Hydrological summary for the United Kingdom

 General

 General}

The very episodic weather patterns, which have typified the year thus far, continued in May. Relatively dry in much of northern Britain but exceptionally wet in parts of the South after a dry start. Especially unsettled conditions over the final week triggered widespread, but mostly minor, flood events and, very unusually, left many eastern catchments vulnerable to further early summer flooding. Reservoir levels declined significantly in most northern reservoirs but remained steady in the south; overall stocks for England and Wales are the highest on record for early June. The exceptional April/May rainfall totals have reversed the seasonal decline in lowland groundwater levels which now stand well above average in most areas. With very substantial spring-flow contributions to lowland river flows, the general resources outlook for the summer is very healthy.

Rainfall

High pressure dominated weather patterns in early May producing lengthy runs of rainless days over wide areas, although the warm, humid conditions triggered damaging thunderstorms in some localities. On the $7^{\text {th }}$ a remarkable 65 mm storm of rain and hail was recorded in less than two hours in Bracknell, overwhelming the drainage network and generating significant flooding. Severe but very localised flooding featured along the south coast from Cornwall to Hants on the $10^{\text {th }}$. Over the Bank Holiday weekend, frontal rainfall produced large areal totals over much of the south and east (many catchments registering $>20 \mathrm{~mm}$ on the 27^{th}). Rainfall totals for May showed a reversal of the normal rainfall gradient across the UK monthly totals for much of the South-East exceeded those for the Scottish Highlands. Scotland registered its driest month since May 1998 with much of central and western Scotland, including parts of Northern Ireland, reporting $<60 \%$ of average. By contrast, most of the English lowlands exceeded 150%. Many eastern catchments recorded more than twice the May average - for the second successive month in parts of the South-East. However, the thundery nature of much of the rainfall did make for large spatial variability. For England and Wales, the combined April/May rainfall was the third highest since 1843 and unprecedented for the Thames catchment in a series from 1883. Spring (March-May) rainfall totals were modestly below average in Northern Ireland and parts of Scotland, but well above average in the South.

River flows

May was notable for the very wide range of flows experienced through the month. The spates of late April gave way to sustained recessions, producing low flows around the third week - particularly in rivers draining the Scottish Highlands. Steep recoveries followed, especially in eastern and southern catchments. The isolated flooding associated with convectional storms early in the month was followed by widespread spate conditions over the 27$29^{\text {th }}-$ triggering a substantial number of mostly minor flood alerts. May runoff totals were widely eclipsed in the English lowlands, particularly notable in permeable
catchments where flows were boosted by the lagged impact of heavy April groundwater recharge. The Kennet, Coln, Test, Itchen, Avon and Piddle, all with records of >35 years, were among such rivers. By contrast, below average flows typified many rivers in northern England and much of Northern Ireland. For May, mean flows in the Tay ranked fourth lowest in a 48 -year record and the River Ewe recorded its second lowest mean flow in a series from 1970. Spring runoff totals were modestly below average in much of northern Britain but amongst the highest on record in parts of the English lowlands. Runoff accumulations for the year thus far are mostly healthy but scattered exceptions occur. In the south east of Northern Ireland the depressed runoff in the Annacloy river is reflected in the low stocks for the Silent Valley reservoirs.

Groundwater

May rainfall, concentrated towards the end of the month when substantial soil moisture deficits had become established, generally meant that infiltration, though well above average, was still modest in most of the outcrop areas of the major lowland aquifers. Nonetheless, in combination with the very heavy April recharge, this seasonally late surge of replenishment produced rising groundwater levels in May/early June, counter to the normal seasonal trend. Consequently, late-May groundwater levels were above to well above average in most lowland areas - a circumstance which appeared very unlikely in late March. One exception is the deep groundwater in the slowly responding eastern Chalk (represented by the Therfield well) where levels have been below average since the drought of 1995-97. Levels in limestone aquifers are generally above average, well above average in most western and central boreholes in the Permo-Triassic sandstones (but levels remain low at Redbank and the unresponsive Morris Dancers), and notably so in the Magnesian Limestone wells. The Essex gravels showed significant rises, although levels in other drift aquifers in East Anglia were modest.

British
Geological Survey

Rainfall

Rainfall accumulations and return period estimates

Area	Rainfall	May 2000	$\text { Apr } 0$	$\begin{gathered} 0-M a y ~ \\ R P \end{gathered}$	Mar O	$\begin{gathered} \text { May } 00 \\ R P \end{gathered}$	$\text { Dec } 99$	$9-\text { May } 00$ $R P$	$\text { Jun } 99$	$\begin{array}{r} \text { May } 00 \\ R P \end{array}$			
England \& Wales	$\operatorname{mm}_{\%}$	$\begin{array}{r} 82 \\ 128 \end{array}$	$\begin{aligned} & 209 \\ & 169 \end{aligned}$	40-60	$\begin{aligned} & 243 \\ & I 24 \end{aligned}$	5-10	$\begin{aligned} & 528 \\ & 120 \end{aligned}$	5-10	$\begin{aligned} & 997 \\ & \\|\\|\\| \end{aligned}$	5-10			
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 74 \\ & 99 \end{aligned}$	$\begin{aligned} & 186 \\ & 127 \end{aligned}$	5-10	$\begin{aligned} & 246 \\ & 102 \end{aligned}$	2-5	$\begin{aligned} & 692 \\ & 123 \end{aligned}$	5-10	$\begin{array}{r} 1259 \\ 105 \end{array}$	2-5			
Northumbrian	mm	$\begin{aligned} & 60 \\ & 97 \end{aligned}$	$\begin{aligned} & 193 \\ & 164 \end{aligned}$	20-35	$\begin{aligned} & 232 \\ & 124 \end{aligned}$	5-10	$\begin{aligned} & 501 \\ & 122 \end{aligned}$	5-10	$\begin{aligned} & 910 \\ & 107 \end{aligned}$	2-5			
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 74 \\ 125 \end{array}$	$\begin{array}{r} 204 \\ 179 \end{array}$	40-60	$\begin{aligned} & 229 \\ & 131 \end{aligned}$	5-10	$\begin{array}{r} 447 \\ 119 \end{array}$	$5-10$	$\begin{aligned} & 874 \\ & 116 \end{aligned}$	$5-10$			
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 62 \\ 103 \end{array}$	$\begin{aligned} & 214 \\ & 180 \end{aligned}$	40-60	$\begin{aligned} & 243 \\ & 130 \end{aligned}$	$5-10$	$\begin{aligned} & 458 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 848 \\ & 103 \end{aligned}$	2-5			
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 87 \\ 182 \end{array}$	$\begin{aligned} & 184 \\ & 196 \end{aligned}$	$110-150$	$\begin{aligned} & 202 \\ & 143 \end{aligned}$	10-20	$\begin{aligned} & 342 \\ & 121 \end{aligned}$	5-10	$\begin{array}{r} 708 \\ 119 \end{array}$	5-15			
Thames	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 91 \\ 162 \end{array}$	$\begin{aligned} & 222 \\ & 209 \end{aligned}$	120-170	$\begin{aligned} & 238 \\ & 147 \end{aligned}$	10-20	$\begin{aligned} & 434 \\ & 127 \end{aligned}$	$5-10$	$\begin{aligned} & 830 \\ & 120 \end{aligned}$	5-15			
Southern	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 101 \\ & 187 \end{aligned}$	$\begin{aligned} & 239 \\ & 223 \end{aligned}$	>200	$\begin{aligned} & 262 \\ & 154 \end{aligned}$	20-30	$\begin{aligned} & 500 \\ & 129 \end{aligned}$	10-15	$\begin{aligned} & 907 \\ & 116 \end{aligned}$	$5-10$			
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 84 \\ 137 \end{array}$	$\begin{aligned} & 237 \\ & 207 \end{aligned}$	$120-170$	$\begin{aligned} & 271 \\ & 147 \end{aligned}$	10-20	$\begin{array}{r} 554 \\ 129 \end{array}$	5-15	$\begin{aligned} & 999 \\ & 119 \end{aligned}$	$5-10$			
South West	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 98 \\ 136 \end{array}$	$\begin{aligned} & 239 \\ & 169 \end{aligned}$	20-35	$\begin{aligned} & 276 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 707 \\ & 114 \end{aligned}$	2-5	$\begin{array}{r} 1205 \\ 103 \end{array}$	2-5			
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 96 \\ 117 \end{array}$	$\begin{aligned} & 243 \\ & 150 \end{aligned}$	10-20	$\begin{aligned} & 306 \\ & 114 \end{aligned}$	2-5	$\begin{aligned} & 804 \\ & 121 \end{aligned}$	5-10	$\begin{array}{r} 1488 \\ 113 \end{array}$	$5-10$			
Scotland	$\begin{aligned} & \text { mm } \\ & \% \end{aligned}$	$\begin{aligned} & 62 \\ & 72 \end{aligned}$	$\begin{aligned} & 163 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 280 \\ 98 \end{array}$	2-5	$\begin{aligned} & 927 \\ & 134 \end{aligned}$	50-80	$\begin{array}{r} 1660 \\ 116 \end{array}$	10-20			
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 68 \\ & 74 \end{aligned}$	$\begin{array}{r} 180 \\ 99 \end{array}$	2-5	$\begin{aligned} & 357 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1240 \\ 145 \end{array}$	>200	$\begin{array}{r} 2137 \\ 121 \end{array}$	25-40			
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 72 \\ 105 \end{array}$	$\begin{aligned} & 220 \\ & 171 \end{aligned}$	60-90	$\begin{array}{r} 278 \\ 134 \end{array}$	10-15	$\begin{array}{r} 619 \\ 133 \end{array}$	25-40	$\begin{array}{r} 1128 \\ 116 \end{array}$	5-15			
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	61	$\begin{aligned} & 167 \\ & 115 \end{aligned}$	2-5	$\begin{array}{r} 253 \\ 99 \end{array}$	2-5	$\begin{aligned} & 811 \\ & 131 \end{aligned}$	10-20	$\begin{array}{r} 1422 \\ 116 \end{array}$	$5-10$			
Forth	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 53 \\ & 71 \end{aligned}$	$\begin{aligned} & 158 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 238 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 721 \\ & 135 \end{aligned}$	30-45	$\begin{array}{r} 1272 \\ 115 \end{array}$	5-10			
Tweed	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 56 \\ & 78 \end{aligned}$	$\begin{aligned} & 178 \\ & 139 \end{aligned}$	5-10	$\begin{aligned} & 233 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 576 \\ 123 \end{array}$	5-10	$\begin{array}{r} 1030 \\ 106 \end{array}$	2-5			
Solway	$\begin{aligned} & \text { mm } \\ & \% \end{aligned}$	$\begin{aligned} & 72 \\ & 85 \end{aligned}$	$\begin{aligned} & 163 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 261 \\ 94 \end{array}$	2-5	$\begin{aligned} & 858 \\ & 125 \end{aligned}$	10-15	$\begin{array}{r} 1541 \\ 108 \end{array}$	2-5			
Clyde	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 59 \\ & 64 \end{aligned}$	$\begin{array}{r} 138 \\ 79 \end{array}$	2-5	$\begin{array}{r} 274 \\ 85 \end{array}$	2-5	$\begin{array}{r} 1084 \\ 134 \end{array}$	30-45	$\begin{array}{r} 1919 \\ 113 \end{array}$	$5-10$			
Northern Ireland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 58 \\ & 82 \end{aligned}$	$\begin{aligned} & 157 \\ & 116 \end{aligned}$	2-5	$\begin{array}{r} 214 \\ 96 \end{array}$	2-5	$\begin{aligned} & 603 \\ & 117 \end{aligned}$	5-10	$\begin{aligned} & 1161 \\ & 110 \end{aligned}$	2-5			
							RP $=$ Return period						

[^0]
Rainfall ... Rainfall ... Rainfall

Key
Percentage of
$1961-90$ average
Very wet

April 2000 - May 2000
December 1999 - May 2000

Rainfall accumulation maps

The notably wet late spring has emphasised the healthy water resources outlook (in all but a few areas). In the December - May timeframe, the provisional UK rainfall total for 1999/2000 ranks equal sixth wettest in a series from 1900, but 1989/90, 1993/94 and 1994/95 all registered higher six-month rainfall totals. Once again - and despite the relatively dry May - the combined winter and spring rainfall total (1999/2000) for Scotland was exceptionally high.

Rivet flow . . . Rivet flow

River flows - May 2000

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1997 (shown by the shaded areas). Monthly flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

Notable runoff accumulations March - May 2000 (a); December 1999 - May 2000 (b)

(a) River	\%lta	Rank	River	\%lta	Rank	(b) River	\%lta	Rank
Ouse	176	$60 / 68$	Mole	172	$26 / 26$	Brue	$\mathbf{1 6 8}$	$36 / 36$
Thames	154	$110 / 118$	Exe	156	$42 / 44$	Clyde	164	$37 / 37$
Blackwater	171	$47 / 48$	Luss	62	$2 / 24$	Spey	151	$48 / 48$
Kennet	147	$39 / 39$	Annacloy	69	$4 / 21$	Annacloy	81	$2 / 20$

Groundwater

Groundwater

What is groundwater?
Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater

Groundwater

Groundwater levels May/June 2000

Borehole	Level	Date	May av.	Borehole
Dalton Holme	19.22	$26 / 05$	18.93	Chilgrove
Washpit Farm	45.33	$02 / 06$	45.28	Killyglen
Redlands Hall	43.92	$11 / 05$	44.43	New Red Lion
Dial Farm	25.75	$11 / 05$	25.70	Ampney Crucis
Rockley	140.93	$29 / 05$	136.08	Redbank
Little Bucket	77.71	$08 / 06$	72.02	Skirwith
West Woodyates	90.24	$31 / 05$	84.40	Yew Tree Farm

$\left.\begin{array}{crrlrrr}\text { Level } & \text { Date } & \text { May av. } & & \text { Borehole } & \text { Level } & \text { Date } \\ 56.20 & 12 / 05 & 48.93 & & \text { Llanfair D.C. } & 80.20 & 01 / 06\end{array}\right) 79.88$

Groundwater . . . Groundwater

Groundwater levels - May 2000

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity (M)	$\begin{gathered} 2000 \\ \text { Jan } \end{gathered}$	Feb	Mar	Apr	May	Jun	$\begin{aligned} & \text { Min. } \\ & \text { Jun. } \end{aligned}$	Year* of min
NorthWest	N Command Zone	- 133375	93	98	100	92	88	79	72	1991
	Vyrnwy	55146	99	96	96	95	99	95	72	1990
Northumbrian	Teesdale	- 87936	99	97	100	94	100	100	64	1991
	Kielder	(199175)	(100)	(93)	(97)	(90)	(94)	(95)	(85)	1989
SevernTrent	Clywedog	44922	91	88	94	93	99	99	83	1989
	DerwentValley	- 39525	100	100	100	100	100	100	56	1996
Yorkshire	Washburn	- 22035	99	98	100	94	100	99	72	1990
	Bradford supply	- 41407	99	99	99	93	99	92	70	1996
Anglian	Grafham	** (55490)	(95)	(94)	(90)	(94)	(96)	(91)	(72)	1997
	Rutland	**(116580)	(88)	(91)	(94)	(95)	(97)	(96)	(75)	1997
Thames	London	- 206399	94	95	95	96	97	96	83	1990
	Farmoor	- 13843	77	95	93	88	81	97	96	1999
Southern	Bewl	28170	74	95	98	98	100	100	57	1990
	Ardingly	4685	100	100	100	100	100	100	96	1990
Wessex	Clatworthy	5364	100	98	100	98	100	98	67	1990
	BristolWW	- (38666)	(93)	(94)	(96)	(95)	(98)	(99)	(70)	1990
South West	Colliford	28540	96	98	100	100	100	100	52	1997
	Roadford	34500	99	95	100	97	99	97	48	1996
	Wimbleball	21320	100	100	100	100	100	100	76	1992
	Stithians	5205	94	98	100	98	98	92	66	1990
Welsh	Celyn and Brenig	- 131155	99	99	100	100	100	100	82	1996
	Brianne	62140	100	98	100	97	100	100	85	1995
	Big Five	- 69762	94	98	97	96	98	98	70	1990
	Elan Valley	- 99106	100	100	100	100	100	99	85	1990
East of	Edinburgh/Mid Lothian	- 97639	100	98	99	99	100	95	52	1998
Scotland	East Lothian	- 10206	99	97	100	97	100	99	84	1990
West of	Loch Katrine	- 111363	88	85	95	88	84	69	69	2000
Scotland	Daer	22412	100	100	100	97	97	90	70	1994
	Loch Thom	- 11840	100	100	100	97	92	79	79	2000
Northern	Silent Valley	- 20634	61	62	63	57	58	56	56	2000

()figures in parentheses relate to gross storage

- denotes reservoir groups *last occurrence
**updated gross capacity

[^1]
Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment, Transport and the Regions, the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland), data for Northern Ireland are provided by the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, the West of Scotland and East of Scotland Water Authorities, and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met. Office (address opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Since the discontinuation of The Met. Office's CARP system in July 1998, rainfall figures have been provided by differing methods. Initial rainfall estimates for Scotland and the Scottish regions were derived by IH in collaboration with SEPA. In England and Wales, between July 1998 and May 1999, provisional rainfall figures derive from MORECS*. Beginning with the June 1999 report, provisional rainfall figures for England and Wales, the EA regions and Northern Ireland (from September 1999) have been produced by The Met. Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway
with The Met. Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by SEPA; over the coming months further monthly raingauge totals will be included for selected EA regions. Until the access to these additional data has stabilised the regional figures (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met. Office
Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax:01344854906
The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491692424
Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^0]: The monthly rainfall figures* are copyright of The Met. Office and may not be passed on to any unauthorised person or organisation. All monthly totals since July 1998 are provisional (see page 12). Recent monthly rainfall figures for the Scottish regions have been compiled using data provided by the Scottish Environment Protection Agency. The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts in the England \& Wales and Scotland rainfall series can exaggerate the relative wetness of the recent past. *See page 12.

[^1]: Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The minimum storage figures relate to the 1988-2000 period only (except for West of Scotland where data commence in 1994). In some gravity-fed reservoir (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

