Plydrological Summary for Creat Britaim

MARCH 1997

Rainfall

March was another exceptionally mild month but rainfall continued in an episodic vein - monthly totals providing a dramatic contrast with the very wet February. Unsettled conditions continued in Scotland but, from around the 5th, active frontal systems were rare in southern Britain; in some catchments $<5 \mathrm{~mm}$ of rainfall was reported over the ensuing four weeks and some localities in the South-East had registered notable absolute droughts (>30 days) by early April. Rainfall totals for March testified to an exaggeration in the NW/SE rainfall gradient across the country. Following a very wet start (110 mm at Balquhidder on the 1st) some parts of Scotland recorded well above average March precipitation whilst regional totals were greatly below average throughout England and Wales - which experienced its fourth driest March in over 50 years. Rainfall was especially meagre in some central, eastern and southern catchments. The Dec-Mar rainfall total for E\&W is the lowest since 1964 and has served to reintensify what is now a protracted, widespread and very severe rainfall deficiency. Rainfall over the last two years is the lowest - for any 24-month accumulation - in the entire E\&W series which begins in 1767. The AprilMarch periods for both 1995/96 and 1996/97 rank amongst the four driest in the last 150 years and the overall deficiency - in percentage terms - is the equivalent of around 5-6 months average rainfall over much of E\&W. However, local variations in intensity are important and the focus of the drought - initially in northern England - now encompasses much of the Midlands and eastern England.

River Flow

Normal early spring flow patterns characterised some catchments in northern Britain but, to the south, sustained recessions were much more typical with notably low flows reported over wide areas in early April - causing stress to the aquatic environment and, locally, some navigation problems. March runoff totals in Scotland were close to the normal range for most rivers but significantly above average in some areas. Almost all catchments were saturated by late February and most Scottish rivers were in spate early in March. On the 1st, the peak on the Tay exceeded 1350 cumecs, causing significant flooding and adding to a notable cluster of recent exceptional floods in rivers draining from the Highlands. Above average runoff totals in England were largely confined to the North-West, elsewhere totals in the 25-70\% range were typical with the most depressed runoff rates in eastern England and the Midlands - the Soar especially. Prior to the 1990s similar March runoff totals were relatively uncommon but broadly comparable runoff was reported in 1992, 1993 and, in some catchments, last year. For the winter half-year (Oct.Mar.) runoff is less than 40% of average in the worst affected areas and for 24 -month runoff accumulations
ending in March new minimum runoff totals have been established in around half the index catchments in E\&W. For some rivers (eg the Trent and Medway) the sequence of below average monthly mean flows is unprecedented and the mean flow since the spring of 1995 has, typically, been only around half the long term average - considerably less in some eastern Chalk streams. With baseflows modest and now declining, the steep March recessions may be expected to herald a general seasonal decline which, in the absence of above average rainfall, will result in notably low late summer flows, particularly for spring-fed streams (with a corresponding contraction in the stream network).

Groundwater

With significant infiltration in February in most outcrop areas and moist soils at month-end, average rainfall would have triggered a limited but important recovery in groundwater levels. In the event, rainfall was below 30% of average over most aquifer units and soil moisture deficits rose steeply - effectively curtailing the 1996/97 recharge season in much of the English lowlands. In March groundwater level downturns were reported from some responsive boreholes (eg Woodyates) and, by early April, recessions were well established in some eastern outcrops. Evidence of winter recharge appears as a mere inflection in the hydrographs for some boreholes (eg The Holt) and after two winters with recharge below 40% of average in much of the Chalk, groundwater levels are close to the seasonal minimum in much of the South-East (Yorkshire also). Levels in the northern and Midland Permo-Triassic sandstones are also depressed especially in the Redbank and Heathlanes boreholes. Provisional analyses suggest that overall groundwater resources were lower in the early spring of 1992 (and in 1976 also) - but the ensuing summer was relatively wet; below average late spring rainfall this year could result in a number of minimum groundwater levels being eclipsed by the late summer.

General

The notable dry spell has triggered an early start to the seasonal recession in river flows and groundwater levels and signalled a deterioration in the water resources outlook. However, helped by substantial replenishment to lowland pumped storage reservoirs, overall stocks increased marginally in March to stand very close to the seasonal average. By contrast, the protracted drought has severely reduced groundwater resources. The likelihood of exceptionally low summer flows and imposition of some restrictions (eg on hosepipes or spray irrigation) has increased. The scale of the difficulties encountered will still be determined by rainfall - and demand - patterns through the summer.

(Th) Imstitute of | This document is copyright and may not be |
| :--- |
| reproduced without prior permission of the |
| Natural Environment Research Council |

This report was compiled jointly by the Institute of Hydrology (a component of the Centre for Ecology and Hydrology) and the British Geological Survey - both organisations form part of the Natural Environment Research Council (NERC).

Data for this report have been provided principally by the regional divisions of the newly formed Environment Agency (England and Wales) and the Scottish Environment Protection Agency. For reasons of consistency and to provide greater spatial discrimination, the original regional divisions of the precursor organisations have been retained for use in the Hydrological Summaries. The majority of the areal rainfall figures have been provided by the Meteorological Office. The most recent areal rainfall figures are derived from a restricted network of raingauges and a proportion of the river flow data is of a provisional nature. Figure 3 is based on weather data collected by the Institute of Hydrology at Wallingford, Balquhidder (Central Region, Scotland) and Plynlimon. Reservoir contents information has been supplied by the Water Services Companies, the Environment Agency and, in Scotland, West of Scotland Water Authority and East of Scotland Water. A map (Figure 4) is provided to assist in the location of the principal monitoring sites.

Financial support towards the production of the Hydrological Summaries is given by the Department of the Environment, the Environment Agency, the Scottish Environment Protection Agency and the Office of Water Services (OFWAT).

The Hydrological Summaries are available on annual subscription at a current cost of $£ 48$ per year enquiries should be directed to the National Water Archive Office at the address below. No charge is made to those organisations providing data for the Summaries. The text of the monthly report, together with details of other National Water Archive facilities, is available on the World Wide Web: http://www.nwl.ac.uk:80/~nrfadata/nwa.html

MORECS

Most of the recent monthly regional rainfall data featured in the Hydrological Summaries are MORECS assessments. MORECS is the generic name for The Meteorological Office services involving the calculation of evaporation and soil moisture routinely for Great Britain. Products include a weekly issue of maps and tables of potential and actual evaporation, soil moisture deficits, effective rainfall and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares - or larger areas - and various sets of maps and tables are available according to user requirements. Options include a day-by-day retrospective calculation of soil moisture at any of 4000 raingauge sites.

Further information about MORECS services may be obtained from: The Meteorological Office, Sutton House, London Road, Bracknell, RG12 2SY

Tel: $01344856858 \quad$ Fax: 01344854024

Institute of Hydrology/British Geological Survey
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB

TABLE 1 1996/97 RAINFALL AS A PERCENTAGE OF THE 1961-90 AVERAGE
Note: The monthly rainfall figures are the copyright of The Meteorological Office.
These data may not be published or passed on to any unauthorised person or organisation.

		$\begin{gathered} \text { Mar } \\ 1996 \end{gathered}$	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	$\begin{array}{r} \text { Jan } \\ 1997 \end{array}$	Feb	Mar
England and Wales	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 43 \\ & 60 \end{aligned}$	$\begin{aligned} & 51 \\ & 85 \end{aligned}$	$\begin{aligned} & 57 \\ & 89 \end{aligned}$	$\begin{aligned} & 30 \\ & 46 \end{aligned}$	$\begin{aligned} & 41 \\ & 66 \end{aligned}$	$\begin{array}{r} 80 \\ 105 \end{array}$	$\begin{aligned} & 32 \\ & 42 \end{aligned}$	$\begin{array}{r} 89 \\ 105 \end{array}$	$\begin{aligned} & 126 \\ & 140 \end{aligned}$	$\begin{aligned} & 52 \\ & 55 \end{aligned}$	$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{array}{r} 100^{*} \\ 159 \end{array}$	$\begin{aligned} & 24 \\ & 34 \end{aligned}$
North West	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 36 \\ & 38 \end{aligned}$	$\begin{array}{r} 77 \\ 108 \end{array}$	$\begin{aligned} & 62 \\ & 83 \end{aligned}$	$\begin{aligned} & 49 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 76 \end{aligned}$	$\begin{aligned} & 88 \\ & 82 \end{aligned}$	$\begin{aligned} & 52 \\ & 45 \end{aligned}$	$\begin{aligned} & 149 \\ & 116 \end{aligned}$	$\begin{aligned} & 133 \\ & 108 \end{aligned}$	$\begin{aligned} & 64 \\ & 52 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 203 \\ & 260 \end{aligned}$	$\begin{aligned} & 66 \\ & 69 \end{aligned}$
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 31 \\ & 44 \end{aligned}$	$\begin{array}{r} 63 \\ 113 \end{array}$	$\begin{aligned} & 53 \\ & 85 \end{aligned}$	$\begin{aligned} & 22 \\ & 37 \end{aligned}$	$\begin{aligned} & 53 \\ & 82 \end{aligned}$	$\begin{aligned} & 67 \\ & 83 \end{aligned}$	$\begin{aligned} & 30 \\ & 41 \end{aligned}$	$\begin{aligned} & 68 \\ & 89 \end{aligned}$	$\begin{aligned} & 108 \\ & 126 \end{aligned}$	$\begin{array}{r} 84 \\ 104 \end{array}$	19 23	$\begin{aligned} & 109 \\ & 184 \end{aligned}$	$\begin{aligned} & 37 \\ & 53 \end{aligned}$
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 41 \\ & 67 \end{aligned}$	$\begin{aligned} & 50 \\ & 91 \end{aligned}$	$\begin{aligned} & 48 \\ & 81 \end{aligned}$	$\begin{aligned} & 30 \\ & 51 \end{aligned}$	$\begin{aligned} & 33 \\ & 62 \end{aligned}$	$\begin{array}{r} 68 \\ 101 \end{array}$	$\begin{aligned} & 20 \\ & 31 \end{aligned}$	$\begin{array}{r} 71 \\ 111 \end{array}$	$\begin{array}{r} 95 \\ 134 \end{array}$	$\begin{aligned} & 53 \\ & 69 \end{aligned}$	$\begin{aligned} & 13 \\ & 19 \end{aligned}$	80 148	$\begin{aligned} & 24 \\ & 39 \end{aligned}$
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 31 \\ & 46 \end{aligned}$	$\begin{aligned} & 41 \\ & 69 \end{aligned}$	$\begin{aligned} & 52 \\ & 87 \end{aligned}$	$\begin{aligned} & 35 \\ & 58 \end{aligned}$	$\begin{aligned} & 41 \\ & 69 \end{aligned}$	$\begin{array}{r} 74 \\ 100 \end{array}$	$\begin{aligned} & 31 \\ & 46 \end{aligned}$	$\begin{aligned} & 57 \\ & 78 \end{aligned}$	$\begin{aligned} & 112 \\ & 140 \end{aligned}$	$\begin{array}{r} 93 \\ 112 \end{array}$	$\begin{aligned} & 13 \\ & 16 \end{aligned}$	$\begin{array}{r} 97 \\ 167 \end{array}$	$\begin{aligned} & 25 \\ & 36 \end{aligned}$
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 20 \\ & 43 \end{aligned}$	$\begin{aligned} & 15 \\ & 33 \end{aligned}$	$\begin{aligned} & 23 \\ & 48 \end{aligned}$	$\begin{aligned} & 18 \\ & 35 \end{aligned}$	$\begin{aligned} & 40 \\ & 82 \end{aligned}$	$\begin{array}{r} 76 \\ 138 \end{array}$	16 33	$\begin{aligned} & 46 \\ & 90 \end{aligned}$	$\begin{array}{r} 91 \\ 157 \end{array}$	$\begin{aligned} & 42 \\ & 76 \end{aligned}$	$\begin{aligned} & 14 \\ & 28 \end{aligned}$	$\begin{array}{r} 43 \\ 116 \end{array}$	$\begin{aligned} & 13 \\ & 27 \end{aligned}$
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 35 \\ & 63 \end{aligned}$	$\begin{aligned} & 36 \\ & 72 \end{aligned}$	$\begin{aligned} & 35 \\ & 63 \end{aligned}$	$\begin{aligned} & 16 \\ & 29 \end{aligned}$	$\begin{aligned} & 39 \\ & 80 \end{aligned}$	$\begin{array}{r} 61 \\ 105 \end{array}$	$\begin{aligned} & 20 \\ & 34 \end{aligned}$	$\begin{aligned} & 47 \\ & 76 \end{aligned}$	$\begin{aligned} & 106 \\ & 163 \end{aligned}$	$\begin{aligned} & 24 \\ & 34 \end{aligned}$	$\begin{aligned} & 13 \\ & 20 \end{aligned}$	$\begin{array}{r} 70 \\ 155 \end{array}$	$\begin{aligned} & 13 \\ & 22 \end{aligned}$
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 40 \\ & 63 \end{aligned}$	$\begin{aligned} & 23 \\ & 43 \end{aligned}$	$\begin{aligned} & 51 \\ & 94 \end{aligned}$	$\begin{aligned} & 16 \\ & 30 \end{aligned}$	$\begin{aligned} & 34 \\ & 71 \end{aligned}$	$\begin{array}{r} 80 \\ 140 \end{array}$	$\begin{aligned} & 33 \\ & 48 \end{aligned}$	$\begin{aligned} & 57 \\ & 71 \end{aligned}$	$\begin{aligned} & 147 \\ & 173 \end{aligned}$	$\begin{aligned} & 31 \\ & 38 \end{aligned}$	$\begin{aligned} & 19 \\ & 24 \end{aligned}$	$\begin{array}{r} 88 \\ 164 \end{array}$	$\begin{aligned} & 19 \\ & 30 \end{aligned}$
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 68 \\ & 97 \end{aligned}$	$\begin{array}{r} 58 \\ 109 \end{array}$	$\begin{aligned} & 60 \\ & 98 \end{aligned}$	$\begin{aligned} & 29 \\ & 51 \end{aligned}$	$\begin{aligned} & 27 \\ & 52 \end{aligned}$	$\begin{array}{r} 86 \\ 130 \end{array}$	$\begin{aligned} & 31 \\ & 43 \end{aligned}$	$\begin{array}{r} 83 \\ 105 \end{array}$	$\begin{aligned} & 145 \\ & 175 \end{aligned}$	$\begin{aligned} & 31 \\ & 33 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 107 \\ & 165 \end{aligned}$	$\begin{aligned} & 31 \\ & 44 \end{aligned}$
South West	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 72 \\ & 73 \end{aligned}$	$\begin{array}{r} 79 \\ 114 \end{array}$	$\begin{aligned} & 100 \\ & 139 \end{aligned}$	$\begin{aligned} & 34 \\ & 49 \end{aligned}$	$\begin{aligned} & 31 \\ & 45 \end{aligned}$	$\begin{array}{r} 98 \\ 117 \end{array}$	$\begin{aligned} & 49 \\ & 53 \end{aligned}$	$\begin{aligned} & 134 \\ & 116 \end{aligned}$	$\begin{aligned} & 201 \\ & 161 \end{aligned}$	$\begin{aligned} & 52 \\ & 37 \end{aligned}$	$\begin{aligned} & 25 \\ & 18 \end{aligned}$	$\begin{aligned} & 137 \\ & 135 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$
Welsh	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 73 \\ & 68 \end{aligned}$	$\begin{array}{r} 87 \\ 109 \end{array}$	$\begin{aligned} & 106 \\ & 129 \end{aligned}$	$\begin{aligned} & 47 \\ & 59 \end{aligned}$	$\begin{aligned} & 47 \\ & 61 \end{aligned}$	$\begin{aligned} & 103 \\ & 102 \end{aligned}$	$\begin{aligned} & 58 \\ & 50 \end{aligned}$	$\begin{aligned} & 173 \\ & 126 \end{aligned}$	$\begin{aligned} & 171 \\ & 120 \end{aligned}$	$\begin{aligned} & 52 \\ & 34 \end{aligned}$	$\begin{array}{r} 12 \\ 8 \end{array}$	$\begin{aligned} & 179 \\ & 185 \end{aligned}$	$\begin{aligned} & 69 \\ & 65 \end{aligned}$
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 60 \\ & 48 \end{aligned}$	$\begin{aligned} & 108 \\ & 142 \end{aligned}$	$\begin{aligned} & 78 \\ & 91 \end{aligned}$	$\begin{aligned} & 65 \\ & 76 \end{aligned}$	$\begin{aligned} & 78 \\ & 83 \end{aligned}$	$\begin{aligned} & 67 \\ & 57 \end{aligned}$	$\begin{aligned} & 62 \\ & 44 \end{aligned}$	$\begin{aligned} & 229 \\ & 147 \end{aligned}$	$\begin{aligned} & 188 \\ & 125 \end{aligned}$	$\begin{aligned} & 95 \\ & 63 \end{aligned}$	$\begin{aligned} & 58 \\ & 38 \end{aligned}$	$\begin{aligned} & 251 \\ & 246 \end{aligned}$	$\begin{aligned} & 191 \\ & 153 \end{aligned}$
Highland	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 55 \\ & 34 \end{aligned}$	$\begin{aligned} & 111 \\ & 122 \end{aligned}$	$\begin{aligned} & 84 \\ & 91 \end{aligned}$	$\begin{aligned} & 79 \\ & 81 \end{aligned}$	$\begin{aligned} & 91 \\ & 86 \end{aligned}$	$\begin{aligned} & 73 \\ & 57 \end{aligned}$	$\begin{aligned} & 80 \\ & 47 \end{aligned}$	$\begin{aligned} & 266 \\ & 134 \end{aligned}$	$\begin{aligned} & 250 \\ & 123 \end{aligned}$	$\begin{array}{r} 106 \\ 54 \end{array}$	$\begin{aligned} & 93 \\ & 49 \end{aligned}$	$\begin{aligned} & 303 \\ & 239 \end{aligned}$	$\begin{aligned} & 314 \\ & 194 \end{aligned}$
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 59 \\ & 76 \end{aligned}$	$\begin{array}{r} 63 \\ 105 \end{array}$	$\begin{aligned} & 67 \\ & 97 \end{aligned}$	$\begin{aligned} & 33 \\ & 50 \end{aligned}$	$\begin{aligned} & 66 \\ & 90 \end{aligned}$	$\begin{aligned} & 64 \\ & 74 \end{aligned}$	$\begin{aligned} & 32 \\ & 37 \end{aligned}$	$\begin{aligned} & 139 \\ & 143 \end{aligned}$	$\begin{aligned} & 110 \\ & 111 \end{aligned}$	$\begin{aligned} & 86 \\ & 92 \end{aligned}$	27	$\begin{aligned} & 116 \\ & 178 \end{aligned}$	76 97
Tay	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 76 \\ & 70 \end{aligned}$	$\begin{aligned} & 103 \\ & 166 \end{aligned}$	$\begin{aligned} & 67 \\ & 81 \end{aligned}$	$\begin{aligned} & 44 \\ & 60 \end{aligned}$	$\begin{aligned} & 53 \\ & 69 \end{aligned}$	$\begin{aligned} & 64 \\ & 68 \end{aligned}$	$\begin{aligned} & 50 \\ & 44 \end{aligned}$	$\begin{aligned} & 195 \\ & 150 \end{aligned}$	$\begin{aligned} & 142 \\ & 117 \end{aligned}$	$\begin{aligned} & 70 \\ & 55 \end{aligned}$	39 27	242 255	124
Forth	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 53 \\ & 56 \end{aligned}$	$\begin{array}{r} 86 \\ 146 \end{array}$	$\begin{aligned} & 68 \\ & 92 \end{aligned}$	$\begin{aligned} & 44 \\ & 64 \end{aligned}$	$\begin{aligned} & 55 \\ & 73 \end{aligned}$	$\begin{aligned} & 61 \\ & 65 \end{aligned}$	$\begin{aligned} & 46 \\ & 42 \end{aligned}$	$\begin{aligned} & 186 \\ & 162 \end{aligned}$	$\begin{aligned} & 139 \\ & 124 \end{aligned}$	$\begin{aligned} & 81 \\ & 74 \end{aligned}$	40 34	213 270	107
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 30 \\ & 38 \end{aligned}$	$\begin{array}{r} 79 \\ 139 \end{array}$	$\begin{aligned} & 63 \\ & 89 \end{aligned}$	$\begin{aligned} & 30 \\ & 46 \end{aligned}$	$\begin{aligned} & 53 \\ & 73 \end{aligned}$	$\begin{aligned} & 63 \\ & 72 \end{aligned}$	$\begin{aligned} & 29 \\ & 33 \end{aligned}$	$\begin{aligned} & 134 \\ & 141 \end{aligned}$	$\begin{aligned} & 139 \\ & 149 \end{aligned}$	$\begin{aligned} & 118 \\ & 127 \end{aligned}$	24 24	172 257	67 85
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 74 \\ & 63 \end{aligned}$	$\begin{aligned} & 133 \\ & 173 \end{aligned}$	80 94	$\begin{aligned} & 78 \\ & 93 \end{aligned}$	69 77	$\begin{aligned} & 66 \\ & 55 \end{aligned}$	$\begin{aligned} & 56 \\ & 39 \end{aligned}$	$\begin{aligned} & 265 \\ & 169 \end{aligned}$	$\begin{aligned} & 155 \\ & 108 \end{aligned}$	$\begin{aligned} & 99 \\ & 67 \end{aligned}$	32 21	288 285	123 105
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 62 \\ & 42 \end{aligned}$	$\begin{aligned} & 142 \\ & 169 \end{aligned}$	$\begin{aligned} & 90 \\ & 99 \end{aligned}$	$\begin{aligned} & 88 \\ & 95 \end{aligned}$	$\begin{aligned} & 99 \\ & 91 \end{aligned}$	$\begin{aligned} & 66 \\ & 49 \end{aligned}$	$\begin{aligned} & 79 \\ & 44 \end{aligned}$	$\begin{aligned} & 282 \\ & 146 \end{aligned}$	$\begin{aligned} & 215 \\ & 119 \end{aligned}$	$\begin{aligned} & 93 \\ & 52 \end{aligned}$	64 34	$\begin{aligned} & 292 \\ & 247 \end{aligned}$	$\begin{aligned} & 218 \\ & 148 \end{aligned}$

Note: The monthly regional rainfall figures for England and Wales for February \& March 1997 correspond to the MORECS areal assessments derived by the Meteorological Office. In northern England these initial assessments may have a particularly wide error band associated with them, especially when snow is a significant component in the precipitation total. The figures for the Scottish regions (and also for Scotland) for February \& March 1997 were derived by IH in collaboration with the SEPA regions.
The provisional figures for England and Wales and for Scotland are derived using a different raingauge network. Regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.

* The areal rainfall for England \& Wales for February 1997 was estimated from the regional rainfall figures,

TABLE 2 RAINFALL ACCUMULATIONS AND RETURN PERIOD ESTIMATES

		Dec 96-Mar 97 Est Return Period, years		Oct 96-Mar 97 Est Return Period, years		Apr 96-Mar 97 Est Return Period, years		Apr 95-Mar 97 Est Return Period, years	
England and Wales	mm \% LTA	$\begin{array}{r} 191 \\ 60 \end{array}$	30-40	$\begin{array}{r} 406 \\ 83 \end{array}$	5-10	$\begin{array}{r} 697 \\ 78 \end{array}$	20-30	$\begin{array}{r} 1373 \\ 77 \end{array}$	120-170
North West	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 346 \\ 83 \end{array}$	2-5	$\begin{array}{r} 628 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1021 \\ 85 \end{array}$	5-10	$\begin{array}{r} 1750 \\ 73 \end{array}$	$\gg 200$
Northumbria	mm \% LTA	$\begin{array}{r} 248 \\ 84 \end{array}$	2-5	$\begin{array}{r} 424 \\ 93 \end{array}$	2-5	$\begin{array}{r} 712 \\ 84 \end{array}$	5-15	$\begin{array}{r} 1405 \\ 82 \end{array}$	25-40
Severn Trent	mm \% LTA	$\begin{array}{r} 170 \\ 65 \end{array}$	10-20	$\begin{array}{r} 336 \\ 85 \end{array}$	2-5	$\begin{array}{r} 585 \\ 78 \end{array}$	10-20	$\begin{array}{r} 1142 \\ 76 \end{array}$	80-120
Yorkshire	mm \% LTA	$\begin{array}{r} 227 \\ 79 \end{array}$	5-10	$\begin{array}{r} 396 \\ 90 \end{array}$	2-5	$\begin{array}{r} 670 \\ 82 \end{array}$	5-15	$\begin{array}{r} 1217 \\ 74 \end{array}$	>200
Anglian	mm \% LTA	$\begin{array}{r} 112 \\ 59 \end{array}$	20-35	$\begin{array}{r} 249 \\ 83 \end{array}$	2-5	$\begin{array}{r} 437 \\ 73 \end{array}$	30-50	$\begin{array}{r} 871 \\ 73 \end{array}$	>200
Thames	mm \% LTA	$\begin{array}{r} 119 \\ 51 \end{array}$	35-50	$\begin{array}{r} 272 \\ 75 \end{array}$	5-10	$\begin{array}{r} 479 \\ 70 \end{array}$	35-50	$\begin{array}{r} 1045 \\ 76 \end{array}$	50-80
Southern	mm \% LTA	$\begin{array}{r} 157 \\ 56 \end{array}$	20-35	$\begin{array}{r} 361 \\ 81 \end{array}$	5-10	$\begin{array}{r} 598 \\ 77 \end{array}$	10-20	$\begin{array}{r} 1203 \\ 77 \end{array}$	40-60
Wessex	mm \% LTA	$\begin{array}{r} 183 \\ 58 \end{array}$	15-25	$\begin{array}{r} 411 \\ 86 \end{array}$	2-5	$\begin{array}{r} 702 \\ 84 \end{array}$	5-10	$\begin{array}{r} 1509 \\ 90 \end{array}$	5-10
South West	mm \% LTA	$\begin{array}{r} 251 \\ 53 \end{array}$	$35-50$	$\begin{array}{r} 586 \\ 82 \end{array}$	5-10	$\begin{array}{r} 977 \\ 83 \end{array}$	5-10	$\begin{array}{r} 2011 \\ 86 \end{array}$	10-15
Welsh	mm \% LTA	$\begin{array}{r} 312 \\ 62 \end{array}$	15-25	$\begin{array}{r} 656 \\ 84 \end{array}$	2-5	$\begin{array}{r} 1104 \\ 84 \end{array}$	5-10	$\begin{array}{r} 2106 \\ 80 \end{array}$	35-50
Scotland	mm \% LTA	$\begin{aligned} & 595 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1012 \\ 121 \end{array}$	10-15	$\begin{array}{r} 1470 \\ 102 \end{array}$	2-5	$\begin{array}{r} 2681 \\ 93 \end{array}$	5-10
Highland	mm \% LTA	$\begin{aligned} & 816 \\ & 121 \end{aligned}$	5-10	$\begin{array}{r} 1332 \\ 124 \end{array}$	10-20	$\begin{array}{r} 1850 \\ 105 \end{array}$	2-5	$\begin{array}{r} 3199 \\ 91 \end{array}$	5-10
North East	mm \% LTA	$\begin{array}{r} 305 \\ 91 \end{array}$	$2-5$	$\begin{aligned} & 554 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 879 \\ 90 \end{array}$	2-5	$\begin{array}{r} 1964 \\ 101 \end{array}$	2-5
Tay	mm \% LTA	$\begin{aligned} & 475 \\ & 100 \end{aligned}$	<2	$\begin{aligned} & 812 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1193 \\ 97 \end{array}$	2-5	$\begin{array}{r} 2361 \\ 96 \end{array}$	2-5
Forth	mm \% LTA	$\begin{aligned} & 441 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 766 \\ & 122 \end{aligned}$	5-15	$\begin{array}{r} 1126 \\ 102 \end{array}$	2-5	$\begin{array}{r} 2044 \\ 92 \end{array}$	5-10
Tweed	mm \% LTA	$\begin{aligned} & 381 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 654 \\ & 124 \end{aligned}$	5-15	$\begin{aligned} & 971 \\ & 100 \end{aligned}$	≤ 2	$\begin{array}{r} 1792 \\ 92 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{aligned} & 542 \\ & 104 \end{aligned}$	2-5	$\begin{aligned} & 962 \\ & 117 \end{aligned}$	5-10	$\begin{array}{r} 1444 \\ 102 \end{array}$	2-5	$\begin{array}{r} 2599 \\ 91 \end{array}$	5-10
Clyde	mm \% LTA	$\begin{aligned} & 667 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 1164 \\ 116 \end{array}$	5-10	$\begin{array}{r} 1728 \\ 102 \end{array}$	2-5	$\begin{array}{r} 3075 \\ 91 \end{array}$	5-10

LTA refers to the period 1961-90.
Return period assessments are based on tables provided by the Meteorological Office*. The tables reflect rainfall totals over the period $1911-70$ only and the estimate assumes a sensibly stable climate. They assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods underlined. The ranking of accumulated rainfall totals for England \& Wales and for Scotland can be affected by artifacts in the historical series - on balance these tend to exaggerate the relative wetness of the recent past.

[^0]FIGURE 1 MONTHLY RIVER FLOW HYDROGRAPHS

Great Stour at Horton

+ extremes \& mean monthly flows (1964-1991)

Cynon at Abercynon

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PERIODS RANKED IN THE RECORD

River/ Station name	$\begin{aligned} & \text { Nov } \\ & 1996 \end{aligned}$	Dec	$\begin{gathered} \text { Jan } \\ 1997 \end{gathered}$	Feb	$\begin{aligned} & \text { Mar } \\ & 1997 \end{aligned}$		$\begin{gathered} 12 / 96 \\ \text { to } \\ 3 / 97 \end{gathered}$		$\begin{gathered} 10 / 96 \\ \text { to } \\ 3 / 97 \end{gathered}$		$\begin{gathered} 4 / 96 \\ \text { to } \\ 3 / 97 \end{gathered}$		$\begin{gathered} 4 / 95 \\ \text { to } \\ 3 / 97 \\ \hline \end{gathered}$	
	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	$\underset{\% \mathrm{LT}}{\mathrm{~mm}}$	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	$\begin{gathered} \mathrm{mm} \\ \% \mathrm{LT} \end{gathered}$	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank /yrs	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	$\begin{array}{r} \text { rank/ } \\ \text { yrs } \end{array}$	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank /yrs	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank lyrs	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank /yrs
Dee at	63	77	39	97	90	12	303	7	424	4	660	${ }_{5}^{5}$	1591	10 123
Park	82	91	42	132	94	125	87	125	82	124	83	24	100	123
Tay at	139	105	54	202	187	40	547	27	804	25	1102	20	2112 92	14 143
Ballathie	115	74	36	172	142	145	102	145	104	145	97	144		
Tweed at	103	126	42	183	88	22	439	31	608	30	756	16	1351 89	10 135
Boleside	118	127	39	233	107	137	119	136	115	136	99	136	89	135
Whiteadder Water at	29	102	47	48	27	6	224	18	260	13	341	11	658	126
Hutton Castle	79	217	78	101	57	128	111	128	98	128	89	127	85	126
South Tyne at	84	75	32	166	65	11	337	13	456	${ }^{9}$	562	3	1022	1
Haydon Bridge	91	72	31	219	74	135	91	135	86	135	73	133	66	131
Wharfe at	79	77	28	138	54	13	297	13	415	10	530	5	788 55	140
Flint Mill Weir	102	79	27	181	70	142	85	142	85	142	75	141	55	140
Derwent at	15	30	21	23	18	4	92	5	113	4	170	${ }^{3}$	399	1
Buttercrambe	54	74	47	60	45	136	57	136	54	136	54	135	62	134
Trent at	22	31	15	27	20	5	93	2	126	3	192	38	392	137
Colwick	71	69	29	64	51	139	53	139	55	139	55	138	56	137
Lud at	8	17	16	13	12	5	57	6	69	${ }^{6}$	111	${ }^{2}$	250	27
Louth	53	83	53	38	36	129	51	129	50	129	46	128	51	127
Witham at	6	9	9	11	11	5	39	4	49	4	80		186	136
Claypole Mill	47	43	34	40	43	138	41	138	41	138	44	137	51	136
Little Ouse at	7	10	8	10	9	3	37	5	48	5	77	2	176 53	$\stackrel{2}{18}$
Abbey Heath	60	61	34	45	40	129	46	129	47	129	47	129	53	128
Colne at	7	7	5	5	6	3	23	3	33	4	53	1	133	${ }^{3}$
Lexden	58	40	22	27	34	138	32	137	35	137	40	136	50	134
Lee at	7	6	5	8	7	1	25	${ }^{4}$	36		70	6	192 59	9 107
Feildes Weir (natr.)	51	33	23	39	34	1111	32	1111	35	/111	43	/109	59	7107
Thames at	12	10	8	18	16	17	52	7	71	9	129	7	338	10
Kingston (natr.)	57	33	22	55	51	1115	40	1114	43	$/ 114$	53	/114	69	713
Coln at	10	14	14	18	36	9	83	2	102	2	218	2	543	${ }^{3}$
Bibury	40	35	26	33	68	134	42	134	43	134	56	133	69	132
Great Stour at	23	17	16	24	17	5	75	4	105	5	155	1	340	1
Horton	85	49	39	73	53	133	54	132	57	132	54	130	59	128
Itchen at	28	36	32	33	42	8	143	7	193	6	374	38	831	137
Highbridge + Allbrook	81	85	66	67	81	139	75	139	76	139	81	138	90	137
Stour at	33	30	18	49	40	${ }^{9}$	136	4	177	4	265	5	622	2 123
Throop Mill	98	52	27	80	79	125	58	124	61	124	67	124	78	123
Exe at	133	71	18	135	46	7	270	4	456	6	605	40	1186	1
Thorverton	135	52	13	129	55	141	60	141	73	141	73	140	72	139
Taw at	134	62	14	118	40	8	235	5	397	8	498	138	920	137
Umberleigh	146	52	12	137	59	139	61	139	73	139	72	138	66	137
Tone at	54	38	19	73	43	12	173	4	238	6	348	5	770	6
Bishops Hull	123	54	23	99	76	137	62	136	68	/36	73	136	81	135
Severn at	49	39	12	61	31	23	143	6	211	${ }^{9}$	298	5 176	538 60	$\stackrel{2}{175}$
Bewdley	93	62	17	106	66	176	60	176	66	176	67	176	60	175
Teme at	23	28	11	48	29	7	116	${ }^{4}$	142	3	223	${ }^{3}$	482	3
Knightsford Bridge	68	50	16	92	62	127	53	127	52	127	62	127	66	126
Cynon at	211	190	25	340	85	17	540	11	954	23	1222	17	2197	7
Abercynon	135	- 46	13	246	71	139	83	139	103	139	96	137	87	135
Dee at	282	24	425	364	141	12	623	- 6	1160	12	1526	7	2457	1
New Inn	121	17	710	217	78	128	75	128	92	128	86	127	69	126
Eden at	77	756	24	181	77	18	338	12	461	11	557	6	965	1
Sheepmount	88	56	23	238	102	130	96	130	91	130	80	129	69	128
Clyde at	107	112	- 33	171	95	23	411	21	592	19	734	12	1312	6
Daldowie	111	107	- 29	220	116	134	109	134	107	134	93	133	83	132
Carron at	362	162	2164	373	286	10	985	6	1718	9	2264	4	3759	1
New Kelso	130	- 49	- 50	167	97	119	86	118	102	118	90	118	74	117
Ewe at	314	4167	7127	335	325	23	955	15	1542	15	2033	11	3572	4
Poolewe	121	1	146	173	156	127	102	127	108	126	96	126	83	125

Notes:

[^1]TABLE 4 START-MONTH RESERVOIR STORAGES UP TO APRIL 1997

Area	$\begin{gathered} \text { Reservoir (R)/ } \\ \text { Group (G) } \\ \hline \end{gathered}$		Capacity (M1)	$\begin{aligned} & 1996 \\ & \text { Nov } \end{aligned}$	Dec	$\begin{array}{r} 1997 \\ \text { Jan } \end{array}$	Feb	Mar	Apr	$\begin{array}{r} 1996 \\ A p r \end{array}$
North West	N.Command Zone ${ }^{1}$	(G)	133375	69	84	77	66	100	97	78
	Vyrnwy	(R)	55146	65	86	81	71	100	95	64
Northumbria	Teesdale ${ }^{2}$	(G)	87936	35	61	78	80	95	97	77
	Kielder	(R)	199175*	86	93	88	89	100	93	96
Severn-Trent	Clywedog	(R)	44922	66	80	81	76	93	97	86
	Derwent Valley ${ }^{3}$	(G)	39525	30	93	98	94	100	100	54
Yorkshire	Washburn ${ }^{4}$	(G)	22035	64	86	97	86	98	93	70
	Bradford supply ${ }^{5}$	(G)	41407	59	84	90	88	100	98	59
Anglian	Grafham	(R)	58707	67	68	69	68	72	77	94
	Rutland	(R)	130061	70	70	71	68	73	76	92
Thames	London ${ }^{6}$	(G)	206399	46	59	70	70	85	94	94
	Farmoor ${ }^{7}$	(G)	13843	92	100	99	93	96	98	99
Southern	Bewl	(R)	28170	52	59	60	65	85	98	99
	Ardingly	(R)	4685	33	55	64	68	100	100	100
Wessex	Clatworthy	(R)	5364	44	88	96	81	100	99	100
	Bristol W ${ }^{8}$	(G)	38666*	59	77	80	74	96	95	95
South West	Colliford	(R)	28540	42	50	53	52	57	58	63
	Roadford ${ }^{9}$	(R)	34500	40	51	54	52	61	62	37
	Wimbleball ${ }^{10}$	(R)	21320	42	60	64	59	81	91	78
	Stithians	(R)	5205	50	71	88	90	96	97	99
Welsh	Celyn + Brenig	(G)	131155	63	75	82	78	97	98	72
	Brianne	(R)	62140	87	100	93	84	99	97	100
	Big Five ${ }^{11}$	(G)	69762	64	77	75	67	96	95	94
	Elan Valley ${ }^{12}$	(G)	99106	82	99	92	85	100	99	98
East of Scotland	Edin./Mid Lothian ${ }^{13}$	(G)	97639	74	89	93	91	100	100	96
	East Lothian ${ }^{14}$	(G)	10206	63	79	100	100	100	99	99
West of Scotland	Loch Katrine	(G)	111363	90	97	89	85	100	100	94
	Daer	(R)	22412	89	100	98	91	100	98	96
	Loch Thom	(G)	11840	88	100	99	96	100	100	98

- Live or usable capacity (unless indicated otherwise) * Gross storage/percentage of gross storage

Includes Haweswater, Thirlmere, Stocks and Barnacre.
Cow Green, Selset, Grassholme, Balderhead, Blackton and Hury
Howden, Derwent and Ladybower.
4. Swinsty, Fewston, Thruscross and Eccup.
5. The Nidd/Barden group (Scar House, Angram, Upper Barden, Lower Barden and Chelker) plus Grimwith.
6. Lower Thames (includes Queen Mother, Wraysbury, Queen Mary, King George VI and Queen Elizabeth II) and Lee Valley (includes King George and William Girling) groups -pumped storages.
7. Farmoor 1 and 2 - pumped storages.
8. Blagdon, Chew Valley and others
9. Roadford began filling in November 1989.
10. Shared between South West (river regulation for abstraction) and Wessex (direct supply).
11. Usk, Talybont, Llandegfedd (pumped stroage), Taf Fechan, Taf Fawr
12. Claerwen, Caban Coch, Pen-y-garreg and Craig Goch.
13. Megget, Talla, Fruid, Gladhouse, Torduff, Clubbiedean, Glencorse, Loganlea and Morton (upper and lower).
14. Thorters, Donolly, Stobshiel, Lammerloch, Hopes and Whiteadder

A GUIDE TO THE VARIATION IN OVERALL RESERVOIR STOCKS FOR ENGLAND AND WALES

A COMPARISON BETWEEN OVERALL RESERVOIR STOCKS FOR ENGLAND AND WALES IN RECENT YEARS

Note: Variations in storage depend on the balance between inputs (from catchnent rainfall and any pumping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategies for making the most efficient use of water stocks will further affect reservoir storages. Table 4 is intended to provide a link between the hydrological conditions described elsewhere in the report and the water resources situation. The reservoins featured may not be representative of storage conditions across the individual regions; this can be particularly impontant during drought conditions (eg, in the Severa-Trent region during 1995/96).

FIGURE 2 GROUNDWATER LEVEL HYDROGRAPHS

Chilgrove House

TABLE 5 MARCH GROUNDWATER LEVELS 1997

Site	Aquifer	Records Commence	$\begin{gathered} \text { Minimum } \\ \text { Mar } \\ <1997 \end{gathered}$	Average Mar <1997	$\begin{gathered} \text { Maximum } \\ \text { Mar } \\ <1997 \end{gathered}$	No of years Mar/Apr level < 1997	Mar/A day	1997 level
Dalton Holme	Ck	1889	10.34	19.49	23.82	4	14/03	12.70
Wetwang	Ck	1971	17.16	25.06	35.15	3	14/03	21.00
Keelby Grange	Ck	1980	3.74	12.43	18.73	2	25/03	5.75
Washpit Farm	Ck	1950	40.61	44.83	49.39	>10	01/04	43.05
The Holt	Ck	1964	84.47	87.77	92.34	2	07/04	85.04
Therfield Rectory	Ck	1883	70.72	79.18	96.83	8	07/04	72.06
Redlands Hall	Ck	1963	32.62	44.05	54.50	2	25/03	34.60
Rockley	Ck	1933	129.10	138.33	144.06	6	07/04	132.37
Little Bucket Farm	Ck	1971	59.67	71.49	86.58	3	04/03	62.66
Compton House	Ck	1894	29.40	46.74	65.00	>10	26/03	41.45
Chilgrove House	Ck	1836	35.97	55.47	74.68	>10	26/03	53.45
Westdean No. 3	Ck	1940	1.31	2.18	4.14	5	21/03	1.48
Lime Kiln Way	Ck	1969	124.07	125.50	126.48	10	24/03	125.41
Ashton Farm	Ck	1974	64.67	69.58	71.10	>10	01/04	70.42
West Woodyates	Ck	1942	73.18	90.70	105.44	>10	01/04	90.57
Killyglen (NI)	Ck	1985	113.63	115.85	119.52	1	21/03	114.10
New Red Lion	LLst	1964	6.14	16.50	23.69	5	24/03	11.24
Ampney Crucis	MidJ	1958	100.29	102.03	103.26	4	07/04	101.17
Redbank	PTS	1981	7.88	8.49	9.45	0	01/04	7.92
Yew Tree Farm	PTS	1972	12.75	13.57	14.01	7	04/04	13.53
Skirwith	PTS	1978	129.88	130.64	131.70	1	03/04	130.00
Llanfair D.C	PTS	1972	79.19	79.97	80.63	0	25/03	79.19
Morris Dancers	PTS	1969	31.78	32.49	33.51	4	25/03	32.07
Heathlanes	PTS	1971	60.80	62.03	63.25	0	06/03	60.80
Bussels No.7A	PTS	1971	23.26	24.30	25.28	2	25/03	23.74
Rusheyford NE	MgLst	1967	65.59	72.92	76.97	>10	20/03	76.14
Peggy Ellerton	MgLst	1968	31.64	34.43	36.93	3	21/03	32.15
Alstonfield	CLst	1974	180.54	195.44	215.15	5	18/03	189.04

groundwater levels are in metres above Ordnance Datum

Ck	Chalk	MidJ	Middle Jurassic Limestones
LLst	Linconshire Limestone	MgLst	Magnesian Limestone
PTS	Permo-Triassic sandstones	Clst	Carboniferous Limestones

Wallingford
Daily Rainfall

Hourly Temperature

Hourly Wind Speed

Hourly Wind Direction

The Institute of Hydrology Meleorological Station occupies a relatively open site on the Thames floodplain about 5 km NW of the Chilterns escarpment. Station elevation is 48 m

Balquhidder
Daily Rainfall

Hourly Temperature

Hourly Wind Speed

Hourly Wind Direction

The Lower Kirkton automatic weather station (Balquhidder) occupies a relatively sheltered position at the mouth of the SSE trending Kirkton Glen. Station elevation is 270 m aOD and average annual rainfall exceeds 2000 mm ; snow cover is expected for 10-30 days a year.

FIGURE 3 (continued)

Plynlimon

Hourly Temperature

Hourly Wind Speed

Hourly Wind Direction

The Dolydd automatic weather station at Plynlimon is sited in an exposed field with a forested area to the south. Surrounding land reaches a peak height of around 400 m . Station elevation is 300 m aOD and average annual rainfall exceeds 2300 mm .

[^0]: * Tabony, R.C., 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office.

[^1]: (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
 (ii) Values are ranked so that lowest runoff is rank 1.
 (iii) \%LT means percentage of long term average from the start of the record to 1995. For the long periods (at the right of this table), the end date for the long term is 1997.

