Plydrological Summary for Creat Britain

APRIL 1997

Rainfall

March was a mild, relatively sunny month with weather patterns - northern Scotland excepted - dominated by persistent anticyclonic conditions. A blocking high centred initially over western Europe, and later to the north of Britain, served to largely exclude Atlantic frontal systems from the end of the first week. This produced an exceptionally arid episode, in southern Britain especially, which lasted until around the 25th April. In the SouthEast precipitation over this period was largely restricted to light showers and fog drip with lengthy sequences of rainless days. The Institute of Hydrology registered its driest 50 -day sequence in a record from 1963 and many localities reported less than 3 mm of rainfall over this period. The return of a south-westerly airstream in the last week provided a modest boost to April rainfall totals but England and Wales recorded only 42% of the 196190 average and catchment totals in the east were mostly less than 35%. Provisional data for E\&W indicate that the combined March/April total was the third lowest this century after 1929 and 1938 - in much of the English lowlands only the latter was drier. The December-April accumulated rainfall totals are also notably low: only 1928/29 and 1975/76 being drier in the last 100 years. This reintensification of very protracted drought conditions produced unprecedented national rainfall totals in the 24-26 month timeframes. Rainfall over the last 25 months has eclipsed the E\&W minima (established in the 1850s and - based on less reliable data - the 1780s) and is appreciably below the twentieth century minima (registered in 1932-34 and 1990-92). Entering May accumulated rainfall deficiencies exceeded the equivalent of more than six months rainfall over most of England.

River Flow

Limited rainfall together with high evaporation rates (encouraged, on occasions by high winds) produced sustained recessions in April in most catchments. April runoff was within the normal range in parts of NW Scotland but very depressed throughout the rest of Britain. The Dee (at Park) and the Deveron in eastern Scotland registered their lowest April mean flow and in many catchments only 1990 has produced lower flows in the recent past. For England and Wales initial analyses indicate that overall runoff was lower than in the benchmark drought of 1976. New monthly minimum flows for April were established for almost a third of the index rivers - including the Dove, Derwent (Yorks), Little Ouse, Taw and Severn (in a record from 1921). A longer historical perspective is provided by the Thames and Lee which recorded third lowest (after 1976 and 1944) April mean flows this century. In the worst
affected catchments runoff was only $15-40 \%$ of the mean and, commonly, flows were below those that typify the late summer. In large parts of England runoff in the one and two-year timeframes is also close to, or below, the lowest on record. Accumulated runoff totals of less than half the long term average testify to the drought's exceptional severity. The impact is particularly evident in headwater areas where many higher levels springs have failed and the stream network has contracted substantially - with a consequent impact on aquatic habitats.

Groundwater

Soil moisture deficits increased very rapidly in April in most regions. By the end of the third week soils were exceptionally dry (only 1976 being comparable in the recent past) and, in the lowlands, were the equivalent of around $6-8$ weeks average rainfall over wide areas. No significant infiltration can now be expected - to the major aquifer units - before the autumn. Late April groundwater levels confirm that the seasonal recessions have begun or, in the deeper wells, are about to begin. In groundwater terms, the drought is most notable for its spatial extent -water-tables are depressed throughout the country - as much as its intensity. Although winter recharge in some eastern Chalk units has been minimal significant infiltration during February has ensured that the 1997 summer recession has begun, and should remain, above the corresponding levels in 1976 (in some areas 1992 also) in most of the Chalk outcrop areas. In the PermoTriassic sandstones spring peaks are commonly the lowest on record - a number of new April minimum levels were established - and the spatial extent of the drought implies that overall groundwater stocks by the late summer may well approach the lowest this century.

General

The arid start to the spring, coming on the back of an outstanding long term rainfall deficiency, has produced widespread and severe drought conditions. River flows and groundwater levels are exceptionally depressed and the very parched soils are producing difficulties for the farming community. The current limited restrictions on spray irrigation and isolated hosepipe bans are likely to be extended if the summer is dry. But overall reservoir contents remain healthier than at the same time last year and the 1990s have provided valuable experience in balancing the needs of water abstractors and the aquatic environment - the summer outlook for which is fragile. The scale of the water supply difficulties encountered will reflect both summer rainfall patterns and the associated demand patterns.

(Th) Thstitute of | This document is copyright and may not be |
| :---: |
| reproduced without prior permission of the |
| Natural Environment Research Council |

This report was compiled jointly by the Institute of Hydrology (a component of the Centre for Ecology and Hydrology) and the British Geological Survey - both organisations form part of the Natural Environment Research Council (NERC).

Data for this report have been provided principally by the regional divisions of the newly formed Environment Agency (England and Wales) and the Scottish Environment Protection Agency. For reasons of consistency and to provide greater spatial discrimination, the original regional divisions of the precursor organisations have been retained for use in the Hydrological Summaries. The majority of the areal rainfall figures have been provided by the Meteorological Office. The most recent areal rainfall figures are derived from a restricted network of raingauges and a proportion of the river flow data is of a provisional nature. Figure 3 is based on weather data collected by the Institute of Hydrology at Wallingford, Balquhidder (Central Region, Scotland) and Plynlimon. Reservoir contents information has been supplied by the Water Services Companies, the Environment Agency and, in Scotland, West of Scotland Water Authority and East of Scotland Water. A map (Figure 4) is provided to assist in the location of the principal monitoring sites.

Financial support towards the production of the Hydrological Summaries is given by the Department of the Environment, the Environment Agency, the Scottish Environment Protection Agency and the Office of Water Services (OFWAT).

The Hydrological Summaries are available on annual subscription at a current cost of $£ 48$ per year enquiries should be directed to the National Water Archive Office at the address below. No charge is made to those organisations providing data for the Summaries. The text of the monthly report, together with details of other National Water Archive facilities, is available on the World Wide Web: http://www.nwl.ac.uk:80/ ~nrfadata/nwa.html

Abstract

MORECS

Most of the recent monthly regional rainfall data featured in the Hydrological Summaries are MORECS assessments. MORECS is the generic name for The Meteorological Office services involving the calculation of evaporation and soil moisture routinely for Great Britain. Products include a weekly issue of maps and tables of potential and actual evaporation, soil moisture deficits, effective rainfall and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares - or larger areas - and various sets of maps and tables are available according to user requirements. Options include a day-by-day retrospective calculation of soil moisture at any of 4000 raingauge sites.

Further information about MORECS services may be obtained from: The Meteorological Office, Sutton House, London Road, Bracknell, RG12 2SY

Tel:01344856858 Fax: 01344854024

[^0]TABLE 1 1996/97 RAINFALL AS A PERCENTAGE OF THE 1961-90 AVERAGE
Note: The monthly rainfall figures are the copyright of The Meteorological Office.
These data may not be published or passed on to any unauthorised person or organisation.

		$\begin{array}{r} \text { Apr } \\ 1996 \end{array}$	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	$\begin{array}{r} \text { Jan } \\ 1997 \end{array}$	Feb	Mar	Apr
England and	mm	51	57	30	41	80	34	89	126	52	15	119	24	25
Wales	\%	85	89	46	66	105	44	105	140	55	17	189	34	42
North West	mm	77	62	49	65	88	61	149	133	64	14	213	66	39
	\%	108	83	60	76	82	53	116	108	52	12	273	69	55
Northumbrian	mm	63	53	22	53	67	31	68	108	84	19	127	37	20
	\%	113	85	37	82	83	42	89	126	104	23	215	53	36
Severn Trent	mm	50	48	30	33	68	20	71	95	53	13	85	24	29
	$\%$	91	81	51	62	101	31	111	134	69	19	157	39	53
Yorkshire	mm	41	52	35	41	74	31	57	112	93	13	105	25	22
	\%	69	87	58	69	100	46	78	140	112	16	181	36	37
Anglian	mm	15	23	18	40	76	16	46	91	42	14	44	13	18
	\%	33	48	35	82	138	33	90	157	76	28	119	27	39
Thames	mm	36	35	16	39	61	20	47	106	24	13	77	13	15
	\%	72	63	29	80	105	34	76	163	34	20	171	22	30
Southern	mm	23	51	16	34	80	33	57	147	31	19	94	19	11
	\%	43	94	30	71	140	48	71	173	38	24	174	30	21
Wessex	mm	58	60	29	27	86	33	83	145	31	14	116	31	23
	\%	109	98	51	52	130	46	105	175	33	16	178	44	43
South West	mm	79	100	34	31	98	50	134	201	52	25	162	37	32
	\%	114	139	49	45	117	54	116	161	37	18	160	37	46
Welsh	mm	87	106	47	47	103	58	173	171	52	12	211	69	42
	\%	109	129	59	61	102	50	126	120	34	8	218	65	52
Scotland	mm	108	78	65	78	67	64	229	188	95	58	267	191	60
	\%	142	91	76	83	57	45	147	125	63	38	262	153	78
Highland	mm	111	84	79	91	73	85	266	250	106	93	339	314	93
	\%	122	91	81	86	57	50	134	123	54	49	267	194	102
North East	mm	63	67	33	66	64	32	139	110	86	27	126	76	35
	\%	105	97	50	90	74	37	143	111	92	27	194	97	58
Tay	mm	103	67	44	53	64	52	195	142	70	39	247	124	27
	\%	166	81	60	69	68	46	150	117	55	27	260	114	44
Forth	mm	86	68	44	55	61	47	186	139	81	40	227	107	33
	\%	146	92	64	73	65	43	162	124	74	34	287	114	56
Tweed	mm	79	63	30	53	63	29	134	139	118	24	189	67	21
	\%	139	89	46	73	72	33	141	149	127	24	282	85	37
Solway	mm	133	80	78	69	66	58	265	155	99	32	252	123	44
	\%	173	94	93	77	55	41	169	108	67	21	250	105	57
Clyde	mm	142	90	88	99	66	78	282	215	93	64	308	218	72
	\%	169	99	95	91	49	44	146	119	52	34	261	148	86

Note:
The monthly regional rainfall figures for England and Wales for March \& April 1997 correspond to the MORECS areal assessments derived by the Meteorological Office. In northern England these initial assessments may have a particularly wide error band
associated with them, especially when snow is a significant component in the precipitation total. The figures for the Scottish regions (and also for Scotland) for March \& April 1997 were derived by IH in collaboration with the SEPA regions.
The provisional figures for England and Wales and for Scotland are derived using a different raingauge network. Regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.
The provisional February rainfall figure for England \& Wales has been signficantly increased.

TABLE 2 RAINFALL ACCUMULATIONS AND RETURN PERIOD ESTIMATES

		Feb 97-Apr 97 Est Return Period, years		Dec 96-Apr 97 Est Return Period, years		May 96-Apr 97 Est Return Period, years		Apr 95-Apr 97 Est Return Period, years	
England and Wales	mm \% LTA	$\begin{array}{r} 168 \\ 86 \end{array}$	2-5	$\begin{array}{r} 235 \\ 62 \end{array}$	30-50	$\begin{array}{r} 692 \\ 77 \end{array}$	20-35	$\begin{array}{r} 1419 \\ 77 \end{array}$	>200
North West	$\begin{aligned} & \text { mm } \\ & \% \text { LTA } \end{aligned}$	$\begin{aligned} & 318 \\ & 130 \end{aligned}$	5-10	$\begin{array}{r} 396 \\ 81 \end{array}$	5-10	$\begin{array}{r} 1003 \\ 83 \end{array}$	5-15	$\begin{array}{r} 1809 \\ 73 \end{array}$	$\gg 200$
Northumbria	$\begin{aligned} & \text { mm } \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 184 \\ 99 \end{array}$	2-5	$\begin{array}{r} 287 \\ 82 \end{array}$	5-10	$\begin{array}{r} 689 \\ 81 \end{array}$	10-20	$\begin{array}{r} 1445 \\ 82 \end{array}$	30-40
Severn Trent	mm \% LTA	$\begin{array}{r} 138 \\ 81 \end{array}$	2-5	$\begin{array}{r} 204 \\ 64 \end{array}$	15-25	$\begin{array}{r} 569 \\ 76 \end{array}$	20-30	$\begin{array}{r} 1176 \\ 75 \end{array}$	110-150
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 151 \\ 82 \end{array}$	2-5	$\begin{array}{r} 257 \\ 74 \end{array}$	5-15	$\begin{array}{r} 659 \\ 80 \end{array}$	10-15	$\begin{array}{r} 1247 \\ 73 \end{array}$	>200
Anglian	$\begin{aligned} & \text { mm } \\ & \% \text { LTA } \end{aligned}$	$\begin{aligned} & 75 \\ & 57 \end{aligned}$	15-25	$\begin{array}{r} 131 \\ 56 \end{array}$	50-80	$\begin{array}{r} 441 \\ 74 \end{array}$	30-40	$\begin{array}{r} 890 \\ 72 \end{array}$	$\gg 200$
Thames	mm \% LTA	$\begin{array}{r} 104 \\ 69 \end{array}$	5-10	$\begin{array}{r} 141 \\ 50 \end{array}$	60-90	$\begin{array}{r} 465 \\ 68 \end{array}$	50-80	$\begin{array}{r} 1067 \\ 75 \end{array}$	80-120
Southern	mm \% LTA	$\begin{array}{r} 124 \\ 73 \end{array}$	5-10	$\begin{array}{r} 174 \\ 52 \end{array}$	40-60	$\begin{array}{r} 592 \\ 76 \end{array}$	10-20	$\begin{array}{r} 1220 \\ 76 \end{array}$	60-90
Wessex	mm \% LTA	$\begin{array}{r} 169 \\ 90 \end{array}$	2-5	$\begin{array}{r} 214 \\ 58 \end{array}$	25-40	$\begin{array}{r} 677 \\ 81 \end{array}$	5-15	$\begin{array}{r} 1542 \\ 89 \end{array}$	5-10
South West	mm \% LTA	$\begin{array}{r} 231 \\ 86 \end{array}$	2-5	$\begin{array}{r} 308 \\ 56 \end{array}$	35-50	$\begin{array}{r} 956 \\ 81 \end{array}$	5-15	$\begin{array}{r} 2069 \\ 86 \end{array}$	10-15
Welsh	mm \% LTA	$\begin{aligned} & 322 \\ & 113 \end{aligned}$	2-5	$\begin{array}{r} 386 \\ 67 \end{array}$	15-25	$\begin{array}{r} 1091 \\ 83 \end{array}$	5-15	$\begin{array}{r} 2180 \\ 81 \end{array}$	35-50
Scotland	mm \% LTA	$\begin{aligned} & 518 \\ & 171 \end{aligned}$	$\geq>200$	$\begin{aligned} & 671 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 1440 \\ 100 \end{array}$	≤ 2	$\begin{array}{r} 2759 \\ 94 \end{array}$	5-10
Highland	mm \% LTA	$\begin{aligned} & 746 \\ & 196 \end{aligned}$	$\geq>200$	$\begin{aligned} & 945 \\ & 124 \end{aligned}$	5-15	$\begin{array}{r} 1873 \\ 106 \end{array}$	2-5	$\begin{array}{r} 3333 \\ 92 \end{array}$	5-10
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{aligned} & 237 \\ & 117 \end{aligned}$	2-5	$\begin{array}{r} 350 \\ 89 \end{array}$	2-5	$\begin{array}{r} 861 \\ 88 \end{array}$	5-10	$\begin{array}{r} 2009 \\ 100 \end{array}$	<2
Tay	$\begin{aligned} & \text { mm } \\ & \% \text { LTA } \end{aligned}$	$\begin{aligned} & 398 \\ & 150 \end{aligned}$	25-40	$\begin{array}{r} 507 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1124 \\ 91 \end{array}$	2-5	$\begin{array}{r} 2395 \\ 95 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{aligned} & 367 \\ & 158 \end{aligned}$	60-90	$\begin{aligned} & 488 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1088 \\ 98 \end{array}$	2-5	$\begin{array}{r} 2092 \\ 92 \end{array}$	5-10
Tweed	mm \% LTA	$\begin{aligned} & 277 \\ & 136 \end{aligned}$	10-15	$\begin{aligned} & 419 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 930 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1830 \\ 92 \end{array}$	5-10
Solway	mm \% LTA	$\begin{aligned} & 419 \\ & 142 \end{aligned}$	15-25	$\begin{array}{r} 550 \\ 92 \end{array}$	2-5	$\begin{array}{r} 1321 \\ 93 \end{array}$	2-5	$\begin{array}{r} 2609 \\ 89 \end{array}$	5-10
Clyde	mm \% LTA	$\begin{aligned} & 598 \\ & 171 \end{aligned}$	≥ 200	$\begin{aligned} & 755 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 1673 \\ 99 \end{array}$	2-5	$\begin{array}{r} 3162 \\ 91 \end{array}$	5-10

LTA refers to the period 1961-90.

Return period assessments are based on tables provided by the Meteorological Office*. The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate. They assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods underlined. The ranking of accumulated rainfall totals for England \& Wales and for Scotland can be affected by artifacts in the historical series - on balance these tend to exaggerate the relative wetness of the recent past.

* Tabony, R.C., 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office.

FIGURE 1 MONTHLY RIVER FLOW HYDROGRAPHS

Thames at Kingston

Itchen at Highbridge+Allbrook

Severn at Bewdley

Eden at Sheepmount

Clyde at Daldowie

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PERIODS RANKED IN THE RECORD

River/ Station name	$\begin{aligned} & \text { Dec } \\ & 1996 \end{aligned}$	$\begin{gathered} \text { Jan } \\ 1997 \end{gathered}$	Feb	Mar	Apr 1997		$\begin{aligned} & 1 / 97 \\ & \text { to } \\ & 4 / 97 \end{aligned}$		$\begin{gathered} 11 / 96 \\ \text { to } \\ 4 / 97 \end{gathered}$		$\begin{gathered} 5 / 96 \\ \text { to } \\ 4 / 97 \end{gathered}$		$\begin{gathered} 5 / 95 \\ 10 \\ 4 / 97 \end{gathered}$	
	mm	mm	mm	mm	mm	rank	mm	rank/	mm	rank	mm	rank	mm	rank
	\%LT	\%LT	\%LT	\%LT	\%LT	/yrs	\%LT	yrs	\%LT	/yrs	\%LT	/yrs	\%LT	/yrs
Dee at	77	39	97	90	32	1	258	4	399	3	578	2	1556	9
Park	91	42	132	94	41	125	75	125	79	125	73	124	98	123
Tay at	105	54	202	187	73	14	515	29	758	21	1059	15	2078	13
Ballathie	74	36	172	142	81	145	105	145	101	145	93	144	91	143
Tweed at	126	42	183	88	24	3	337	24	566	26	740	13	1339	8
Boleside	127	39	233	107	44	137	104	137	111	136	97	136	88	135
Whiteadder Water at	102	47	48	27	11	3	133	5	264	13	333	11	650	9
Hutton Castle	217	78	101	57	30	128	70	128	96	128	86	127	84	126
South Tyne at	75	32	166	70	26	5	294	10	453	10	560	3	1013	1
Haydon Bridge	72	31	219	80	44	135	91	135	87	135	73	133	65	131
Wharfe at	77	28	138	54	21	7	241	12	398	8	531	4	783	1
Flint Mill Weir	79	27	181	70	39	142	80	142	83	142	75	141	55	140
Derwent at	30	21	23	18	8	1	71	2	115	3	163	2	386	1
Buttercrambe	74	47	60	45	27	136	47	136	53	136	51	135	60	134
Trent at	31	15	27	20	12	2	74	2	128	3	190	2	386	1
Colwick	69	29	64	51	39	139	46	139	54	139	55	138	55	137
Lud at	17	16	13	12	10	2	50	6	74	6	111	3	234	2
Louth	83	53	83	36	32	129	41	129	48	129	46	128	48	127
Witham at	9	9	11	11	6	2	36	4	51	3	75	3	177	1
Claypole Mill	43	34	40	43	29	138	38	138	40	138	41	138	48	137
Litule Ouse at	10	8	10	9	7	1	33	3	51	5	77	2	166	2
Abbey Heath	61	34	45	40	37	130	41	129	46	129	47	129	50	128
Colne at	7	5	5	6	3	1	20	2	34	4	51	1	127	3
Lexden	40	22	27	34	27	138	28	138	34	137	38	136	48	134
Lee at	6	5	8	7	5	2	24	4	37	4	67	4	180	9
Feildes Weir (natr.)	33	23	39	34	30	1111	32	/111	34	1111	41	1110	56	1108
Thames at	10	8	18	16	9	4	51	5	73	6	119	6	326	10
Kingston (natr.)	33	22	55	51	38	1115	41	1115	42	1114	49	1114	66	1113
Coln at	14	14	18	36	20	3	88	2	112	2	201	2	523	2
Bibury	35	26	33	68	46	134	44	134	42	134	52	133	66	132
Great Stour at	17	16	24	17	10	1	68	4	107	3	155	1	324	1
Horton	49	39	73	53	38	132	52	132	56	131	54	131	56	129
Itchen at	36	32	33	42	32	4	139	5	202	6	363	3	805	6
Highbridge + Allbrook	85	66	67	81	69	139	71	139	75	139	79	138	87	137
Stour at	30	18	49	40	16	3	122	4	185	3	249	3	612	2
Throop Mill	52	27	80	79	46	125	59	125	61	124	63	124	77	123
Exe at	71	18	135	46	15	1	214	4	418	3	575	3	1172	1
Thorverton	52	13	129	55	26	141	57	141	69	141	70	141	71	140
Taw at	62	14	118	40	9	1	182	4	378	4	465	5	908	1
Umberleigh	52	12	137	59	21	139	58	139	72	139	67	138	65	137
Tone at	38	19	73	43	18	2	153	5	245	6	327	5	762	6
Bishops Hull	54	23	99	76	46	137	61	136	67	136	69	136	80	135
Severn at	39	12	61	31	9	1	113	4	201	4	275	5	530	1
Bewdley	62	17	106	66	28	177	55	176	63	176	62	176	59	175
Teme at	28	11	48	29	10	1	97	3	148	3	197	3	477	3
Knightsford Bridge	50	16	92	62	29	128	50	127	52	127	55	127	66	126
Cynon at	90	25	340	85	23	2	473	13	774	11	1175	14	2185	7
Abercynon	46	13	246	71	30	139	89	139	88	139	93	137	86	135
Dee at	94	25	364	141	38	5	567	9	943	5	1489	6	2447	1
New Inn	37	10	217	78	35	128	82	128	80	128	84	127	69	126
Eden at	56	24	181	77	23	5	305	18	437	11	556	6	955	1
Sheepmount	56	23	238	102	47	130	101	130	90	130	80	129	68	128
Clyde at	112	33	171	95	32	11	332	23	551	20	727	12	1301	5
Daldowie	107	29	220	116	68	134	104	134	106	134	92	133	82	132
Carron at	162	164	373	286	182	11	1005	12	1529	8	2337	7	3744	1
New Kelso	49	50	167	97	120	119	104	119	97	118	93	118	74	117
Ewe at	167	127	335	325	178	18	966	19	1447	17	2140	14		4
Poolewe	61	46	173	156	122	127	119	127	108	127	100	126	82	125

Notes:
(i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff is rank 1.
(iii) \%LT means percentage of long term average from the start of the record to 1995. For the long periods (at the right of this table), the end date for the long term is 1997.

TABLE 4 START-MONTH RESERVOIR STORAGES UP TO MAY 1997

Area	$\begin{gathered} \text { Reservoir (R)/ } \\ \text { Group }(\mathrm{G}) \\ \hline \end{gathered}$		$\begin{gathered} \text { Capacity } \\ \text { (M1) } \\ \hline \end{gathered}$	$\begin{array}{r} 1996 \\ \text { Dec } \end{array}$	$\begin{array}{r} 1997 \\ \text { Jan } \end{array}$	Feb	Mar	Apr	May	1996 May
North West	N.Command Zone ${ }^{1}$	(G)	133375	84	77	66	100	97	87	80
	Vyrnwy	(R)	55146	86	81	71	100	95	86	70
Northumbria	Teesdale ${ }^{2}$	(G)	87936	61	78	80	95	97	89	81
	Kielder	(R)	199175*	93	88	89	100	93	90	93
Severn-Trent	Clywedog	(R)	44922	80	81	76	93	97	98	93
	Derwent Valley ${ }^{3}$	(G)	39525	93	98	94	100	100	95	54
Yorkshire	Washburn ${ }^{4}$	(G)	22035	86	97	86	98	93	86	76
	Bradford supply ${ }^{5}$	(G)	41407	84	90	88	100	98	90	60
Anglian	Grafham	(R)	58707	68	69	68	72	77	73	95
	Rutland	(R)	130061	70	71	68	73	76	72	94
Thames	London ${ }^{6}$	(G)	206399	59	70	70	85	94	93	95
	Farmoor ${ }^{7}$	(G)	13843	100	99	93	96	98	98	97
Southern	Bewl	(R)	28170	59	60	65	85	98	91	94
	Ardingly	(R)	4685	55	64	68	100	100	100	100
Wessex	Clatworthy	(R)	5364	88	96	81	100	99	89	94
	Bristol W ${ }^{8}$	(G)	38666*	77	80	74	96	95	92	97
South West	Colliford	(R)	28540	50	53	52	57	58	56	66
	Roadford ${ }^{9}$	(R)	34500	51	54	52	61	62	60	41
	Wimbleball ${ }^{10}$	(R)	21320	60	64	59	81	91	84	81
	Stithians	(R)	5205	71	88	90	96	97	89	97
Welsh	Celyn + Brenig	(G)	131155	75	82	78	97	98	94	75
	Brianne	(R)	62140	100	93	84	99	97	86	100
	Big Five ${ }^{11}$	(G)	69762	77	75	67	96	95	85	94
	Elan Valley ${ }^{12}$	(G)	99106	99	92	85	100	99	91	99
East of Scotland	Edin./Mid Lothian ${ }^{13}$	(G)	97639	89	93	91	100	100	94	98
	East Lothian ${ }^{14}$	(G)	10206	79	100	100	100	99	98	98
West of Scotland	Loch Katrine	(G)	111363	97	89	85	100	100	96	100
	Daer	(R)	22412	100	98	91	100	98	94	100
	Loch Thom	(G)	11840	100	99	96	100	100	94	97

- Live or usable capacity (unless indicated otherwise) * Gross storage/percentage of gross storage

1. Includes Haweswater, Thirlmere, Stocks and Barnacre.

Cow Green, Selset, Grassholme, Balderhead, Blackton and Hury.
Howden, Derwent and Ladybower.
Swinsty, Fewston, Thruscross and Eccup.
The Nidd/Barden group (Scar House, Angram, Upper Barden, Lower Barden and Chelker) plus Grimwith.
6. Lower Thames (includes Queen Mother, Wraysbury, Queen Mary, King George VI and Queen Elizabeth II) and Lee Valley (includes King George and William Girling) groups -pumped storages.
7. Farmoor 1 and 2 - pumped storages.

A GUIDE TO THE VARIATION IN OVERALL RESERVOIR STOCKS FOR ENGLAND AND WALES

8. Blagdon, Chew Valley and others
9. Roadford began filling in November 1989.
10. Shared between South West (river regulation for abstraction) and Wessex (direct supply)
11. Usk, Talybont, Llandegfedd (pumped stroage), Taf Fechan, Taf Fawr.
12. Claerwen, Caban Coch, Pen-y-garreg and Craig Goch.
13. Megget, Talla, Fruid, Gladhouse, Torduff, Clubbiedean, Glencorse,Loganlea and Morton (upper and lower).
14. Thorters, Donolly, Stobshiel, Lammerloch, Hopes and Whiteadder

A COMPARISON BETWEIEN OVERALL RESERVOIR STOCKS FOR ENGLAND AND WALES IN RECENT YEARS

These plots are based on the reservoirs featured in Table 4 only
Note: Variations in storage depend on the balance between inputs (from catchment rainfall and any pumping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategics for making the most efficient use of water stocks will further affect reservoir storages. Table 4 is intended to provide a link between the hydrological conditions described elsewhere in the report and the water resources situation. The reservoirs featured may not be representative of storage conditions across the iodividual regions; this can be particularly important during drought conditions (eg, in the Severn-Trent region during 1995/96).

FIGURE 2 GROUNDWATER LEVEL HYDROGRAPHS

TABLE 5 APRIL GROUNDWATER LEVELS 1997

Site	Aquifer	Records Commence	$\begin{gathered} \text { Minimum } \\ \text { Apr } \\ <1997 \end{gathered}$	Average Apr <1997	$\begin{gathered} \text { Maximum } \\ \text { Apr } \\ <1997 \end{gathered}$	No of years Apr/May level < 1997	$\begin{gathered} \text { Apr/May } \\ 1997 \end{gathered}$	
							day	level
Dalton Holme	Ck	1889	10.46	19.50	23.60	5	25/04	13.47
Wetwang	Ck	1971	18.42	23.70	30.17	3	25/04	20.48
Keelby Grange	Ck	1980	3.86	12.08	18.36	1	21/04	5.73
Washpit Farm	Ck	1950	40.71	45.17	49.77	8	01/05	43.08
The Holt	Ck	1964	84.35	88.16	92.26	1	28/04	85.00
Therfield Rectory	Ck	1883	70.72	80.50	97.51	6	21/04	71.94
Redlands Hall	Ck	1963	32.85	44.87	54.32	1	25/04	34.24
Rockley	Ck	1933	129.16	137.45	143.68	5	28/04	132.22
Little Bucket Farm	Ck	1971	60.02	71.68	85.91	5	14/04	65.30
Compton House	Ck	1894	29.50	44.09	57.10	>10	08/05	37.88
Chilgrove House	Ck	1836	36.88	52.21	70.09	>10	08/05	46.26
Westdean No. 3	Ck	1940	1.28	2.07	3.68	0	02/05	1.34
Lime Kiln Way	Ck	1969	124.00	125.50	126.23	9	16/04	125.42
Ashton Farm	Ck	1974	65.01	69.41	71.20	7	30/04	68.55
West Woodyates	Ck	1942	74.86	88.22	103.00	>10	30/04	83.91
Killyglen (NI)	Ck	1985	113.74	115.11	116.53	1	06/04	113.98
New Red Lion	LLst	1964	5.61	16.45	22.97	1	28/04	10.27
Ampney Crucis	MidJ	1958	100.29	101.71	103.01	3	28/04	100.51
Redbank	PTS	1981	7.43	8.34	9.43	1	30/04	7.71
Yew Tree Farm	PTS	1972	12.52	13.56	13.93	6	02/05	13.47
Skirwith	PTS	1978	129.91	130.60	131.51	0	29/04	129.91
Llanfair D.C	PTS	1972	79.06	79.97	80.54	0	22/04	79.06
Morris Dancers	PTS	1969	31.82	32.48	33.50	4	23/04	32.06
Heathlanes	PTS	1971	60.74	62.08	63.38	0	07/04	60.74
Bussels No.7A	PTS	1971	23.19	24.15	24.93	2	22/04	23.58
Rusheyford NE	MgLst	1967	65.40	73.04	76.84	>10	21/04	76.12
Peggy Ellerton	MgLst	1968	31.46	34.37	37.39	1	22/04	31.96
Alstonfield	CLst	1974	177.83	193.47	208.75	2	11/04	181.18

groundwater levels are in metres above Ordnance Datum

Ck	Chalk	MidJ	Middle Jurassic Limestones
LLst	Linconshire Limestone	MgLst	Magnesian Limestone
PTS	Permo-Triassic sandstones	Clst	Carboniferous Limestones

Wallingford

Daily Rainfall

Hourly Temperature

Hourly Wind Direction

The Institute of Hydrology Meteorological Station occupies a relatively open site on the Thames floodplain about 5 km NW of the Chilterns escarpment. Station elevation is 48 m

FIGURE 3 (continued)
FIGURE 3a. WALLINGFORD SMD DATA 1996/7.
Plynlimon

Hourly Wind Direction

The Dolydd automatic weather station at Plynlimon is sited in an exposed field with a forested area to the south. Surrounding land reaches a peak height of around 400 m . Station elevation is 300 m aOD and average annual rainfall exceeds 2300 mm .

Daily Rainfall

Note

Soil moisture deficit is defined as the amount by which the water stored in the soil is below the quantity held at field capacity. Two automatic soil water stations (ASWSs) deployed at Wallingford, which use capacitance soil water sensors installed at depths of 5,15 and 50 cm , are the sources of the data. Figure 3a shows deficits calculated from one of the stations for the depth ranges $0-0.325 \mathrm{~m}$ (15 cm probe) and $0.325-1.0 \mathrm{~m}$ (50 cm probe) at 0100 GMT on each day. At the end of January 1996, field capacity was re-estimated using recent data and the soil moisture deficit values for the previous months were recalculated accordingly.

Daily rainfall from the Wallingford met station from May 1996
is presented.

[^0]: Institute of Hydrology/British Geological Survey
 Maclean Building
 Crowmarsh Gifford
 Wallingford
 Oxfordshire
 OX10 8BB

