or above average in almost all index catchments. Relatively low average flows were registered in north-eastern England (on, for example, the Yorkshire Derwent and the Leven) but the high flows elsewhere were more notable. Rivers registering record January runoff totals showed a very wide distribution, examples include the Luss which flows into Loch Lomond, Earn (Tayside), Kennet and Hampshire Avon. Even in those parts of eastern England where rainfall was moderate the recovery in permeable catchments continued as the benefit of the wet weather late in 1992 became evident as increasing baseflows. The transformation since the early autumn of last year is well illustrated on the Lee where runoff over the last four months exceeds that for the preceding 18. Table 3 confirms that notably high three-month runoff accumulations coexist with some significant long term deficiencies in parts of the English lowlands. Nonetheless the substantial increases in groundwater levels (see below) imply that - given average spring rainfall - no repetition of the depressed runoff rates experienced in 1989 and 1990 in permeable catchments may be expected this summer.

Reservoir contents are at, or near, capacity throughout Britain. Flood drawdown releases were common in the west during January whereas in the English lowlands stocks in the major pumped storage reservoirs stood at over 90% - a comparison between the early February 1993 contents at Rutland, Bewl and the London Group of reservoirs and those of a year ago provide a measure of the improved water resources outlook.

Groundwater

The benefit of the early commencement of infiltration, in the autumn of 1992, and substantial rainfall over much of the last four months, is clearly evident in the groundwater level traces for the index boreholes - in the Chalk especially. Over most of Britain, groundwater levels have shown a very
substantial rise through the winter and water-tables (with a few significant exceptions) range from well within to well above the normal range. At several Chalk sites the recent transformation has been dramatic with recharge over the last three months exceeding that over the preceding 30. The watertable at Redlands Hall (Cambridgeshire), for example, has risen from a period-of-record minimum to close to the seasonal maximum since early November. Exceptionally brisk recoveries characterise most of the Chalk and even at slow responding boreholes like Washpit Farm (Norfolk) levels, though still well below average, are at their highest for two and a half years and some further increase may be anticipated as winter infiltration reaches the depressed water-table. An appreciable recovery is also underway at the deep Therfield Rectory well which dried up a year ago for the first time in 70 years.

In the more quickly responding, fissured aquifers to the west of the Chalk outcrop, a modest decline in groundwater levels occurred in some areas during January. Nonetheless, levels remain well within the normal range. A notable recent recovery has occurred in the Permo-Triassic sandstones of the South-West but at Llanfair DC in north Wales, the water-table remains close to the seasonal minimum. Recoveries are also still awaited in, for example, parts of the deeper Nottinghamshire aquifers and the Weeford Flats borehole (where levels are heavily influenced by pumping) remains dry.

In general terms, it is probable that groundwater levels throughout the country will recover at least to mean levels by the normal onset of the summer recession, typically late March or early April. Given average rainfall, the recession should certainly start from a much higher level than was the case in 1992. Compared to mid-1992, the overall water resources outlook is very encouraging. Some caution is necessary, however. Dramatic recoveries in water-tables over the winter of $1989 / 90$ were followed by equally steep recessions through the exceptionally dry spring. At least average rainfall in areas is required through into April to continue the recovery in some eastern lowland areas (and a few other districts) and delay the onset of the seasonal decline in groundwater levels.

Institute of Hydrology/British Geological Survey 11 February 1993

TABLE 1 1992/93 RAINFALL AS A PERCENTAGE OF THE 1941-70 AVERAGE
$\left.\begin{array}{llllrrrrrrrrrrr}\hline & & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { June } & \text { July } & \text { Aug } & \text { Sept } & \text { Oct } & \text { Nov } & \text { Dec } & \text { Jan } \\ & & & & & & & & & & & & & & \\ 1992\end{array}\right]$

RIVER PURIFICATION BOARDS

Highland	mm	197	229	248	138	105	46	97	250	177	144	241	190	407
	\%	120	172	218	121	102	42	76	169	112	78	143	101	248
North-East	mm	67	52	113	68	57	50	48	128	113	107	97	90	200
	\%	74	70	182	111	74	71	52	120	130	110	94	88	220
Tay	mm	117	111	172	90	57	30	78	197	152	92	165	106	324
	\%	99	121	210	120	60	36	76	167	132	76	153	79	274
Forth	mm	110	111	164	76	45	25	67	174	156	80	167	81	236
	\%	111	144	238	112	54	33	68	150	144	75	155	74	238
Tweed	mm	63	70	138	98	52	27	60	151	126	80	123	75	139
	\%	68	101	238	161	68	40	67	132	135	91	118	83	149
Solway	mm	91	140	206	144	66	30	99	214	166	114	190	119	200
	\%	65	151	226	164	72	33	90	165	110	79	131	79	143
Clyde	mm	170	231	267	144	93	41	123	270	195	135	272	142	332
	\%	106	204	254	140	96	40	95	190	111	74	163	76	206

Note: The most recent monthly rainfall figures correspond to the MORECS areal assessments derived by the Meteorological Office. The regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.

TABLE 2 RAINFALL FOR SELECTED PERIODS WITH CORRESPONDING RETURN PERIOD ESTIMATES

		Ju192-Jan93 Est Return Period, years		Feb92-Jan93 Est Return Period, years		Mar90-Jan93 Est Return Period, years		Aug88-Jan93 Est Return Period, years	
England and	mm	712		1013		2420		3842	
Wales	\% LTA	118	5-10	111	$\underline{5}$	90	10	92	10
NRA REGIONS									
North West	mm	856		1280		3282		5308	
	\% LTA	104	≤ 5	105	≤ 5	92	5-10	95	5
Northumbria	mm	604		909		2297		3513	
	\% LTA	104	≤ 5	103	≤ 5	92	5-10	89	15-25
Severn-Trent	mm	596		858		1975		3164	
	\% LTA	120	5-10	111	5	90	5-10	92	5-10
Yorkshire	mm	605		870		2072		3298	
	\% LTA	112	≤ 5	104	≤ 5	88	10-20	88	20-25
Anglian	mm	514		719		1539		2396	
	\% LTA	131	10-20	118	$\underline{10}$	89	10	88	15-25
Thames	mm	600		841		1761		2821	
	\% LTA	131	10-20	119	10	88	10	90	10
Southern	mm	621		854		1946		3097	
	\% LTA	117	$\underline{5}$	107	≤ 5	87	10-20	87	15-25
Wessex	mm	685		935		2115		3492	
	\% LTA	119	5-10	108	≤ 5	86	10-20	90	10
South West	mm	904		1202		2975		4980	
	\% LTA	113	≤ 5	101	≤ 5	89	10	93	5
Welsh	mm	1005		1433		3450		5707	
	\% LTA	113	≤ 5	107	≤ 5	92	5	95	<5
Scotland	mm	1283		1913		4821		7601	
	\% LTA.	133	70-120	134	$\geq>200$	118	≥ 200	118	$\geq>200$
RIVER PURIFICATION BOARDS									
Highland	mm	1506		2272		5862		9398	
	\% LTA.	131	30-50	132	≥ 200	121	$\geq>200$	122	$\geq>200$
North-East	mm	782		1122		2833		4284	
	\% LTA.	115	5-10	110	$\underline{5}$	98	<5	94	5-10
Tay	mm	1114		1574		3852		6216	
	\% LTA.	135	30-50	125	30-40	109	5-10	111	15-25
Forth	mm	961		1382		3486		5523	
	\% LTA.	129	20-30	124	30-50	110	$\underline{10}$	110	15-25
Tweed	mm	753		1138		2873		4394	
	\% LTA	112	≤ 5	113	5-10	101	≤ 5	98	<5
Solway	mm	1101		1695		4232		6811	
	\% LTA	113	≤ 5	119	10-20	105	≤ 5	106	5-10
Clyde	mm	1469		2245		5736		9106	
	\% LTA	128	30-40	135	≥ 200	122	$\geq>200$	122	$\geq>200$

Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods underlined.
The tables reflect rainfall tolals over the period 1911-70 only and the estimate assumes a sensibly stable climate.

[^0]FIGURE 1 MONTHLY RIVER FLOW HYDROGRAPHS

TABLE 3 RUNOFF AS MM. ANID AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PEIRIODS RANKED IN THE RECORD

River/ Station name	Sep			Dec	Jan		$\begin{gathered} 11 / 92 \\ \text { to } \\ 1 / 93 \end{gathered}$		$\begin{gathered} 2 / 92 \\ \text { to } \\ 1 / 93 \end{gathered}$		$\begin{gathered} 5 / 90 \\ \text { to } \\ 1 / 93 \end{gathered}$		$\begin{gathered} 5 / 89 \\ \text { to } \\ 1 / 93 \end{gathered}$	
	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	$\begin{gathered} \text { rnm } \\ \text { \%LT } \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	$\begin{gathered} \mathrm{mml} \\ \text { \%L:. } \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	rank /yrs	$\begin{gathered} \text { mm } \\ \% \mathrm{LT} \end{gathered}$	$\begin{gathered} \text { rank } \\ \text { /yrs } \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	$\begin{gathered} \text { rank } \\ \text { /yrs } \end{gathered}$	$\begin{gathered} \text { mm } \end{gathered}$	rank /yrs	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	rank /yrs
Dee at Park	55 137	61 76	$\begin{array}{r} 90 \\ 118 \end{array}$	81 93	$\begin{aligned} & 155 \\ & 172 \end{aligned}$	$\begin{array}{r} 20 \\ / 21 \end{array}$	$\begin{aligned} & 325 \\ & 128 \end{aligned}$	17 121	761 98	11 120	1938 91	6 118	2564 87	2 117
Tay at Ballathie	$\begin{aligned} & 139 \\ & 200 \end{aligned}$	88 79	$\begin{aligned} & 148 \\ & 123 \end{aligned}$	173 12	327 227	41 $/ 41$	654 159	40 141	1461 129	38 140	3396 111	30 $/ 38$	4850 116	33 137
Whiteadder Water at Hutton Castle	19 123	32 $\times 18$	48 129	415 $10: 2$	53 90	11 $/ 24$	147 104	12 124	385 99	12 123	987 94	/29	1165 80	6 120
South Tyne at Haydon Bridge	48 95	41 59	117 127	107 1013	$\begin{aligned} & 152 \\ & 154 \end{aligned}$	$\begin{array}{r} 30 \\ 131 \end{array}$	375 129	27 $/ 31$	811 107	18 $/ 29$	2031 98	12 $/ 25$	2708 94	/23 ${ }^{6}$
Wharfe at Flint Mill Weir	41 93	40 63	98 123	11:?	132 134	30 138	342 124	32 138	710 99	17 $/ 37$	1737 89	/35	2324 86	3 134
Derwent at Buttercrambe	11 82	21 -05	27 97	$5!$ $13: 3$	32 70	11 $/ 32$	115 103	19 $/ 32$	257 80	/31	623 71	129	793 65	2 $/ 28$
Trent at Colwick	20 121	30 $: .30$	52 173	$6!5$ $14: 9$	46 92	12 $/ 35$	163 131	33 $/ 35$	341 97	18 134	749 79	132	1052 81	$131{ }^{3}$
Soar at Littlethorpe	25 332	26 206	$\begin{array}{r} 46 \\ 265 \end{array}$	$\begin{gathered} 4: 3 \\ 15: L \end{gathered}$	$\begin{array}{r} 40 \\ 103 \end{array}$	$\begin{array}{r} 12 \\ / 22 \end{array}$	$\begin{aligned} & 135 \\ & 149 \end{aligned}$	22 $/ 22$	$\begin{aligned} & 259 \\ & 106 \end{aligned}$	14 $/ 20$	510 78	4 $/ 16$	736 82	4 $/ 14$
Lud at Louth	8 72	10 84	12 85	$3)$ 157	30 102	13 $/ 25$	72 117	17 $/ 25$	152 61	$\begin{array}{r}6 \\ \hline\end{array}$	337 52	- 22	480 53	/21
Colne at Lexden	216	16 $: 193$	28 232	25 159	29 128	25 $/ 34$	83 161	31 $/ 34$	$\begin{aligned} & 144 \\ & 106 \end{aligned}$	22 $/ 33$	245 70	/31	353 73	/30
Lee at Feildes Weir (natr.)	8 111	18 $: 182$	24 178	2:2	28 129	83 $/ 108$	75 140	85 $/ 108$	134 83	35 $/ 106$	262 61	8 $/ 103$	406 68	/101
Thames at Kingston (natr.)	17 191	24 180	39 182	6.3 201	53 143	$\begin{array}{r} 89 \\ / 111 \end{array}$	153 173	104 $/ 110$	275 112	$\begin{array}{r} 72 \\ / 110 \end{array}$	500 77	14 $/ 108$	743 83	$\begin{array}{r} 21 \\ / 107 \end{array}$
Kennet at Theale	16 122	17 110	31 161	6 L 23	60 179	32 $/ 32$	152 190	32 $/ 32$	272 94	11 $/ 31$	564 73	/29	850 80	2 128
Coln at Bibury	18 128	30 $: 189$	42 176	833)	80 158	29 130	209 181	30 130	416 107	19 129	861 84	8 $/ 27$	1273 89	9 $/ 26$
Great Stour at Horton	11 81	20 99	41 154	$4 / 5$ 13	39 97	15 $/ 29$	126 125	23 128	$\begin{array}{r} 246 \\ 85 \end{array}$	7 126	565 72	4 $/ 23$	764 71	/21
Itchen at Highbridge + Allbrook	22 84	24 80	29 86	$\begin{array}{r} 5 \cdot 4 \\ 13: 2 \end{array}$	$\begin{array}{r} 59 \\ 123 \end{array}$	$\begin{array}{r} 31 \\ / 35 \end{array}$	$\begin{aligned} & 142 \\ & 116 \end{aligned}$	$\begin{array}{r} 28 \\ / 35 \end{array}$	$\begin{array}{r} 350 \\ 77 \end{array}$	$\begin{array}{r} 4 \\ 134 \end{array}$	928 76	/32	1346 80	/31 ${ }^{1}$
Exe at Thorverton	$\begin{array}{r} 61 \\ 161 \end{array}$	63 85	$\begin{aligned} & 169 \\ & 175 \end{aligned}$	$\begin{aligned} & 15: 3 \\ & 12: \end{aligned}$	$\begin{aligned} & 223 \\ & 170 \end{aligned}$	$\begin{array}{r} 36 \\ / 37 \end{array}$	$\begin{aligned} & 550 \\ & 152 \end{aligned}$	$\begin{array}{r} 36 \\ / 37 \end{array}$	$\begin{aligned} & 942 \\ & 114 \end{aligned}$	$\begin{array}{r} 26 \\ / 36 \end{array}$	2053 92	11 $/ 35$	2800 91	$\begin{array}{r} 10 \\ / 34 \end{array}$
Tone at Bishops Hull	$\begin{array}{r} 16 \\ 106 \end{array}$	$\begin{aligned} & 23 \\ & 87 \end{aligned}$	$\begin{array}{r} 45 \\ 107 \end{array}$	$\begin{aligned} & 10: 2 \\ & 15! \end{aligned}$	$\begin{array}{r} 90 \\ 113 \end{array}$	$\begin{array}{r} 19 \\ / 32 \end{array}$	$\begin{aligned} & 236 \\ & 126 \end{aligned}$	$\begin{array}{r} 26 \\ / 32 \end{array}$	400 85	7 $/ 32$	923 74	/30	1426 82	3 129
Severn at Bewdley	$\begin{array}{r} 35 \\ 163 \end{array}$	$\begin{aligned} & 28 \\ & 84 \end{aligned}$	$\begin{array}{r} 72 \\ 135 \end{array}$	715 $12: 3$	69 97	$\begin{array}{r} 35 \\ / 72 \end{array}$	217 116	54 $/ 72$	440 98	36 $/ 71$	1019 84	12 $/ 70$	1454 87	13 169
Cynon at Abercynon	$\begin{aligned} & 140 \\ & 213 \end{aligned}$	55 45	291 191	28.) 15	299 154	29 $/ 35$	870 162	35 135	1590 126	30 $/ 33$	3416 100	15 $/ 29$	4859 104	16 $/ 27$
Dee at New Inn	$\begin{aligned} & 156 \\ & 120 \end{aligned}$	$\begin{array}{r} 123 \\ 62 \end{array}$	$\begin{aligned} & 302 \\ & 124 \end{aligned}$	232 95	275 115	$\begin{array}{r} 16 \\ / 24 \end{array}$	809	18 $/ 24$	$\begin{array}{r} 1861 \\ 103 \end{array}$	$\begin{array}{r} 13 \\ / 23 \end{array}$	4434 89	4 $/ 21$	6111 89	2 120
Eden at Sheepmount	55 132	40 55	110 131	113 131	157 151	22 $/ 23$	386 138	20 122	780 113	14 $/ 21$	1919 102	9 117	2625 103	/15
Clyde at Daldowie	$\begin{aligned} & 107 \\ & 189 \end{aligned}$	61 74	174 181	111 112	197 184	28 130	$\begin{aligned} & 482 \\ & 156 \end{aligned}$	28 130	$\begin{array}{r} 1098 \\ 141 \end{array}$	$\begin{array}{r} 29 \\ / 29 \end{array}$	2591 122	27 $/ 27$	3492 121	$\begin{array}{r} 26 \\ / 26 \end{array}$

Notes: (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff as rank 1.
(iii) sLT means percentage of long term average from the start of the record to 1991. For the long periods (at the right of this table), the end date for the long term is 1992.

TABLE 4 START-MONTH RESERVOIR STORAGES UP TO FEBRUARY 1993

Area	$\begin{aligned} & \text { Reservoir (R)/ } \\ & \text { Group (G) } \end{aligned}$		Capacity ${ }^{\bullet}$ (MI)	1992			1993			1992 Feb
				Sep	Oct	Nov	Dec	Jan	Feb	
North West	Northern		133375	60	66	64	79	88	98	70
	Command Zone ${ }^{1}$	(G)								
	Vyrnwy	(R)	55146	96	93	81	88	89	86	86
Northumbria	Teesdale ${ }^{2}$	(G)	87936	63	68	79	95	90	98	88
	Kielder	(R)	199175*	84*	89*	87*	77*	74*	90*	91*
Severn-Trent	Clywedog	(R)	44922	87	92	86	92	84	96	88
	Derwent Valley ${ }^{3}$	(G)	39525	66	62	79	95	88	99	94
Yorkshire	Washburn ${ }^{\text {8 }}$	(G)	22035	64	64	70	89	95	99	77
	Bradford supply ${ }^{5}$	(G)	41407	56	65	65	83	94	100	90
Anglian	Grafham	(R)	58707	94	94	95	94	94	96	90
	Rutland	(R)	130061	86	93	95	96	95	93	67
Thames	London ${ }^{6}$	(G)	206232	89	94	96	96	96	96	81
	Farmoor ${ }^{7}$	(G)	13843	99	99	99	95	96	92	99
Southern	Bewl	(R)	28170	60	68	69	72	82	91	58
	Ardingly	(R)	4685	71	79	81	100	100	100	92
Wessex	Clatworthy	(R)	5364*	35*	40*	49*	70	100	100	88*
	Bristol WW ${ }^{8}$	(G)	38666*	58*	65*	61*	63*	94*	97*	58*
South West	Colliford	(R)	28540	63	65	67	73	82	88	82
	Roadford	(R)	34500	70	72	76	85	90	92	85
	Wimbleballl ${ }^{9}$	(R)	21320	48	50	55	71	90	100	76
	Stithians	(R)	5205	53	63	69	82	100	100	38
Welsh	Celyn + Brenig	(G)	131155	89	93	96	98	96	100	93
	Brianne	(R)	62140	90	99	100	100	99	100	97
	Big Five ${ }^{10}$	(G)	69762	83	86	87	91	94	99	93
	Elan Valley ${ }^{11}$	(G)	99106	100	100	100	100	98	100	91
Lothian	Edinburgh/Mid Lothian	(G)	97639	86	92	90	100	98	100	92
	West Lothian	(G)	5613	60	82	84	95	98	99	82
	East Lothian	(G)	10206	68	78	82	91	100	100	98

Live or usable capacity (unless indicated otherwise)

* Gross storage/percentage of gross storage

Kielder drawn down for ecological management
9. Shared between South West (river regulation for abstraction) and Wessex (direct supply).
10. Usk, Talybont, Llandegfedd (pumped storage), Taf Fechan, Taf Fawr.
11. Claerwen, Caban Coch, Pen y Garreg and Craig Goch.

Note: Variations in storage depend on the balance between inputs (from catchment rainfall and any pumping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategies for making the most efficient use of water stocks will further affect reservoir storages. Table 4 provides a link between the hydrological conditions described elsewhere in the report and the water resources situation.

FIGURE 2 GROUNDWATER LEVEL HYDROGRAPHS

TABLE 5 A COMPARISON OF JANUARY GROUNDWATER LEVELS: 1992 AND 1993
$\left.\begin{array}{llllllll}\hline \text { Site } & \text { Aquifer } & \begin{array}{c}\text { Records } \\ \text { commence }\end{array} & \begin{array}{c}\text { Average } \\ \text { January } \\ \text { level }\end{array} & & \text { January-February } \\ \text { 1992 }\end{array}\right)$
groundwater levels are in metres above Ordnance Datum

C \& UGS	Chalk and Upper Greensand	Mid Jur
LLst	Lincolnshire Limestone	Middle Jurassic Limestones
PTS	Permo-Triassic sandstones	CLst

FIGURE 3 LOCATION MAP OF GAUGING STATIONS AND GROUNDWATER INDEX WELLS

[^0]: * Tabony, R.C., 1977, The: Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office.

