Hydrological summary for the United Kingdom

General

Most of the UK enjoyed a mild and generally sunny January but rainfall patterns displayed marked regional contrasts. Precipitation totals were well above average throughout much of Scotland but parts of the English lowlands were exceptionally dry. Despite the limited rainfall, overall reservoir contents remain very healthy; significant recoveries were reported for a few lowland pumped storage reservoirs where high pesticide concentrations in the rivers greatly restricted infill during December. The limited lowland rainfall resulted in only modest infiltration in almost all aquifer outcrop areas. Nonetheless, most groundwater levels are currently around the seasonal average; the lowest levels are in the east where late winter/early spring rainfall would be especially beneficial.

Rainfall

Vigorous frontal systems – particularly during the first fortnight and at the end of the month - brought gales and abundant rainfall to large parts of Northern Britain, the Scottish Highlands especially. Notable storm rainfall totals were associated with a very slow-moving depression on the 10-12th (e.g. 155 mm in 48 hrs at Capel Curig in north Wales and 54.6 mm in 24 hrs at Brampton, Cumbria). Anticyclonic conditions dominated southern and eastern Britain during January and the contrasting regional synoptic patterns are closely reflected in the precipitation totals. Above average totals were largely restricted to the mountains of north Wales, the Lake District and, particularly, the Scottish Highlands where a few raingauges recorded more than twice the January average. In central and southern England a few notably dry localities (e.g. in the Midlands and along the south coast) registered less than 20%. Northern Ireland was dry also, reporting its second lowest January rainfall since 1987. A broad accentuation in the north-west/south-east rainfall gradient across the UK (a familiar feature of the recent past) is again evident over the last three months. The Nov-Jan period was (provisionally) the fourth wettest for Scotland in a series from 1869 whilst large parts of the Anglian, Thames and Southern regions have recorded <80% of average rainfall. Considerably more regional coherence typifies rainfall accumulations in the 12month (Feb-Jan) timespan, most regions - western Scotland aside - have recorded rainfall well within the normal range, with relatively low rainfall totals being confined to southern England.

River flows

Entering 2000, catchments throughout the UK were saturated and vulnerable to further significant rainfall. Following widespread late-December flooding further floodplain inundations occurred in Scotland, particularly around the 6/7th January – snowmelt was a contributory factor in many catchments. In northern England notable spates were triggered by the protracted rainfall over the 10-12th; flooding was significant in north Wales and in northern England – the Eden exceeded bankfull at Carlisle and the South Tyne inundated parts of Haltwhistle. By mid-month, steep recessions characterised most rivers. These were reversed

over the final week in northern Britain but continued in the south where, entering February, flows were seasonally depressed in some impermeable catchments. Monthly runoff totals displayed very wide regional and local variations. Near average totals characterised many spring-fed rivers in the English lowlands (reflecting a high groundwater component following heavy December recharge) whilst flows in impermeable catchments were generally low, below half the monthly averages in some rivers (e.g. the Wallington and Medway). By contrast, runoff totals for many Scottish catchments ranked amongst the highest quartile. Over the Nov-Jan period, runoff totals are outstanding for some Scottish catchments (e.g. the Clyde). In a few low-lying eastern catchments (e.g. the Whiteadder) corresponding totals are below average - a pattern widely repeated in the English lowlands.

Groundwater

Soils remained wet throughout January - at month-end appreciable soil moisture deficits were confined to a small area inland from the Wash. But the rainfall distribution in January was very unfavourable in groundwater terms - rainfall to the Chalk outcrops being typically in the 30-40% range. Consequently, infiltration was very modest and the exceptionally brisk rises reported for many index wells and boreholes in December were reversed or greatly moderated in January. Notwithstanding this erratic behaviour, levels in the Chalk are generally close to the late-winter average across most of the outcrop. An exception is in Northern Ireland where low rainfall together with the unusual responsiveness of the Killyglen well (to which the overlying gravels is a contributory factor), resulted in a very steep decline from the December peak. Levels in the limestone aquifers declined briskly over the latter half of January but remain close to the January average. Moderate declines also characterised the more responsive Permo-Triassic sandstones outcrops - with sluggish recoveries continuing in the slowest responding units. Generally, levels remain healthy in the more westerly outcrops but low in the east.

January 2000

Rainfall . . . Rainfall . . . Rainfall. .

Rainfall accumulations and return period estimates

Area	Rainfall	Jan 2000	Nov 9	9-Jan 00 RP	Aug 99	Jan 00- RP	May 99	Jan 00 RP	Feb 99	Jan 00 RP
England & Wales	mm %	50 56	258 95	2-5	552 108	2-5	706 101	2-5	888 99	2-5
North West	mm %	3 93	422 5	2-5	757 105	2-5	979 102	2-5	226 02	2-5
Northumbrian	mm %	73 87	274 109	2-5	500 104	2-5	699 105	2-5	891 104	2-5
Severn Trent	mm %	3 I 44	197 91	2-5	481 116	2-5	630 108	2-5	815 108	2-5
Yorkshire	mm %	53 67	215 89	2-5	448 98	2-5	617 97	2-5	832 101	2-5
Anglian	mm %	20 39	125 77	2-5	352 	2-5	489 105	2-5	621 104	2-5
Thames	mm %	22 35	160 81	2-5	424 2	2-5	567 105	2-5	689 100	>2
Southern	mm %	28 35	205 83	2-5	488 108	2-5	603 99	2-5	739 95	2-5
Wessex	mm %	30 35	244 93	2-5	550 115	2-5	685 105	2-5	863 103	2-5
South West	mm %	50 36	378 94	2-5	690 99	2-5	852 94	2-5	1124 96	2-5
Welsh	mm %	91 64	443 101	2-5	903 4	2-5	1094 106	2-5	398 06	2-5
Scotland	mm %	191 126	642 142	30-40	975 112	2-5	1284 113	5-10	1648 115	10-15
Highland	mm %	279 48	877 49	30-50	280 8	5-10	638 9	10-15	2149 122	30-40
North East	mm %	02 03	384 132	10-15	627 2	2-5	839 109	2-5	1062 109	2-5
Тау	mm %	73 20	549 140	10-20	872 9	5-10	44 9	5-10	1410 115	5-10
Forth	mm %	27 08	474 139	10-20	711 108	2-5	990 113	5-10	2 9 0	2-5
Tweed	mm %	89 89	348 122	5-10	566 101	2-5	796 104	2-5	983 101	2-5
Solway	mm %	54 99	578 129	5-10	899 104	2-5	1229 109	2-5	1555 109	2-5
Clyde	mm %	222 7	797 145	30-40	74 	2-5	523 3	5-10	932 4	5-10
Northern Ireland	mm %	59 53	397 125	5-10	718 116	2-5	896 108	2-5	1122 106	2-5
	RP = Return beriod									

The monthly rainfall figures* are copyright of The Met. Office and may not be passed on to any unauthorised person or organisation. All **monthly totals since July 1998 are provisional (see page 12)**. Recent monthly rainfall figures for the Scottish regions have been compiled using data provided by the Scottish Environment Protection Agency. The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, *The variability of long duration rainfall over Great Britain*, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts in the England & Wales and Scotland rainfall series can exaggerate the relative wetness of the recent past. *See page 12.

Rainfall . . . Rainfall . . . Rainfall

November 1999 - January 2000

February 1999 - January 2000

Rainfall accumulation maps

The preferred paths of most rain-bearing frontal systems is reflected in the November - January rainfall figures. In this timeframe, Scotland was again notably wet - concluding a ten-year sequence when the November - January precipitation has been more than 15% greater than average for the preceding record. Over the 12-month timespan, the February - January rainfall total for the UK is the third in succession to be well above the 1961-90 average.

River flow . . . River flow . . .

River flows - January 2000

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater.

River flow . . .

River flow.

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1997 (shown by the shaded areas). Monthly flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow . . .

Notable runoff accumulations November 1999 - January 2000 (a); February 1999 - January 2000 (b)

(a)	River	%lta	Rank	River	%lta	Rank	(b)	River	%lta	Rank
	Mimram	72	8/46	Clyde	164	37/37		Ouse	60	4/34
	Spey	151	46/48	Camowen	130	27/27		Brue	139	34/34
	Earn	148	50/52	Bush	143	25/26		Yscir	165	27/27
	Whiteadder	85	10/31	Annacloy	72	3/20		Annacloy	82	2/20

lta = long term average Rank 1 = lowest on record

Groundwater . . . Groundwater

What is groundwater?

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously — the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels January/February 2000

Borehole	Level	Date	Jan av.	Borehole	Level Date	Jan av.	Borehole	Level Date	Jan av.
Dalton Holme	17.83	28/01	17.14	Chilgrove	63.28 18/01	55.84	Llanfair D.C.	80.32 01/02	79 87
Washpit Farm	44.42	04/02	43.60	Killyglen	115.27 31/01	116.24	Morris Dancers	31.75 24/01	32.50
The Holt	86.33	31/01	87.04	New Red Lion	14.39 01/02	14.20	Heathlanes	62.16 13/01	61.89
Dial Farm	25.65	13/01	25.49	Ampney Crucis	102.20 31/01	102.30	Nuttalls Farm	130.91 18/01	129 23
Rockley	139.56	31/01	136.03	Redbank	8.25 06/02	8.42	Bussels No. 7A	24.91 20/01	24 02
Little Bucket	70.71	31/01	66.96	Skirwith	130.60 14/01	130.33	Alstonfield	197.45 14/01	198 73
West Woodyates	93.77	31/01	91.08	Yew Tree Farm	13.92 27/01	13.56		177.15 11/01	190.15
							Levels in	metres above Ord	nance Datum

Groundwater . . . Groundwater

Groundwater levels - January 2000

The rankings are normally based on a comparison of current levels (usually a single reading in a month) with the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

Reservoirs .

. Reservoirs .

Guide to the variation in overall reservoir stocks for **England and Wales**

Comparison between overall reservoir stocks for England and Wales in recent years

Percentage live capacity 80 70 1988-99 mean 60 1997/98 1998/99 1999/2000 50

100

90

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity (MI)	1999				Min.	Year*		
			Sep	Oct	Nov	Dec	Jan	Feb	Feb	ofmin
North West	N Command Zone	• 133375	56	60	57	67	93	98	63	1996
	Vyrnwy	55146	66	81	76	82	99	96	45	1996
Northumbrian	Teesdale	• 87936	61	66	68	69	99	97	51	1996
	Kielder	(199175)	(88)	(88)	(86)	(87)	(100)	(93)	(85)	1989
Severn Trent	Clywedog	44922	83	88	82	84	91	88	62	1996
	DerwentValley	• 39525	69	64	85	84	100	100	15	1996
Yorkshire	Washburn	• 22035	74	74	72	71	99	98	34	1996
	Bradford supply	• 41407	67	76	77	78	99	99	33	1996
Anglian	Grafham	** (55490)	(89)	(89)	(92)	(96)	(95)	(94)	(67)	1998
	Rutland	**(116580)	(82)	(79)	(81)	(83)	(88)	(91)	(68)	997
Thames	London	• 206399	85	79	79	90	94	95	70	1997
	Farmoor	• 13843	97	95	93	98	77	95	82	1991
Southern	Bewl	28170	66	61	58	54	74	95	47	1990
	Ardingly	4685	61	57	63	65	100	100	68	1997
Wessex	Clatworthy	5364	75	75	87	91	100	98	62	1989
	BristolWW	• (38666)	(76)	(77)	(89)	(89)	(93)	(94)	(58)	1992
South West	Colliford	28540	84	81	81	82	96	98	52	1997
	Roadford	34500	87	91	91	90	99	95	30	1996
	Wimbleball	21320	79	81	83	88	100	100	59	1997
	Stithians	5205	77	70	63	60	94	98	38	1992
Welsh	Celyn and Brenig	• 131155	79	86	88	89	99	99	61	1996
	Brianne	62140	87	100	98	96	100	98	84	1997
	Big Five	• 69762	68	87	90	92	94	98	67	1997
	Elan Valley	• 99106	70	77	99	100	100	100	73	1996
East of	Edinburgh/Mid Lothian	n● 97639	71	71	73	80	100	98	72	1999
Scotland	East Lothian	• 10206	93	86	90	98	99	97	68	1990
West of	Loch Katrine	• 111363	74	92	92	95	88	85	85	2000
Scotland	Daer	22412	73	80	93	100	100	100	91	1997
	LochThom	• 11840	75	82	73	84	100	100	93	1998
Northern Ireland	SilentValley	• 20634	56	71	69	58	61	62	62	2000
()figures in parentheses relate to gross storage		• denotes	•denotes reservoir groups				rence	**updated gross capacity		

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The minimum storage figures relate to the 1988-2000 period only (except for West of Scotland where data commence in 1994). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Institute of Hydrology (IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment, Transport and the Regions, the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland), data for Northern Ireland are provided by the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, the West of Scotland and East of Scotland Water Authorities, and the Northern Ireland Water Service.

The National River Flow Archive (maintained by IH) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met. Office (address opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Since the discontinuation of The Met. Office's CARP system in July 1998, rainfall figures have been provided by differing methods. Initial rainfall estimates for Scotland and the Scottish regions were derived by IH in collaboration with SEPA. In England and Wales, between July 1998 and May 1999, provisional rainfall figures derive from MORECS*. Beginning with the June 1999 report, provisional rainfall figures for England and Wales, the EA regions and Northern Ireland (from September 1999) have been produced by The Met. Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway

with The Met. Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by SEPA; over the coming months further monthly raingauge totals will be included for selected EA regions. Until the access to these additional data has stabilised the regional figures (and the return periods associated with them) should be regarded as a guide only.

*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met. Office Johnson House London Road Bracknell RG122SY Tel.: 01344 856849 Fax: 01344 854906

The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs £48 per year. Orders should be addressed to:

Hydrological Summaries Institute of Hydrology Wallingford Oxfordshire OX108BB Tel.: 01491 838800 Fax: 01491 692424

Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih

© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

 Centre for
 Institute of Freshwater Ecology

 Ecology &
 Institute of Hydrology

 Hydrology
 Institute of Virology & Environmental Microbiology

 Natural Environment Research Council