Hydrological summary for Great Britain

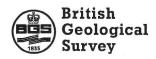
General

Nationally, August provided an unusual combination of sunny conditions, notably high temperatures and above average rainfall. Rainfall totals were, again, above average in most drought affected regions but - as is usual in the late summer - they served to moderate demand rather than significantly increasing water resources. Overall reservoir contents remain healthy but stocks are substantially below average in several major lowland reservoirs (eg Grafham). More significantly, groundwater levels - and flows in many spring-fed rivers - remain depressed over wide areas. The summer rainfall has been very welcome but, in hydrological terms, the drought remains severe in large parts of eastern, central and southern England (and a few more northerly areas). The current wet phase will need to continue through the autumn and winter to generate sustained recoveries in runoff and recharge rates.

Rainfall

August was characterised by substantial regional and local variability in rainfall amounts. Heat wave conditions in mid-month were associated with prolonged dry interludes in many areas but weather patterns were more unsettled early and late in the month - when a westerly airflow brought an autumnal complexion to the weather. August regional rainfall totals were below average in northern Britain - considerably so in parts of southern Scotland, but appreciably above average for England and Wales as a whole - parts of southern England registered more than twice the August mean and thunderstorms produced some intensive downpours (including 68 mm in 5 hours at Burstow, near Gatwick on the 6th and 38 mm in < 1 hour at Shanklin IOW on the 25th). There were, however, pockets of well below average August rainfall in the east (eg in Hertfordshire and Essex). For E&W rainfall was above average for the fourth successive month and the provisional summer (Jun-Aug) total was the highest for 40 years - almost 50% greater than the average for the last 10 years. Notwithstanding the recent easing of the drought, long term rainfall deficiencies remain notable: in the last 140 years only during the 1988-92 drought have lower 29-month accumulations been recorded than the April 1995-August 1997 total. Regionally, the deficiencies are most significant in the South-East, East Anglia, parts of the Midlands and the North-West.

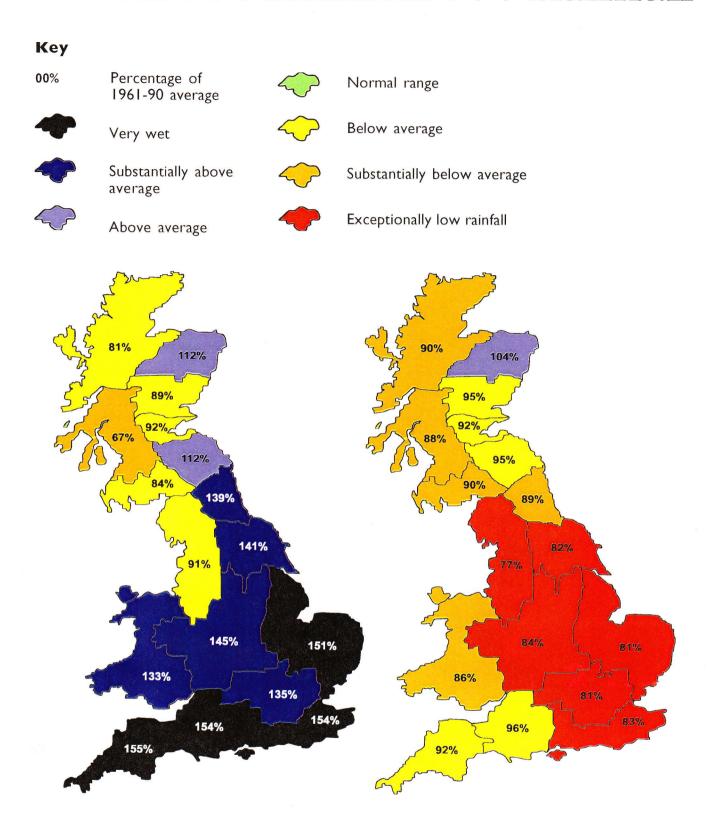
River Flow


Flow rates in August showed wide spatial and temporal variability: monthly mean flows were relatively low in most of northern Britain but above average throughout much of Wales and the South-West where a number of new maximum August runoff totals were established (eg on the Otter, Kenwyn and most notably, the Tone. Above average runoff was also registered in a significant proportion of impervious lowland catchments. Localised flooding was mostly associated with thunder-

storms (eg on the Tone which exceeded its previous peak August flow by a wide margin on the 6th; in central Scotland on the 14th, and in a number of mostly urban catchments, eg in Sheffield and London, around month-end). Commonly in the lowlands, minor spate conditions in impermeable catchments were juxtaposed with exceptionally low river flows in streams reliant principally on groundwater. The Little Ouse, Mimram, Kennet, Coln and Hampshire Avon each recorded their second lowest August flow (after 1976) on record and drainage networks continue to contract. Rivers registering new minimum 24-month runoff totals (for periods ending in August) show a wide distribution, and account for about a quarter of the index stations in the national network.

Groundwater

The late August rainfall eliminated soil moisture deficits in large parts of western Britain and infiltration began in some minor aquifers. Patchy infitration also occurred in the east - eg in the North Downs where the summer has been notably wet - triggering some very early, but localised, seasonal recoveries. Contrasting conditions in individual aquifer units limit the scope for generalisation but late August groundwater levels in the Carboniferous, Jurassic and Lincolnshire Limestones were mostly within the normal range. Upturns in the Permo -Triassic sandstones of the South-West have also occurred but levels remain close to, or below, the long term minima (for September) in a number of the more northerly outcrops (the North-West especially). In the Chalk, levels are relatively close to the seasonal average in the westerly and northerly extremities of the outcrop but the resources position is much poorer in the bulk of the eastern Chalk - where soils remain dry at depth. Levels are close to drought minima in a zone from Hertfordshire to Norfolk. In such areas average rainfall will need to be sustained over about the next 10 weeks before seasonal recoveries gather any momentum.

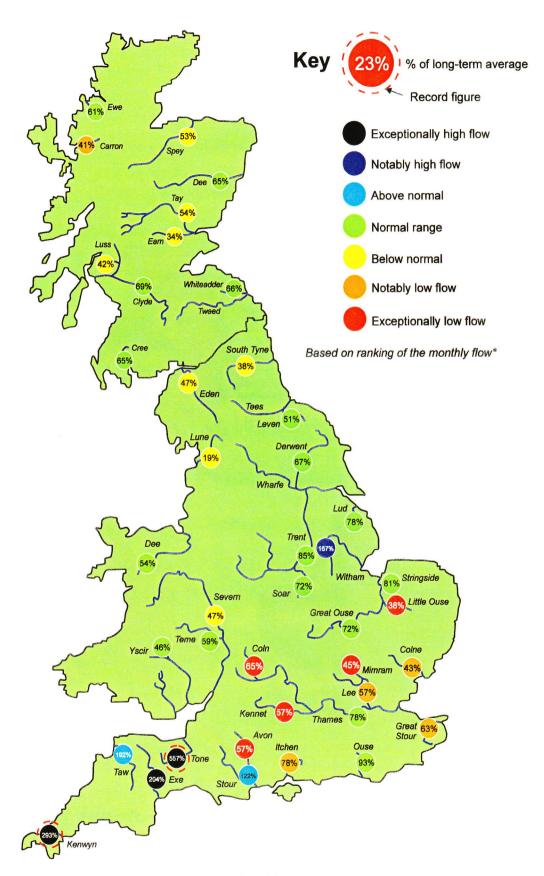

Rainfall . . . Rainfall . . . Rainfall. .

Rainfall accumulations and return period estimates

Area	Rainfall	Aug 1997	Jun 97-Aug 97 RP		Jan 97-Aug 97 <i>RP</i>		Sep 96-7	Aug 97 <i>RP</i>	Apr 95-Aug 97 <i>RP</i>	
England & Wales	mm %	106 140	279 138	10-20	540 98	2-5	847 95	2-5	1 7 82 84	30-40
NorthWest	mm %	71 67	248 91	2-5	675 95	2-5	1096 91	2-5	2166 77	>200
Northumbrian	mm %	56 69	287 139	10-15	562 105	2-5	862 101	2-5	1813 89	5-10
SevernTrent	mm %	87 129	260 145	10-20	486 102	2-5	726 96	2-5	1512 84	20-30
Yorkshire	mm %	73 98	272 4	10-20	507 98	2-5	805 98	2-5	1595 82	35-50
Anglian	mm %	61 111	234 151	20-30	370 97	2-5	567 95	2-5	1173 81	35-50
Thames	mm %	83 144	218 135	5-10	388 90	2-5	587 85	5-10	1340 81	30-40
Southern	mm %	98 172	245 154	20-30	432 93	2-5	697 90	2-5	1506 83	20-30
Wessex	mm %	141 213	270 154	20-30	52 I 102	2-5	814 97	2-5	1881 96	2-5
SouthWest	mm %	178 212	344 155	25-40	689 98	2-5	1129 96	2-5	2505 92	2-5
Welsh	mm %	153 152	342 133	5-10	756 99	2-5	1217 93	2-5	2609 86	10-20
Scotland	mm %	52 44	245 82	2-5	888 106	2-5	1469 102	2-5	3076 92	5-10
Highland	mm %	62 49	268 81	2-5	1126 114	5-10	1836 104	2-5	3623 90	10-15
North East	mm %	46 53	253 112	2-5	648 109	2-5	1017 105	2-5	2395 104	2-5
Tay	mm %	38 40	216 89	2-5	754 102	2-5	1218 99	2-5	2717 95	2-5
Forth	mm %	34 36	218 92	2-5	697 105	2-5	1153 104	2-5	2385 92	5-10
Tweed	mm %	33 38	252 112	2-5	645 108	z 2-5	1063 110	2-5	2172 95	2-5
Solway	mm %	61 51	246 84	2-5	790 95	2-5	1377 97	2-5	2958 90	5-10
Clyde	mm %	55 41	226 67	10-20	944 98	2-5	1622 96	2-5	3454 88 RP = Retu	10-20 urn period

The monthly rainfall figures are copyright of the Meteorological office and may not be passed on to any unauthorised person or organisation. The table shows the actual rainfall (mm) for four periods with the corresponding percentage (%) based on the 1961-1990 average, and the estimated return period in years (the longer the return period the more unusual the event). The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, *The variability of long duration rainfall over Great Britain*, Scientific Paper No. 37) and relate to the specified span of months only. The tables reflect rainfall over the period 1911-70 and assume a stable climate.

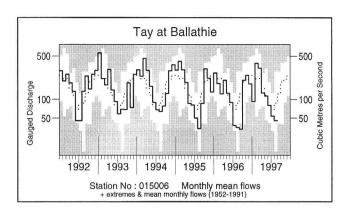
Rainfall . . . Rainfall . . . Rainfall

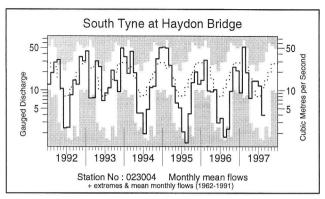

June 1997 - August 1997

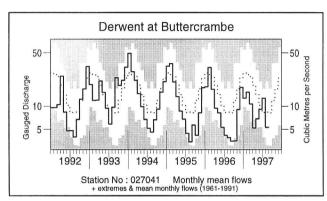
April 1995 - August 1997

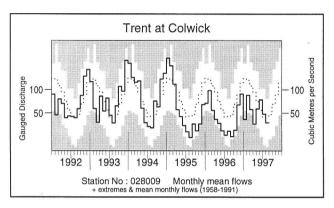
Rainfall accumulation maps

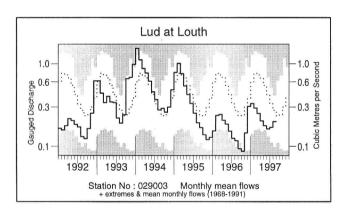
As in July, the regional rainfall maps present a familiar combination of short-term surplus and long deficiency. The provisional June-August rainfall total for England and Wales is the highest since 1958 but throughout much of England deficiencies since March 1995 remain the equivalent of around 5-6 months average rainfall.

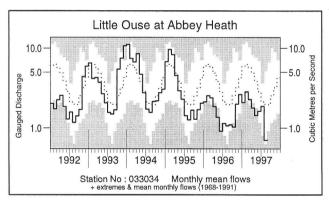

River flow . . . River flow . . .

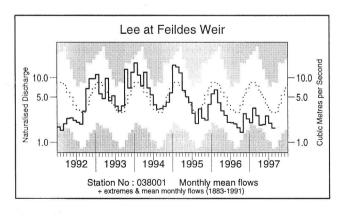


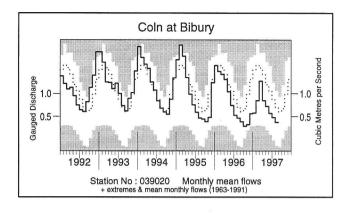

River flows - August 1997

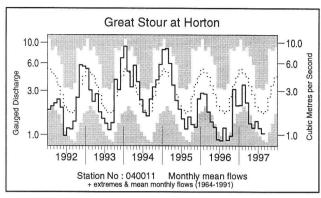

Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater.

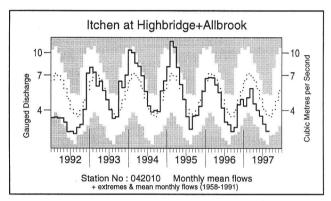

River flow . . . River flow .

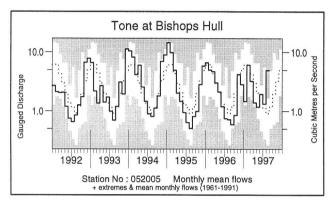


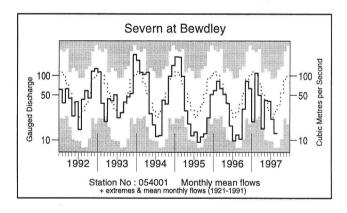


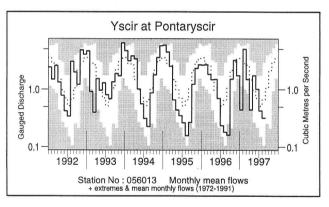


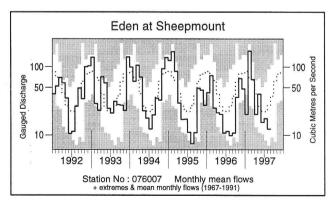


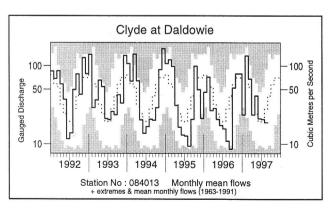

Monthly river flow hydrographs

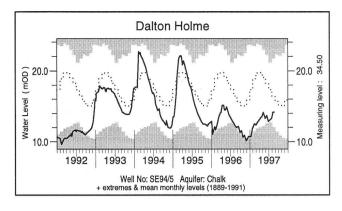

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1992 (shown by the shaded areas). Monthly flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

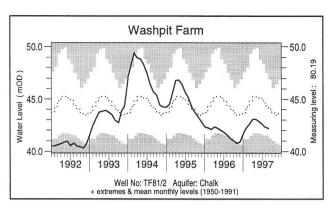

River flow . . . River flow .

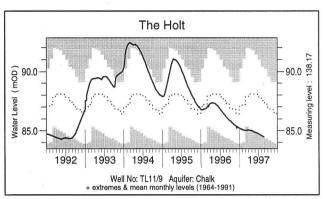


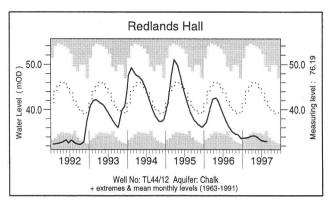


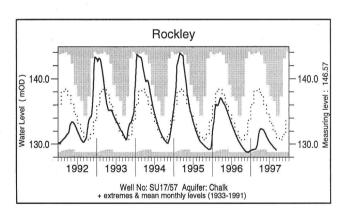


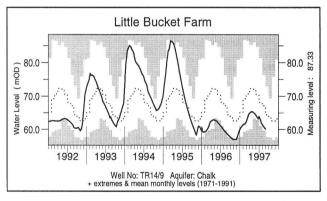


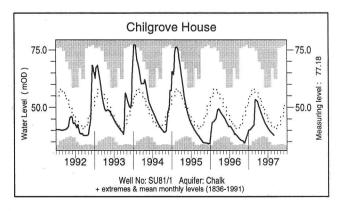


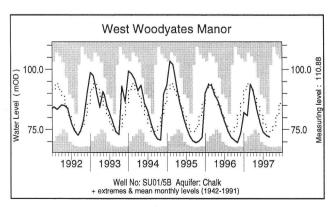

Notable runoff accumulations June - August 1997 (a); September 1995 - August 1997 (b)

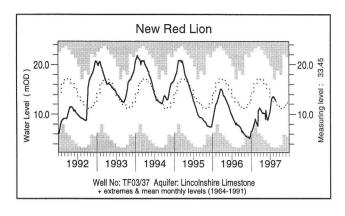

(a)	River	%lta	Rank	River	%lta	Rank	(b)	River	%lta	Rank	
	Leven	197	35/37	Mimram	45	3/45		Wharfe	72	1/30	
	Witham	182	37/39	Kennet	54	2/36		Trent	59	1/37	
	Exe	190	39/42	Coln	59	2/34		Coln	65	1/32	
	Otter	177	34/35	Avon (Hants)	54	2/33		Medway	51	1/30	
	Kenwyn	145	27/29	Lune	28	2/37		Dee (Welsh)	69	1/58	
	Tone	557	37/37	Carron	50	2/19		lta = long term	average		
						6		Rank $1 = lowes$	est on record		

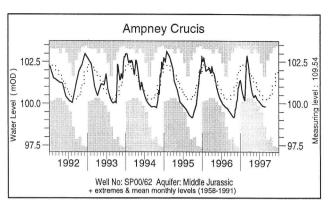

Groundwater . . . Groundwater

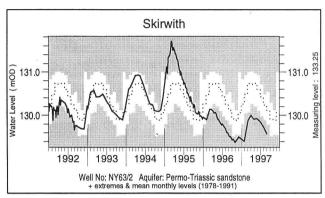


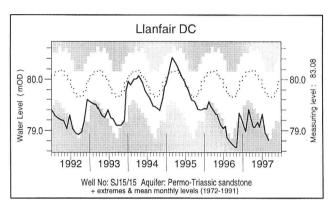


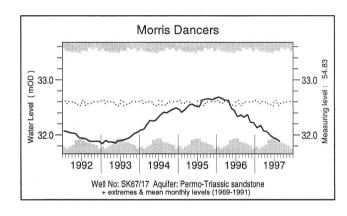


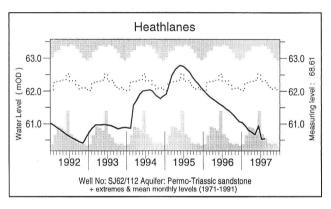


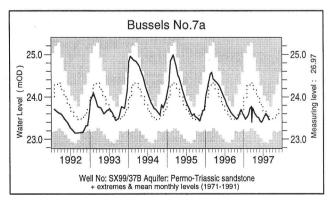


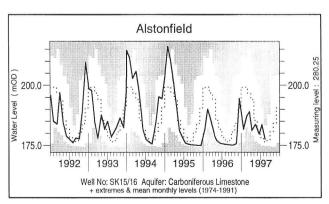

What is groundwater?

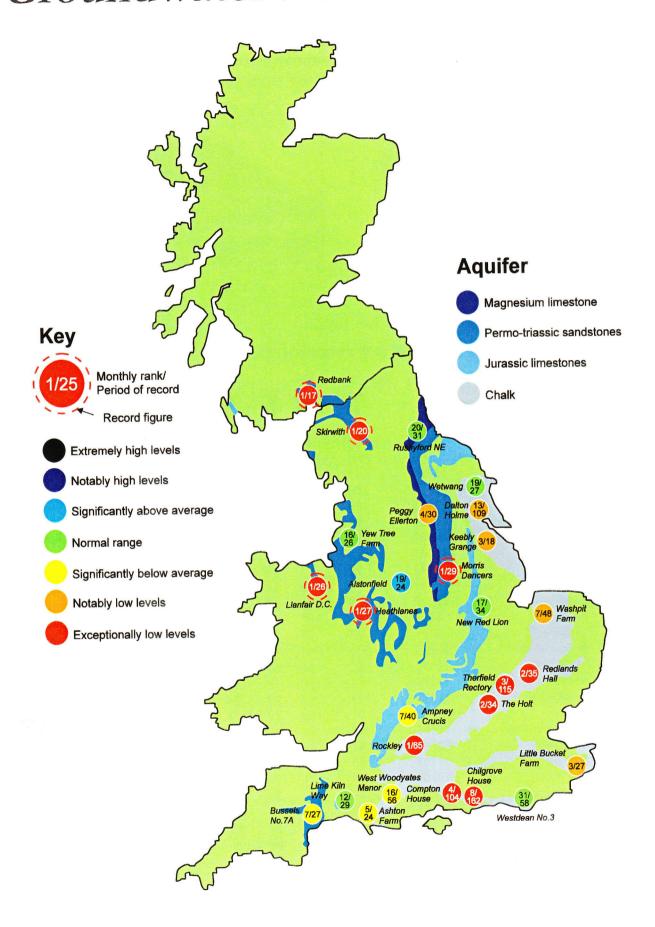

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously — the latest recorded levels are listed overleaf.


Groundwater . . . Groundwater



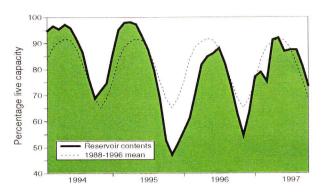


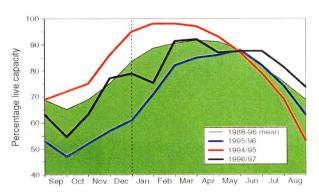




Groundwater levels August/September 1997

Borehole	Level	Date	Aug av.	Borehole	Level	Date	Aug av.	Borehole	Level	Date	Aug av.
Dalton Holme	14.2	1/9	16.25	Chilgrove	37.9	29/8	41.74	Llanfair DC	78.8	1/9	79.54
Washpit Farm	42.2	1/9	44.33	W Woodyates	71.9	1/9	73.90	Morris Dancers	31.9	25/8	32.46
The Holt	84.4	1/9	87.55	New Red Lion	12.7	28/8	12.23	Heathlanes	60.5	6/8	62.09
Redlands Hall	33.0	21/8	40.90	Ampney Crucis	99.8	26/8	100.18	Bussels	23.5	28/8	23.56
Rockley *	129.1	1/9	131.94	Skirwith	129.6	1/9	130.15	Alstonfield	177.5	14/8	176.84
Little Bucket	60.1	1/9	66.69					т ,	, ,		D /


Groundwater . . . Groundwater


Groundwater levels - August 1997

Reservoirs . . . Reservoirs . .

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity	(MI) 1997						Min.	Year
			Apr	May	Jun	Jul	Aug	Sep	Sep	of min
North West	N Command Zone	133375	97	87	88	78	66	53	24	1995
	Vyrnwy	55146	95	86	87	90	75	65	36	1995
Northumbrian	Teesdale	87936	97	89	85	87	84	74	39	1991
	Kielder	(199175)	(93)	(90)	(92)	(94)	(94)	(85)	(66)	1989
Severn Trent	Clywedog	44922	97	98	98	98	91	80	38	1989
	Derwent Valley	• 39525	100	95	98	100	90	80	34	1995
Yorkshire	Washburn	• 22035	93	86	89	99	87	77	34	1995
	Bradford supply	• 41407	98	90	95	96	87	76	21	1995
Anglian	Grafham	58707	77	73	72	70	66	59	59	1997
-	Rutland	130061	76	72	75	75	78	76	66	1995
Thames	London	• 206399	94	93	88	88	77	67	62	1995
	Farmoor	13843	98	98	98	100	98	99	64	1995
Southern	Bewl	28170	98	91	84	79	74	65	38	1990
	Ardingly	4685	100	100	98	92	93	86	47	1996
Wessex	Clatworthy	5364	99	89	79	97	91	91	31	1995
	Bristol WW	• (38666)	(95)	(92)	(88)	(85)	(74)	(72)	(43)	1990
South West	Colliford	28540	58	56	52	51	47	43	43	1997
	Roadford	34500	62	60	59	58	57	56	40	1995
	Wimbleball	21320	91	84	79	84	81	84	40	1995
	Stithians	5205	97	89	79	76	66	70	30	1990
Welsh	Celyn and Bren	• 131155	98	94	97	98	93	83	49	1989
	Brianne	62140	97	86	96	99	93	92	55	1995
	Big Five	• 69762	95	85	88	88	74	71	29	1995
	Elan Valley	• 99106	99	91	97	99	89	84	46	1995
East of	Edinburgh/Mid	• 97639	100	94	94	92	90	71	65	1989
Scotland	East Lothian	• 10206	99	98	100	100	94	80	63	1989
West of	Loch Katrine	• 111363	100	96	94	82	68	56	50	1995
Scotland	Daer	22412	98	94	94	87	74	60	41	1995
	Loch Thom	• 11840	100	94	95	77	69	58	58	1997

⁽⁾ figures in parentheses relate to gross storage

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each area; this can be particularly important during droughts. The minimum storage figures relate to the 1988-1997 period only.

denotes reservoir groups

^{*} last occurrence

Location map . . . Location map

Where the information comes from

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Institute of Hydrology (IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment (DoE), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA) and the Office of Water Services (OFWAT).

River flow and groundwater levels

The National River Flow Archive (maintained by IH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoirs

Reservoir level information is provided by the Water Service Companies, the EA and, in Scotland, the West of Scotland and East of Scotland Water Authorities.

Rainfall

Most rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data are presented for the regional divisions of the precursor organisations of the EA and SEPA. The recent rainfall estimates for the Scottish regions are derived by IH in collaboration with the SEPA regions. In England and Wales the recent rainfall figures derive from MORECS. MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain. The provisional regional rainfall figures are regularly updated using figures derived from a much denser rainguage network. Further details of Met. Office services can be obtained from:

The Meteorological Office Sutton House London Road Bracknell RG12 2SY. Tel. 01344 856858; 01344 854024.

The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Centre for Ecology & Hydrology

Institute of Freshwater Ecology Institute of Hydrology Institute of Terrestrial Ecology Institute of Virology & Environmental Microbiology

Natural Environment Research Council

Subscription to the Hydrological Summaries costs £48 per year. Orders should be addressed to:
Hydrological Summaries
Institute of Hydrology
Wallingford
Oxfordshire
OX10 8BB
Tel.: 01491 838800
Fax: 01491 692424

Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih

© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.