Hydrological summary for the United Kingdom

 General

 General}

Overall, November was another mild month with near average rainfall for the UK as a whole - but regional variations were large. These are reflected in differences in the seasonal recoveries of runoff and aquifer recharge rates, but November river flows and groundwater levels were generally well within the normal range. The late November/early December rainfall has been particularly welcome in a few eastern aquifer outcrop areas where the seasonal upturn in groundwater levels is still awaited. Stocks declined modestly in a few reservoirs but most reported an appreciable increase through November; overall stocks for England and Wales remain significantly above average for the beginning of winter.

Rainfall

November witnessed a variety of synoptic patterns allowing airmasses to cross the British Isles from many directions. Overall, westerly airflows predominated but many of the rain-bearing frontal systems followed tracks relatively remote from the English lowlands. Much of the UK experienced a dry, and cold, interlude in mid-November bracketed by wet conditions (in northern Britain especially) - vigorous depressions caused structural damage, substantial transport disruption and flooding during these very unsettled episodes. On the $5^{\text {th }}$, a slowmoving depression produced notable storm totals in parts of north-western Britain - reaching $90-100 \mathrm{~mm}$ in west Cumbria (e.g. at Summergrove and Ennerdale), triggering significant flooding. Storm totals exceeding 40 mm were also common on the $28^{\text {th }}$ heralding a notably wet spell (East Kilbride reported 62 mm on the $28^{\text {th }}$ and 52 mm in ten hours on the $30^{\text {th }}$). November rainfall totals were well above average in large parts of Scotland, particularly so in many Highland catchments. By contrast, monthly totals were only around half the average in the east Midlands and below 35% in a few southern coastal districts (e.g. Sussex). For England and Wales, only in 1995 has a similarly dry Oct/Nov been experienced since 1988. Nonetheless, a very wet September ensured that autumn (Sept-Nov) rainfall totals were well within the normal range in all regions - this is generally true of accumulations over 6 and 12 months also.

River Flows

Contrary to the normal seasonal trend, runoff from most catchments in southern Britain declined relative to the October totals. Modest flows were also widely experienced in mid-November across Scotland and Northern Ireland. However, many Scottish catchments away from the eastern coastal strip, reported well above average runoff for November - largely a consequence of notably high flows in the first and last weeks; peak flows were the highest of the year in many areas. Local flooding was common around the $5^{\text {th }}$ throughout northern Britain, and extending to the Midlands. It was particularly severe in West Cumbria where low-lying parts of Whitehaven and Egremont were inundated - levels in the River Ehen (at

Braystones) exceeded the previous maximum in a record from 1976. Flooding was more widespread on the $28^{\text {th }}$ heralding a cluster of spates; some localities were subject to several flood episodes (e.g. Port Glasgow). The Yarrow Water (at Gordon Arms) registered its second highest flow in a 33-year record. Transport disruption was substantial and widespread, exacerbated in Scotland by landslides (e.g. at Labert, blocking the main rail link to the north from Glasgow). Localised flooding also occurred in rivers draining to Lough Foyle in Northern Ireland. By contrast, spates in the English lowland rivers were very modest and November runoff totals were appreciably below average in most catchments, notably so in the SouthEast where, in some catchments, the faltering seasonal recovery is reflected in autumn runoff totals of below 50%. Elsewhere, however, most are well within the normal range, and healthy over the December 1998 November 1999 timespan.

Groundwater

The regional distribution of the November rainfall, combined with continuing soil moisture deficits in the east (East Anglia especially), resulted in the seasonal recovery being delayed or, to the west, gaining little momentum in the major aquifers. The limited lateautumn infiltration is of most significance in parts of the eastern Chalk - particularly in a zone from the North Downs to Cambridgeshire - and in a few PermoTriassic sandstones outcrops where the 1999 recession has left groundwater levels appreciably below average. Generally however, levels throughout the Chalk and most limestone outcrops remain close to the monthly average, as they have since the early spring. The Permo-Triassic sandstones, where response times and the impact of abstractions tend to be more influential, present a far less coherent picture. Notably high groundwater levels characterise parts of the SouthWest and north Wales but levels remain depressed in some slow-responding eastern outcrops, particularly where exceptionally low levels were experienced towards the end of the 1995-97 drought.

Rainfall accumulations and return period estimates

Area	Rainfall	Nov 1999	$\text { Sep } 99$	$\begin{gathered} \text { ov } 99 \\ R P \end{gathered}$	$\text { Jun } 99$	$\begin{gathered} \text { Nov } 99 \\ R P \end{gathered}$	$\text { Mar } 99$	$\begin{gathered} \text { ov } 99 \\ R P \end{gathered}$	Dec	-Nov99 RP
England \& Wales	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 65 \\ & 72 \end{aligned}$	$\begin{aligned} & 257 \\ & 102 \end{aligned}$	2-5	$\begin{aligned} & 460 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 648 \\ & 100 \end{aligned}$	<2	$\begin{aligned} & 907 \\ & 101 \end{aligned}$	2-5
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 99 \\ & 80 \end{aligned}$	$\begin{array}{r} 334 \\ 94 \end{array}$	2-5	$\begin{array}{r} 568 \\ 89 \end{array}$	2-5	$\begin{array}{r} 831 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1187 \\ 99 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 73 \\ & 85 \end{aligned}$	$\begin{array}{r} 215 \\ 91 \end{array}$	2-5	$\begin{array}{r} 409 \\ 93 \end{array}$	2-5	$\begin{aligned} & 650 \\ & 103 \end{aligned}$	2-5	$\begin{aligned} & 853 \\ & 100 \end{aligned}$	<2
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 54 \\ & 76 \end{aligned}$	$\begin{aligned} & 239 \\ & 120 \end{aligned}$	2-5	$\begin{aligned} & 426 \\ & 113 \end{aligned}$	2-5	$\begin{aligned} & 627 \\ & 113 \end{aligned}$	2-5	$\begin{aligned} & 861 \\ & 114 \end{aligned}$	$5-10$
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 52 \\ & 65 \end{aligned}$	$\begin{array}{r} 207 \\ 94 \end{array}$	2-5	$\begin{array}{r} 390 \\ 94 \end{array}$	2-5	$\begin{aligned} & 631 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 832 \\ & 101 \end{aligned}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 39 \\ & 67 \end{aligned}$	$\begin{aligned} & 177 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 366 \\ & 117 \end{aligned}$	5-10	505	2-5	$\begin{aligned} & 672 \\ & 113 \end{aligned}$	$5-10$
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 39 \\ & 60 \end{aligned}$	$\begin{aligned} & 203 \\ & 109 \end{aligned}$	2-5	$\begin{aligned} & 396 \\ & 114 \end{aligned}$	2-5	$\begin{aligned} & 539 \\ & 106 \end{aligned}$	2-5	$\begin{aligned} & 729 \\ & 106 \end{aligned}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 43 \\ & 50 \end{aligned}$	$\begin{array}{r} 231 \\ 99 \end{array}$	2-5	$\begin{aligned} & 407 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 547 \\ 97 \end{array}$	2-5	$\begin{array}{r} 772 \\ 99 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 56 \\ & 67 \end{aligned}$	$\begin{aligned} & 248 \\ & 106 \end{aligned}$	2-5	$\begin{aligned} & 446 \\ & 109 \end{aligned}$	2-5	$\begin{aligned} & 633 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 889 \\ & 106 \end{aligned}$	2-5
South West	mm	$\begin{aligned} & 83 \\ & 66 \end{aligned}$	$\begin{gathered} 271 \\ 81 \end{gathered}$	2-5	$\begin{array}{r} 498 \\ 90 \end{array}$	2-5	$\begin{array}{r} 751 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1129 \\ 96 \end{array}$	2-5
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 113 \\ 80 \end{array}$	$\begin{aligned} & 429 \\ & 109 \end{aligned}$	2-5	$\begin{aligned} & 684 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 971 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1430 \\ 109 \end{array}$	2-5
Scotland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 183 \\ 121 \end{array}$	$\begin{aligned} & 457 \\ & 102 \end{aligned}$	2-5	$\begin{array}{r} 715 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1050 \\ 102 \end{array}$	2-5	$\begin{gathered} 159 \mid \\ 1\|\mid \end{gathered}$	5-10
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 260 \\ 128 \end{array}$	$\begin{aligned} & 594 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 897 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1311 \\ 105 \end{array}$	2-5	$\begin{array}{r} 2056 \\ 117 \end{array}$	10-20
North East	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 120 \\ & 121 \end{aligned}$	$\begin{aligned} & 327 \\ & 116 \end{aligned}$	2-5	$\begin{aligned} & 509 \\ & 100 \end{aligned}$	<2	$\begin{aligned} & 717 \\ & 100 \end{aligned}$	<2	$\begin{aligned} & 973 \\ & 100 \end{aligned}$	<2
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 137 \\ & 113 \end{aligned}$	$\begin{aligned} & 418 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 611 \\ & 100 \end{aligned}$	<2	$\begin{aligned} & 915 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1381 \\ 112 \end{array}$	$5-10$
Forth	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 136 \\ & 121 \end{aligned}$	$\begin{array}{r} 329 \\ 98 \end{array}$	2-5	$\begin{array}{r} 550 \\ 96 \end{array}$	2-5	$\begin{aligned} & 800 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1161 \\ 105 \end{array}$	2-5
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 98 \\ 105 \end{array}$	$\begin{array}{r} 259 \\ 93 \end{array}$	2-5	$\begin{array}{r} 454 \\ 90 \end{array}$	2-5	$\begin{array}{r} 684 \\ 96 \end{array}$	2-5	$\begin{array}{r} 963 \\ 99 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 155 \\ & 108 \end{aligned}$	$\begin{array}{r} 404 \\ 91 \end{array}$	2-5	$\begin{array}{r} 683 \\ 93 \end{array}$	2-5	$\begin{array}{r} 1040 \\ 102 \end{array}$	2-5	$\begin{array}{r} 1532 \\ 108 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 223 \\ & 124 \end{aligned}$	$\begin{array}{r} 530 \\ 96 \end{array}$	2-5	$\begin{array}{r} 835 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1207 \\ 100 \end{array}$	<2	$\begin{array}{r} 1845 \\ 109 \end{array}$	2-5
Northern Ireland	$\operatorname{mm}_{\%}$	$\begin{aligned} & 116 \\ & 113 \end{aligned}$	$\begin{aligned} & 346 \\ & 110 \end{aligned}$	2-5	553	<2	$\begin{aligned} & 765 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1094 \\ 103 \end{array}$	2-5

$R P=$ Return period

Rainfall... Rainfall... Rainfall

Key

00\% Percentage of 1961-90 average

Very wet
Substantially above average

Above average

Below average

Normal range

Substantially below average

Exceptionally low rainfall

Rainfall accumulation maps

Autumn (September-November) rainfall has been well within the normal range in all regions. Similarly, for the last twelve months, once again, the December-November accumulation for Scotland is significantly above average. In this timeframe, Scottish rainfall over the last 20 years exceeds the preceding average by around 13% (a minor proportion of which is attributable to artifacts in the series which began in 1869).

River flow. . . River flow. . .

River flows - November | 999

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater.

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1996 (shown by the shaded areas). Monthly flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Cubic Metres per Second

Notable runoff accumulations September 1999 - November 1999 (a); December 1998 = November 1999 (b)

(a) River	\%lta	Rank
Coln	154	$33 / 36$
Brue	215	$33 / 34$
Annacloy	75	$5 / 20$

River	\%lta	Rank
Brue	139	$33 / 34$
Yscir	$\mathbf{1 6 7}$	$26 / 26$
Annacloy	$\mathbf{9 0}$	$5 / 19$

Groundwater . . . Groundwater

What is groundwater?

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater

Groundwater

Groundwater levels November/December 1999

Borehole	Level	Date	Nov av.	Borehole Dalton Holme
14.23	$26 / 11$	14.79	Chilgrove	
Washpit Farm	43.57	$02 / 12$	43.17	Killyglen
The Holt	86.48	$30 / 11$	86.87	New Red Lion
Dial Farm	25.41	$10 / 11$	25.43	Ampney Crucis
Rockley	131.14	$22 / 11$	131.44	Redbank
Little Bucket	62.31	$03 / 12$	62.32	Skirwith
West Woodyates	81.78	$30 / 11$	80.53	Yew Tree Farm

Level	Date	Nov av.
43.64	$15 / 11$	46.50
115.64	$30 / 11$	115.98
12.13	$26 / 11$	11.66
101.78	$30 / 11$	101.09
7.62	$28 / 11$	8.11
130.00	$23 / 11$	129.85
13.77	$25 / 11$	13.33

Borehole	Level Date		Nov av.
Llanfair DC	79.92	$01 / 12$	79.55
Morris Dancers	31.73	$25 / 11$	32.48
Heathlanes	61.84	$09 / 11$	61.84
Nuttalls Farm	130.30	$09 / 11$	129.34
Bussels No. 7A	24.34	$17 / 11$	23.57
Alstonfield	188.78	$15 / 11$	184.14

Levels in metres above Ordnance Datum

Groundwater. . . Groundwater

Groundwater levels - November I 999

The rankings are normally based on a comparison of current levels (usually a single reading in a month) with the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

Reservoits. . . Reservoits. .

Guide to the variation in overall reservoir stocks for England and Wales

comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity (MI)	1999						Min.	Year**
			Jul	Aug	Sep	Oct	Nov	Dec	Dec	of min
North West	N Command Zone	-133375	81	71	56	60	57	67	44	1993
	Vyrnwy	55146	87	82	66	81	76	82	33	1995
Northumbrian	Teesdale	- 87936	86	69	61	66	68	69	39	1995
	Kielder	(199175)	(93)	(89)	(88)	(88)	(86)	(87)	(65)	1989
Severn Trent	Clywedog	44922	98	82	83	88	82	84	43	1995
	Derwent Valley	- 39525	90	79	69	64	85	84	9	1995
Yorkshire	Washburn	- 22035	92	83	74	74	72	71	16	1995
	Bradford supply	- 41407	90	77	67	76	77	78	20	1995
Anglian	Grafham **	(55490)	(93)	(88)	(89)	(89)	(92)	(96)	(47)	1997
	Rutland **	(116580)	(88)	(83)	(82)	(79)	(81)	(83)	(57)	1995
Thames	London	- 206399	95	89	85	79	79	90	52	1990
	Farmoor	- 13843	99	97	97	95	93	98	52	1990
Southern	Bewl	28170	84	74	66	61	58	54	34	1990
	Ardingly	4685	92	81	61	57	63	65	44	1989
Wessex	Clatworthy	5364	95	75	75	75	87	91	37	1989
	Bristol WW	- (38666)	(88)	(76)	(76)	(77)	(89)	(89)	(27)	1990
South West	Colliford	28540	99	92	84	81	81	82	42	1995
	Roadford	34500	93	90	87	91	91	90	8	1989
	Wimbleball	21320	99	88	79	81	83	88	34	1995
	Stithians	5205	96	86	77	70	63	60	29	1990
Welsh	Celyn and Brenig	- 131155	100	83	79	86	88	89	50	1995
	Brianne	62140	100	91	87	100	98	96	72	1995
	Big Five	- 69762	92	74	68	87	90	92	49	1990
	Elan Valley	- 99106	92	81	70	77	99	100	47	1995
East of	Edinburgh/Mid Lothian	- 97639	82	80	71	71	73	80	56	1998
Scotland	East Lothian	- 10206	98	94	93	86	90	98	43	1989
West of	Loch Katrine	- 111363	94	89	74	92	92	95	86	1997
Scotland	Daer	22412	91	87	73	80	93	100	87	1997
	Loch Thom	- 11840	89	90	75	82	73	84	82	1997
Northern Ireland	Silent Valley	- 20634	67	58	56	71	69	58	58	1999
() figures in parentheses relate to gross storage		- denotes reservoir groups		*last occurence			** updated gross capacity			

[^0] capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological
 Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Institute of Hydrology (IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment, Transport and the Regions, the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland), data for Northern Ireland are provided by the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, the West of Scotland and East of Scotland Water Authorities, and the Northern Ireland Water Service.

The National River Flow Archive (maintained by IH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met. Office (address opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Since the discontinuation of The Met. Office's CARP system in July 1998, rainfall figures have been provided by differing methods. Initial rainfall estimates for Scotland and the Scottish regions were derived by IH in collaboration with SEPA. In England and Wales, between July 1998 and May 1999, provisional rainfall figures derive from MORECS*. Beginning with the June 1999 report, provisional rainfall figures for England and Wales, the EA regions and Northern Ireland (from January 1999) have been derived by the National Climate Information Centre (NCIC), formerly the UK Climate

Studies Group, at The Met. Office. However, readers should note that the MORECS estimates have not been updated since July 1998. Negotiations are continuing with The Met. Office to provide more accurate areal figures and as a result, from October 1999, the rainfall estimates for the Scottish regions are derived by NCIC in a pilot collaboration with IH and SEPA. Until the negotiations are concluded the regional rainfall figures (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met. Office
Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax:01344854906
The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
Institute of Hydrology
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih
(C) This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^1]
[^0]: Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The minimum storage figures relate to the $1988-1999$ period only (except for West of Scotland where data commence in 1994). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below

[^1]: Centre for
 Ecology \&

