Hydrollogical summary for Great Britain

General

July was a moderately warm, generally sunny but unsettled month. Longer term rainfall deficiencies increased in some eastern and southern areas but several damp interludes usefully restrained the normal summer surge in water demand. Stocks in some lowland reservoirs are low (eg Grafham) but overall are appreciably above average for the late summer. In contrast, groundwater levels remain very depressed over wide areas, causing a continuing failure of springs and notably low flows in many lowland rivers. With average late summer and autumn rainfall the seasonal upturn in runoff and recharge rates should begin within the normal timeframe but substantial winter rainfall - and a prolonged recharge season - will be required to restore groundwater levels to the average by the spring of 1998.

Rainfall

The very unsettled conditions which characterised June continued into July. North-eastern Scotland was especially wet early in the month - a slow moving low pressure system producing exceptional 48 -hour rainfall totals ($80-100 \mathrm{~mm}$) along the coastal fringe to the south of the Moray Firth. High pressure began to dominate weather patterns thereafter and a brief heatwave was experienced early in the second week, the hot and humid conditions triggered thunderstorms - mostly in southern Britain. Subsequently frontal systems began to penetrate from the west producing more extensive rainfall although storm totals were very modest in the east. For Britain as II whole the provisional July rainfall total was around 90% of average and most regions were within the normal range - but the thundery weather made for large local differences in monthly totals. Drought intensity again declined in some of the affected regions but overall the rainfall deficiency remains exceptional. Only during the 1988-92 drought (and then marginally) have lower 28month accumulations for E\&W been registered in the last 140 years. Over shorter timeframes the picture is more encouraging: regional rainfall totals over the last 3,6 and 12 months are all within the normal range albeit well below average over the last year in much of the English lowlands, the Thames Valley especially.

River Flow

July opened with a very notable flood in north east Scotland. After two days of continuous rainfall - totals reaching 150 mm at Relugas (south of Forres), the rivers Nairn, Divie, Lossie and Isla all registered new maximum recorded flows. Flooding, mostly generated in the lower catchments, was extensive from Inverness to Macduff; over 1200 people were evacuated and disruption to industry, agriculture and transport was severe. Several episodes of very localised flooding triggered by thunderstorms were reported at intervals in the south. July runoff totals were above average
throughout much of Scotland and in the normal range in Wales, northern England and the South-West. By contrast, seasonal recessions became firmly reestablished in most of lowland England; with baseflow contributions now very meagre, July runoff was close to the lowest on record in some permeable catchments (eg the Mimram and Kennet). On the Thames and Hampshire Avon, the July runoff total was the third lowest for almost 50 years - although still well above the 1976 and 1934 minima. The hydrological impact of the long term rainfall deficiency is evident over the longer timeframes: two-year runoff totals (for periods ending in July) are the lowest on record for many rivers (including the Trent, Medway, Exe and Welsh Dee).

Groundwater

Recharge amounts in July were, as usual, very meagre and throughout most major aquifers recessions continued - gently in the east where natural base levels are being approached in many areas. In the western and northern Permo-Triassic sandstones levels remain very low but the wet late spring/early summer has left water-tables above, or similar to, corresponding levels in 1996. The same is true of much of the Carboniferous, Lincolnshires and Oolitic limestones outcrops where modest July increases in levels were reported for some index wells. In the Chalk however levels are depressed throughout the aquifer particularly in the South-East and parts of East Anglia (eg the Suffolk Chalk) - but generally levels are a little above the 1976 minima (often 1992 also). The contrast with levels in early 1995 is remarkable and the range of water-table variation over the last decade has very few modern parallels. Soil moisture deficits are now lower than in the late summer for most recent years over much of the drought affected region but the 1997 seasonal recoveries in groundwater levels will need to be generated from an exceptionally low base.

Rainfall . . . Rainfall . . . Rainfall.

Rainfall accumulations and return period estimates

Area	Rainfall	Jul 1997		$\begin{array}{r} 7 \text {-Jul } 97 \\ R P \end{array}$		$\begin{array}{r} -J u l \\ \quad 97 \\ R P \end{array}$	$\text { Aug } 9$	$\begin{array}{r} -\mathrm{Jul} 97 \\ R P \end{array}$		$\begin{array}{r} 95-\mathrm{Jul} 97 \\ R P \end{array}$
England \& Wales	$\begin{aligned} & \text { mm } \\ & \% \end{aligned}$	$\begin{aligned} & 55 \\ & 88 \end{aligned}$	$\begin{aligned} & 260 \\ & 136 \end{aligned}$	10-15	$\begin{array}{r} 503 \\ 89 \end{array}$	2-5	$\begin{array}{r} 836 \\ 93 \end{array}$	2-5	$\begin{array}{r} 1691 \\ 83 \end{array}$	35-50
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 80 \\ & 94 \end{aligned}$	$\begin{aligned} & 284 \\ & 118 \end{aligned}$	2-5	$\begin{array}{r} 687 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1128 \\ 94 \end{array}$	2-5	$\begin{array}{r} 2110 \\ 78 \end{array}$	120-170
Northumbrian	mm $\%$	$\begin{array}{r} 71 \\ 109 \end{array}$	$\begin{aligned} & 28 \mid \\ & 150 \end{aligned}$	20-35	$\begin{aligned} & 571 \end{aligned}$	2-5	$\begin{array}{r} 848 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1732 \\ 89 \end{array}$	$5-10$
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 47 \\ & 89 \end{aligned}$	$\begin{aligned} & 244 \\ & 143 \end{aligned}$	10-20	$\begin{array}{r} 447 \\ 92 \end{array}$	2-5	$\begin{array}{r} 701 \\ 93 \end{array}$	2-5	$\begin{array}{r} 1419 \\ 82 \end{array}$	30-50
Yorkshire	mm	$\begin{array}{r} 71 \\ 120 \end{array}$	$\begin{aligned} & 299 \\ & 167 \end{aligned}$	50-80	$\begin{aligned} & 563 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 838 \\ & 102 \end{aligned}$	2-5	$\begin{array}{r} 1554 \\ 83 \end{array}$	30-45
Anglian	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{array}{r} 50 \\ 102 \end{array}$	$\begin{aligned} & 217 \\ & 146 \end{aligned}$	10-20	$\begin{array}{r} 347 \\ 90 \end{array}$	2-5	$\begin{array}{r} 577 \\ 97 \end{array}$	2-5	$\begin{array}{r} 1107 \\ 80 \end{array}$	40-60
Thames	mm	$\begin{aligned} & 38 \\ & 77 \end{aligned}$	$\begin{aligned} & 187 \\ & 117 \end{aligned}$	2-5	$\begin{array}{r} 327 \\ 74 \end{array}$	10-20	$\begin{array}{r} 563 \\ 82 \end{array}$	5-10	$\begin{array}{r} 1255 \\ 79 \end{array}$	35-50
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 32 \\ & 67 \end{aligned}$	$\begin{aligned} & 204 \\ & \|3\| \end{aligned}$	5-10	$\begin{array}{r} 377 \\ 77 \end{array}$	$5-10$	$\begin{array}{r} 690 \\ 89 \end{array}$	2-5	$\begin{array}{r} 1419 \\ 80 \end{array}$	30-50
Wessex	mm	$\begin{aligned} & 34 \\ & 65 \end{aligned}$	$\begin{aligned} & 194 \\ & 114 \end{aligned}$	2-5	$\begin{array}{r} 405 \\ 75 \end{array}$	5-15	$\begin{array}{r} 753 \\ 90 \end{array}$	2-5	$\begin{array}{r} 1734 \\ 91 \end{array}$	2-5
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 37 \\ & 53 \end{aligned}$	$\begin{aligned} & 243 \\ & 116 \end{aligned}$	2-5	$\begin{array}{r} 552 \\ 73 \end{array}$	10-20	$\begin{array}{r} 1038 \\ 88 \end{array}$	2-5	$\begin{array}{r} 2316 \\ 88 \end{array}$	$5-10$
Welsh	mm $\%$	$\begin{aligned} & 61 \\ & 79 \end{aligned}$	$\begin{aligned} & 308 \\ & 129 \end{aligned}$	$5-10$	$\begin{array}{r} 671 \\ 82 \end{array}$	$5-10$	$\begin{array}{r} 1182 \\ 90 \end{array}$	2-5	$\begin{array}{r} 2471 \\ 84 \end{array}$	20-35
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 101 \\ & 108 \end{aligned}$	$\begin{aligned} & 315 \\ & 118 \end{aligned}$	$5-10$	$\begin{aligned} & 945 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1496 \\ 104 \end{array}$	2-5	$\begin{array}{r} 3036 \\ 94 \end{array}$	2-5
Highland	mm	$\begin{aligned} & 96 \\ & 91 \end{aligned}$	$\begin{aligned} & 321 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1171 \\ 110 \end{array}$	2-5	$\begin{array}{r} 1847 \\ 105 \end{array}$	2-5	$\begin{array}{r} 3561 \\ 91 \end{array}$	$5-10$
North East	mm $\%$	$\begin{array}{r} 84 \\ 115 \end{array}$	$\begin{aligned} & 330 \\ & 158 \end{aligned}$	60-90	$\begin{aligned} & 679 \\ & 113 \end{aligned}$	$5-10$	$\begin{array}{r} 1024 \\ 105 \end{array}$	2-5	$\begin{array}{r} 2338 \\ 106 \end{array}$	2-5
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 289 \\ & 124 \end{aligned}$	5-10	$\begin{aligned} & 785 \\ & 100 \end{aligned}$	2-5	$\begin{array}{r} 1242 \\ 101 \end{array}$	2-5	$\begin{array}{r} 2677 \\ 97 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 63 \\ & 84 \end{aligned}$	$\begin{aligned} & 283 \\ & 130 \end{aligned}$	5-10	755	2-5	$\begin{array}{r} 1187 \\ 107 \end{array}$	2-5	$\begin{array}{r} 2358 \\ 95 \end{array}$	2-5
Tweed	mm	$\begin{aligned} & 68 \\ & 93 \end{aligned}$	$\begin{aligned} & 299 \\ & 143 \end{aligned}$	15-25	$\begin{aligned} & 705 \\ & 117 \end{aligned}$	5-10	$\begin{array}{r} 1067 \\ 110 \end{array}$	2-5	$\begin{array}{r} 2113 \\ 96 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 98 \\ 109 \end{array}$	$\begin{aligned} & 319 \\ & 123 \end{aligned}$	5-10	$\begin{array}{r} 848 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1395 \\ 98 \end{array}$	2-5	$\begin{array}{r} 2910 \\ 92 \end{array}$	5-10
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 87 \\ & 80 \end{aligned}$	$\begin{array}{r} 241 \\ 82 \end{array}$	2-5	$\begin{array}{r} 970 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1618 \\ 95 \end{array}$	2-5	$\begin{array}{r} 3384 \\ 90 \end{array}$	5-15

The monthly rainfall figures are copyright of the Meteorological office and may not be passed on to any unauthorised person or organisation. The table shows the actual rainfall (mm) for four periods with the corresponding percentage (\%) based on the 1961-1990 average, and the estimated return period in years (the longer the return period the more unusual the event). The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only. The tables reflect rainfall over the period 1911-70 and assume a stable climate.

Rainfall . . . Rainfall . . . Rainfall

Key

$00 \% \quad$ Percentage of 1961-90 average

Very wet
Substantially above average

~

Exceptionally low rainfall

May 1997 - July 1997

April | 995 - July 1997

Rainfall accumulation maps

The regional rainfall maps present a picture that has become familiar over the last decade: above average recent rainfall combined with a continuing long term deficiency. The provisional May-July rainfall total for Great Britain is the highest for 30 years but the rainfall deficiencies in England for the period since March 1995 remain the equivalent of around 5-6 months average rainfall over wide areas.

River flow . . . River flow . . .

River flows - July 1997

Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1992 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations May - July 1997 (a); August 1995 - July 1997 (b)

(a) River	\%lta	Rank	(b) River	$\%$ lta	Rank	River	\%lta	Rank
Whiteadder	181	$27 / 28$	S. Tyne	71	$1 / 30$	Coln	65	$1 / 32$
S. Tyne	159	$31 / 34$	Wharfe	59	$1 / 40$	Medway	51	$1 / 30$
Leven	175	$33 / 37$	Trent	58	$1 / 37$	Exe	75	$1 / 40$
Mimram	44	$2 / 45$	Dove	55	$1 / 34$	Taw	68	$1 / 37$
Coln	55	$2 / 34$	Soar	52	$1 / 25$	Dee (Welsh)69	$1 / 58$	
Avon (Hants)	52	$2 / 33$	Coln	65	$1 / 32$	lta $=$ long term average		
			6		Rank 1 = lowest on record			

Groundwater

 Groundwater

What is groundwater?

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater

 Groundwater

Groundwater levels July/August 1997

Borehole	Level	Date	July av.
Dalton Holme	13.3	$28 / 7$	17.17
Washpit Farm	42.35	$23 / 7$	44.70
The Holt	84.6	$28 / 7$	88.02
Redlands Hall	33.01	$27 / 7$	42.41
Rockley	129.7	$28 / 7$	133.13
Little Bucket	61.3	$8 / 7$	68.19

Borehole Dalon Holm The Holt Redlands Hall Little Bucket

Level	Date	July av.
39.54	$23 / 7$	43.56
72.62	$31 / 7$	76.87
13.5	$29 / 7$	3.42
99.85	$28 / 7$	100.47
129.7	$29 / 7$	130.27

Borehole	Level	Date	July av.
Llanfair DC	78.95	$30 / 7$	79.67
Morris Dancers	31.93	$21 / 7$	32.47
Heathlanes	60.53	$8 / 7$	62.18
Bussels	23.61	$29 / 7$	23.69
Alstonfield	183.52	$15 / 7$	178.61

Groundwater . . . Groundwater

Groundwater levels - July I 997

Guide to the variation in overall reservoir stocks for
 England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity (MI)	$\begin{aligned} & 1997 \\ & \text { Mar } \end{aligned}$	Apr	May	Jun	Jul	Aug	Min. Aug	Year of min
North West	N Command Zone	- 133375	100	97	87	88	78	66	38	1989
	Vyrnwy	55146	100	95	86	87	90	75	56	1996
Northumbrian	Teesdale	- 87936	95	97	89	85	87	84	45	1989
	Kielder	(199175)	(100)	(93)	(90)	(92)	(94)	(94)	(66)	1989
Severn Trent	Clywedog	44922	93	97	98	98	98	91	57	1989
	Derwent Valley	- 39525	100	100	95	98	100	90	43	1996
Yorkshire	Washburn	- 22035	98	93	86	89	99	87	50	1995
	Bradford supply	- 41407	100	98	90	95	96	87	38	1995
Anglian	Grafham	58707	72	77	73	72	70	66	66	1997
	Rutland	130061	73	76	72	75	75	78	74	1995
Thames	London	- 206399	85	94	93	88	88	77	73	1990
	Farmoor	- 13843	96	98	98	98	100	98	84	1990
Southern	Bewl	28170	85	98	91	84	79	74	45	1990
	Ardingly	4685	100	100	100	98	92	93	66	1995
Wessex	Clatworthy	5364	100	99	89	79	97	91	43	1992
	BristolWW	- (38666)	(96)	(95)	(92)	(88)	(85)	(74)	(53)	1990
South West	Colliford	28540	57	58	56	52	51	47	47	1997
	Roadford	34500	61	62	60	59	58	57	46	1996
	Wimbleball	21320	81	91	84	79	84	81	53	1992
	Stithians	5205	96	97	89	79	76	66	39	1990
Welsh	Celyn and Bren	- 131155	97	98	94	97	98	93	65	1989
	Brianne	62140	99	97	86	96	99	93	67	1995
	Big Five	- 69762	96	95	85	88	88	74	41	1989
	Elan Valley	- 99106	100	99	91	97	99	89	63	1989
East of	Edinburgh/Mid	- 97639	100	100	94	94	92	90	62	1989
Scotland	East Lothian	- 10206	100	99	98	100	100	94	72	1992
West of	Loch Katrine	- 111363	100	100	96	94	82	68	68	1997
Scotland	Daer	22412	100	98	94	94	87	74	58	1994
	Loch Thom	- 11840	100	100	94	95	77	69	69	1997

[^0]- denotes reservoir groups
* last occurrence

[^1]
Location map . . . Location map

Where the information comes from

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Institute of Hydrology (IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment (DoE), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA) and the Office of Water Services (OFWAT).

River flow and groundwater levels

The National River Flow Archive (maintained by IH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoirs

Reservoir level information is provided by the Water Service Companies, the EA and, in Scotland, the West of Scotland and East of Scotland Water Authorities.

Rainfall

Most rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data are presented for the regional divisions of the precursor organisations of the EA and SEPA. The recent rainfall estimates for the Scottish regions are derived by IH in collaboration with the SEPA regions. In England and Wales the recent rainfall figures derive from MORECS. MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain. The provisional regional rainfall figures are regularly updated using figures derived from a much denser rainguage network. Further details of Met. Office services can be obtained from:

The Meteorological Office
Sutton House
London Road
Bracknell
RG12 2SY.
Tel. 01344 856858; 01344854024.

The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Centre for Institue of Freshwater Ecology

Hydrology Institute oviviology \& Environmental Microbidiogy

[^0]: () figures in parentheses relate to gross storage

[^1]: Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions actoss each area; this can be particularly important during droughts. The minimum storage figures relate to the 1988-1997 period only.

