Hydrollogical sumnmarry for Great Britain

General

The rapid improvement in water resources over the early winter continued into January but stalled in mid-month as anticyclonic conditions produced an exceptionally dry episode - a timely reminder of the sensitivity of the water resources outlook to rainfall over the later winter and early spring. Nonetheless, most reservoirs remain close to capacity and groundwater levels climbed briskly during January in most aquifer units. Residual drought conditions are largely confined to a zone from the lower Thames basin to the East Midlands where groundwater level recoveries have only recently begun. In such areas above average February-April rainfall is needed to substantially lift watertables from an extremely low base.

Rainfall

January was a month of two halves. The first week was notably wet, rainfall in some parts of southern England exceeding the monthly average by the 6th; very mild and unsettled conditions continued until around the 18 th. Thereafter many localities registered barely a trace of rainfall. Notwithstanding this very dry interlude, regional rainfall totals for January were close to the average in Scotland and well above average throughout almost all of Eingland and Wales. More significantly, the NovemberJanuary rainfall total, although substantially less than in 1994/95 and 1993/94, was considerably above average - by $15-40 \%$ in most regions; in a few lowland areas it was the second wettest such period in the last 25 years. Rainfall totals in the six-month timeframe are well within the normal range and, for the last 12 months, exceed the 1961-90 average in all regions (albeit marginally in the English lowlands). Long term deficiencies (from the spring of 1995) remain very notable in parts of northern and eastern England but are only of water resources relevance in those areas where groundwater recoveries are still awaited - see below.

River Flow

In contrast to the preceding two years, 1998 opened with spate conditions in many rivers. With catchments close to saturation modest daily pulses of rainfall kept runoff rates high throughout the first two weeks. Over this period, many rivers in southern Britain registed their highest flows for around three years; flood warnings (mostly amber alerts) were common. Despite the steep recessions which began around mid-month, January runoff totals were very healthy in all but the most slow-responding castern catchments. Overall runoff from England and Wales was the highest since February 1995 but catchment geology and soil moisture conditions exerted a strong influence on the spatial variation in flow rates. The River Teili registered its second highest January runoff total in a 39-year record and the Severn its third highest since 1960. Similarly high runoff typified most impervious catchments and a few groundwater-fed rivers in the South-West - The Dorset Piddle recorded its third highest monthly runoff on
record. By contrast, recoveries in some eastern spring-fed streams remain very sluggish. The Mimram (at Panshanger) recorded its 4th lowest January runoff in a 46-year record - flows in the headwaters were unprecedented - and runoff in many rivers in a broad zone to the north of London were considerably below average. In such catchments 3 -month runoff totals are only around $50-70 \%$ of average; elsewhere they are mostly well above average - notably so in parts of the South-West.

Groundwater

With soil moisture deficits minimal in most areas, the abundant infiltration over the latter half of December continued into early January when a succession of daily rainfall totals in the $5-10 \mathrm{~mm}$ range provided ideal conditions for groundwater replenishment. After well over two years with levels greatly below the seasonal average, marked increases were recorded in the northern and Welsh Permo-Triassic sandstones outcrops during January and levels in most limestone boreholes exceeded the average by mid-month, by a wide margin at Alstonfield. In the Chalk, brisk rises over the 8-10 weeks to the end of January left levels well above average throughout most of the western and northern outcrop; the recent upturn in Kent has been notable also. However, in parts of the English lowlands where significant infiltration was delayed until well into January, levels are still depressed. In the Chalk, Therfield remains dry and Redlands recorded its lowest January level on record. Levels remain depressed in parts of the Permo-Triassic sandstones also - principally in the Midlands. Nationally, groundwater resources have improved greatly since the late autumn of 1997 but the recent four-week dry interlude - at time when overall infiltration is, on average, at a maximum - underlines the need for substantial rainfall in the lowlands to extend the recharge season well into the spring. In those parts of the Chalk where levels are most depressed rainfall over the next 6-8 weeks (before evaporation rates begin to accelerate) will be crucial.

Rainfall accumulations and return period estimates

The monthly rainfall figures are copyright of the Meteorological Office and may not be passed on to any unauthorised person or organisation. Recent monthly rainfall figures for the Scottish regions have ben compiled using data provided by the Scottish Environment Protection Agency. The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only, (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered). The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts in the England \& Wales and Scotland rainfall series can exaggerate the relative wetness of the recent past.

Rainfall . . . Rainfall . . . Rainfall

Key

$\begin{array}{ll}00 \% & \begin{array}{l}\text { Percentage of } \\ \\ \\ \\ \end{array} \mathbf{1 9 6 1 - 9 0 \text { average }}\end{array}$
4 -1961-90 average

Very wet
Substantially above average
2

3
Normal range

2
 Below average

Substantially below average

Exceptionally low rainfall

November | 997 - January | 998
February 1997 - January 1998

Rainfall accumulation maps

Long term rainfall deficiencies (from March 1995) remain the equivalent of more than four months average rainfall in parts of northern and western England but above average rainfall over the last year and the last three months in particular, have produced a very substantial improvement in the water resources situation.

River flow . . . River flow . . .

River flows - January 1998

Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater.

River flow

 River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1992 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations November 1997 - January 1998 (a); February 1997 - January 1998 (b)

(a) River	\%lta	Rank	River
Carron	66	$2 / 19$	Otter
Mimram	51	$3 / 45$	Kenwyn
Lymington	162	$36 / 38$	Tone
Stour	153	$22 / 25$	
Piddle	180	$34 / 34$	
Dee(Scot)	144	$25 / 26$	

\%lta
Rank
(b) River
Mimram
Blackwater
Test
Avon
Tone
\%lta Rank
145 36/36
144 27/30
$17436 / 37$

46	$2 / 45$
65	$3 / 36$
70	$3 / 39$
63	$3 / 33$
136	$36 / 37$

Groundwater . . . Groundwater

What is groundwater?

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater

 Groundwater

Groundwater levels January/February 1998

Borehole Dalton Holme Washpit Farm The Holt Redlands Hall Ashton Farm Little Bucket

Level Date 19.03 23/01 14.79 43.03 02/02 43.17 84.18 02/02 86.87 32.34 29/01 38.22 71.13 31/01 66.20 75.49 30/01 62.32

Borehole Chilgrove W Woodyates New Red Lion Ampney Crucis Skirwith

Level Date 70.28 26/01
98.71 31/01
20.37 21/01
102.4 02/02
130.0 27/01

Janav.
46.50
80.53
11.66
101.1
129.9

| Borehole
 Llanfair DC | Level
 79.31 | Date | 03/02 |
| :--- | :--- | :--- | ---: | | Jan av. |
| ---: |
| M9.55 |

Levels in metres above Ordnance Datum

Groundwater . . . Groundwater

Groundwater levels - January 1998

The rankings are based on a comparison of current levels (usually a single reading in a month) with the average level in each corresponding month on record. Caution needs to be exercised when interpreting the ranking, especially during periods of rapid changes in groundwater level. Rankings may be omitted where they are considered misleading.

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below:
Percentage live capacity of selected reservoirs

	Reservoir	Capacity (MI)) $1997 / 98$		Nov	Dec	Jan	$\begin{aligned} & 1998 \\ & \text { Feb } \end{aligned}$	Min. Feb	Year* of mir
			Sep	Oct						
North West	N. Command Zone	- 133375	53	60	53	64	95	94	63	1996
	Vyrnwy	55146	65	61	59	67	100	93	45	1996
Northumbrian	Teesdale	- 87936	74	73	65	73	96	97	51	1996
	Kielder	(199175)	(85)	(82)	(82)	(75)	(95)	(91)	(85)	1996
Severn Trent	Clywedog	44922	80	82	81	86	86	89	62	1996
	Derwent Valley	- 39525	80	72	73	79	100	100	15	1996
Yorkshire	Washburn	- 22035	77	72	60	73	98	98	34	1996
	Bradford supply	- 4	41407	76	76	72	85	99	98	33
1996										
Anglian	Grafham	58707	59	46	44	47	57	67	67	1998
	Rutland	130061	76	72	71	75	88	96	68	1997
Thames	London	- 206399	67	53	51	68	72	93	70	1997
	Farmoor	- 13843	99	96	97	92	96	94	82	1991
Southern	Bewl	28170	65	58	56	76	98	100	47	1990
	Ardingly	4685	86	68	68	100	100	100	68	1997
Wessex	Clatworthy	5364	91	85	85	100	100	92	62	1989
	Bristol WW	- (38666)	(72)	(67)	(62)	(71)	(97)	(97)	(58)	1992
South West	Colliford	28540	43	43	44	53	62	68	52	1997
	Roadford	34500	56	56	56	65	78	84	30	1996
	Wimbleball	21320	84	79	80	91	100	100	59	1997
	Stithians	5205	70	70	68	84	100	100	38	1992
Welsh	Celyn and Brenig	- 131155	83	83	82	86	99	97	61	1996
	Brianne	62140	92	94	97	100	100	94	84	1997
	Big Five	- 69762	71	68	69	87	98	96	67	1997
	Elan Valley	- 99106	84	87	92	100	100	97	73	1996
East of	Edinburgh/Mid	- 97639	71	66	62	67	74	80	80	1998
Scotland	East Lothian	- 10206	80	71	62	63	100	100	68	1990
West of	Loch Katrine	- 111363	56	72	76	86	97			

[^0]
Location map . . . Location map

Where the information comes from

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Institute of Hydrology (IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment, Transport and the Regions, the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA) and the Office of Water Services (OFWAT).

River flow and groundwater levels

The National River Flow Archive (maintained by IH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoirs

Reservoir level information is provided by the Water Service Companies, the EA and, in Scotland, the West of Scotland and East of Scotland Water Authorities.

Rainfall

Most rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data are presented for the regional divisions of the precursor organisations of the EA and SEPA. The recent rainfall estimates for the Scottish regions are derived by IH in collaboration with the SEPA regions. In England and Wales the recent rainfall figures derive from MORECS. MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain. The provisional regional rainfall figures are regularly updated using figures derived from a much denser rainguage network. Further details of Met. Office services can be obtained from:

The Meteorological Office
Sutton House
London Road
Bracknell
RG12 2SY.
Tel. 01344 856858; 01344854024.
The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs f, 48 per year. Orders should be addressed to:
Hydrological Summaries
Institute of Hydrology
Wallingford
Oxfordshire
OX10 8BB
Tel.: 01491838800
Fax: 01491692424
Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih
(C) This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^1]
[^0]: Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each area; this can be particularly important during droughts. The minimum storage figures relate to the 1988-1997 period only. In some gravity-fed reservoirs (cg. Clywedog) stocks are kept below capacity during the winter to provide scope for flood alleviation.

[^1]: Centre for
 Ecology \&
 Hydrology

