
Geophysical Research Letters

RESEARCH LETTER
10.1002/2014GL062627

Key Points:
• Depth-averaged N governs criticality

for first mode internal waves on
the shelf

• Wind-mixing causes 3 day subcritical
window for IT to propagate on-shelf

• Peaks in M2 energy flux at shelf
moorings are delayed relative to
wind-mixing

Correspondence to:
G. R. Stephenson Jr.,
g.stephenson@bangor.ac.uk

Citation:
Stephenson, G. R., Jr., J. E. Hopkins,
J. A. Mattias Green, M. E. Inall, and
M. R. Palmer (2015), Baroclinic energy
flux at the continental shelf edge
modified by wind-mixing, Geo-
phys. Res. Lett., 42, 1826–1833,
doi:10.1002/2014GL062627.

Received 24 NOV 2014

Accepted 10 FEB 2015

Accepted article online 16 FEB 2015

Published online 18 MAR 2015

This is an open access article under
the terms of the Creative Com-
mons Attribution License, which
permits use, distribution and repro-
duction in any medium, provided
the original work is properly cited.

Baroclinic energy flux at the continental shelf edge modified
by wind-mixing
Gordon R. Stephenson Jr.1, Joanne E. Hopkins2, J. A. Mattias Green1,
Mark E. Inall3, and Matthew R. Palmer2

1School of Ocean Sciences, Bangor University, Menai Bridge, UK, 2National Oceanography Centre, Liverpool, UK,
3Scottish Association of Marine Science, Oban, UK

Abstract Temperature and current measurements from two moorings onshore of the Celtic Sea shelf
break, a well-known hot spot for tidal energy conversion, show the impact of passing summer storms on
the baroclinic wavefield. Wind-driven vertical mixing changed stratification to permit an increased on-shelf
energy transport, and baroclinic energy in the semidiurnal band appeared at the moorings 1–4 days after
the storm mixed the upper 50 m of the water column. The timing of the maximum in the baroclinic energy
flux is consistent with the propagation of the semidiurnal internal tide from generation sites at the shelf
break to the moorings 40 km away. Also, the ∼3 day duration of the peak in M2 baroclinic energy flux at the
moorings corresponds to the restratification time scale following the first storm.

1. Introduction

Where the barotropic tide flows over steep topography, internal waves are generated at tidal frequencies.
Generation of this internal tide (henceforth IT) has been observed over mid-ocean ridges [e.g., Zilberman
et al., 2009], at island chains [e.g., Cole et al., 2009], and along continental shelves [e.g., Hosegood and van
Haren, 2006; Nash et al., 2012]. Shelf-break-generated waves can propagate 10–100 km on-shelf [Green et al.,
2008; Inall et al., 2011], but there is also a signal from ITs which may have been remotely generated and
propagated across ocean basins onto the shelf [e.g., Nash et al., 2012]. Dissipation by the breaking IT is a
major sink for the global tidal energy budget [Egbert and Ray, 2001], and the associated vertical mixing may
be necessary to explain the distributions of temperature and salinity in the ocean basins [Munk and Wunsch,
1998]. In shelf seas, vertically sheared currents associated with the IT impact drilling and tidal energy
operations [Neill et al., 2014], while mixing contributes to the vertical nutrient transport that supports
productive shelf seas fisheries [e.g., Sharples et al., 2007].

The IT field at a location consists of a locally generated component and a remotely generated, difficult to
predict, signal with distorted phases [Nash et al., 2012]. Other complications in predicting and analyzing
the ITs come from mesoscale variability changing the vorticity balance along a shelf slope [Hosegood and
van Haren, 2006], interference and nonlinear interaction by waves from multiple sources [e.g., Lien et al.,
2005; Vlasenko et al., 2014], or interactions between the semidiurnal tide and near-inertial waves [Shroyer
et al., 2011; Hopkins et al., 2014]. Hopkins et al. [2014] found that nonlinear interactions between wind-driven
near-inertial oscillations and the internal tide alter tidal energy fluxes and produce a regular, ∼2 day beat
frequency in onshore and offshore fluxes. This study uses the same data set to examine a second, previously
unrecognized mechanism by which the wind can affect tidal energy fluxes on short time scales, namely, how
stratification changes due to wind-mixing can affect the propagation of the internal tide on the shelf. The
strength of the IT is affected by seasonal stratification changes. For example, well-mixed winter conditions in
the Celtic Sea, which is the area under investigation here, lack the stratification necessary to support internal
waves. Shorter time scale variations in stratification, in particular those associated with wind-mixing, are
also likely to impact the generation and propagation of IT from the shelf break; these effects are the focus of
this study.

Freely propagating internal inertia gravity waves have frequencies f <𝜔<N, where f = 2Ω sin𝜙
(Ω= 7.292×10−5s−1, 𝜙 is latitude) is the Coriolis frequency, 𝜔 is the frequency of the internal wave
(here taken to be that of the semidiurnal tide), and N is the buoyancy frequency averaged over some
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Figure 1. Bathymetry of the Celtic Sea shelf break study area with the
mooring locations (gray circles). The shelf break coincides with the 200 m
isobath (black line). Contour intervals are 20 m (gray) and 500 m (thin
black). Water depths at the moorings are 157 m (ST4), 170 m (ST5), and
688 m (ST1). Tidal ellipses (red) are shown at ST4 and ST5, with a purely
clockwise 0.3 m s−1 current in the corner for scale.

suitable depth range defined by

N2 = −
g
𝜌0

d𝜌
dz

, (1)

where 𝜌 is in situ density, 𝜌0 is a
representative average density, and
z is height. The energy of an internal
wave propagates along a characteris-
tic raypath with a slope 𝛼 relative to
the horizontal, defined by

𝛼2 = 𝜔2 − f 2

N2 − 𝜔2
. (2)

Equation (2) also defines a critical
topographic slope. Where internal
waves encounter topography, they
generally reflect off the bottom,
potentially with a small amount
of dissipation taking place [Lamb,
2014], but if the slope of the seabed,
𝛾 , is greater than 𝛼, i.e., if the slope
is supercritical, propagation of the
internal wave in the upslope direction
is not permitted, and the wave energy

reflects offshore. Conversely, when 𝛾 < 𝛼 the slope is subcritical and internal waves can propagate across
the shelf break. Where 𝛾=𝛼 the slope is critical and likely a hot spot of tidal conversion (IT generation) and
dissipation [e.g., Lamb, 2014; Vlasenko et al., 2014].

Because the characteristic slope of an internal wave—and therefore the critical slope of topography—is
dependent on the strength of the vertical stratification (see equation (2)), reducing the stratification by
mixing increases the critical slope, 𝛼. For a given topographic slope, a sufficiently large change in N can
therefore switch the slope from supercritical to critical or subcritical. We then expect to see a shift in genera-
tion sites as newly critical topographic slopes “switch on,” and a shift in propagation of the IT as supercritical
bathymetry becomes subcritical, allowing the shoreward propagation of IT energy that would previously
have been reflected. Here using observations from a mooring array deployed across the Celtic Sea shelf
break in June 2012, we describe the impact of two wind-mixing events on internal wave energetics.

2. Data and Methods

As part of the June 2012 FASTNEt (Fluxes across sloping topography in the northeast Atlantic) field
campaign in the Celtic Sea, three moorings (ST1, ST4, and ST5) were deployed near the shelf break in an
L-shaped array (see Figure 1 for details)—a configuration designed to measure across- and along-shelf
energy fluxes. ST1 was deployed off-shelf, near a seaward extension of the shelf break, at 48.2◦N, 9.7◦W
in 688 m water depth. ST4 was deployed 43 km further on-shelf at 48.7◦N, 9◦W in 156 m water depth.
ST5 was located 26 km northwest of ST4 at 48.8◦N, 9.4◦W in 169 m water depth. A hill with a minimum
depth of 96 m was located to the south of ST5, between the shelf break and the mooring. Smaller 10–20 m
amplitude bathymetric undulations were present between ST4 and the shelf break (Figure 1). For the
calculations of bathymetric slope, we used a 1/120 degree resolution, gridded General Bathymetric Chart of
the Oceans (GEBCO_08, available from http://www.gebco.net/).

The moorings were fitted with Star-Oddi mini temperature loggers spaced 2–20 m apart with the smaller
spacing across the thermocline, MicroCATs to measure conductivity and temperature, and bottom-mounted
Acoustic Doppler Current Profilers (ADCPs). Temperature and conductivity were recorded once per minute. A
Flowquest 150 kHz ADCP at ST4 returned current ensembles at 1 min intervals in 2 m vertical bins from ∼8 m
to 145 m above the bottom with the last bin ∼11 m below the surface. At ST5, an RDI 150 kHz ADCP with
2 min sampling intervals and 2.5 m vertical bins measured from ∼8 m above the bottom to ∼21 m below
the surface. Full details of the instrumentation and data processing are described in Hopkins et al. [2014]
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Figure 2. (a) Tidal displacement at ST1 (red) and ECMWF ERA wind speed (black) at 48.75◦N, 9.75◦W. (b) Potential density
and (c) N2 at ST4. (d) Potential density and (e) N2 at ST5. In Figures 2b and 2d, the black line indicates the depth of the
1026.9 kg m−3 isopycnal.

and Vlasenko et al. [2014]. The data were used to calculate M2 baroclinic energy fluxes from the correlation
between semidiurnal perturbations in velocity and pressure (see, e.g., Kunze et al. [2002] for details). Power
spectra of the baroclinic currents [see Hopkins et al., 2014, Figure 4] show distinct, well-separated peaks at
inertial and M2 tidal frequencies, so in computing the M2 energy fluxes, a 58 h window was used, sufficient
to resolve the difference between inertial (∼16 h period) and M2 (12.4 h period) signals.

Gridded wind fields from the European Centre for Medium-Range Weather Forecasting (ECMWF)
Extended-Range Re-Analysis (ERA) Interim product show that strong winds (>15 m s−1) were present over
the mooring sites on year-days 166–169 and 175 (Figure 2a; data from http://badc.nerc.ac.uk/view/badc.
nerc.ac.uk__ATOM_datent__12458543158227759). The first gale delayed the deployment of ST4, but ST1
and ST5 captured the wind-mixing. During the first gale (days 166–169), the upper ocean at ST5 cooled
by 1.1◦C and the mixed layer deepened from 40 m to 60 m depth (Figure 2d). There followed a gradual
warming and restratification of the surface layer during the following days, until the second gale on days
175–176.

3. Stratification Changes and Critical Slopes

The criticality of ocean bathymetry relative to an internal wave depends on the ratio between the
characteristic slope of the internal wave and the slope of the bathymetry. The calculation of criticality is
therefore sensitive to the vertical scale over which N is averaged. Common practice has been to use the
buoyancy frequency measured near or just above the seabed (Nbot) to determine the critical topographic
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slope [Llewellyn Smith and Young, 2002; Nycander, 2005]. This approach is based on a WKB approximation to
internal wave solutions, which assumes that topographic slopes are much smaller than the slopes of tidal
beams and that the topographic height is much less than the vertical wavelength of the internal tide. In the
relatively shallow shelf sea under study here, isopycnal displacements of 50 m are not uncommon nor are
these small relative to the ∼200 m water depth (Figures 2b and 2d). A recent study of tidal conversion rates
by Zarroug et al. [2009] suggests that the WKB approach using Nbot underestimates conversion rates for the
gravest modes of the internal tide. Instead, averaging buoyancy frequency over the vertical wavelength of
the internal wave yields more accurate tidal conversion rates. For the first baroclinic mode, this is equivalent
to averaging N over the depth of the water column. Although our study does not calculate conversion rates,
this approach is suited to our exploration of the interactions between the internal tide and topography.

An important point to note is that the appropriate stratification to consider for topographic criticality of the
mode 1 internal tide is the depth average of N rather than of N2. Depth-averaged N2, ⟨N2⟩, is determined
solely by the surface-to-bottom buoyancy difference, independent of the water column structure. This is
not true of the depth-averaged N, ⟨N⟩. In uniformly stratified water, ⟨N⟩=√⟨N2⟩, but for any nonuniform
stratification profile, ⟨N⟩<√⟨N2⟩. If Ncrit represents the critical value of stratification for a given
topographic slope,

√⟨N2⟩<Ncrit is sufficient to infer that the slope is subcritical, since ⟨N⟩<√⟨N2⟩, but√⟨N2⟩>Ncrit does not prove that a slope is supercritical. Consider the simple case of a water column
of depth H with N(z) =N1 everywhere except in a pycnocline of thickness h, where N(z) =N2. Fixing

⟨N2⟩= 1
H

(
(H − h)N2

1 + hN2
2

)
constant, we rearrange to find N2 =

√
H
h
⟨N2⟩ − H−h

h
N2

1, which yields

⟨N⟩ = (
1 − h

H

)
N1 +

√
h
H

√
⟨N2⟩ − (

1 − h
H

)
N2

1. (3)

In the limit N1 → 0, ⟨N⟩≈√
h
H

√⟨N2⟩; a sharpening of the pycnocline reduces ⟨N⟩ and increases the charac-
teristic wave slope (equation (2)). In the limit of a two-layer wave with a discrete density step at the interface,
N1 → 0, h→ 0, and ⟨N⟩→ 0. This implies that there is no critical bathymetric slope for a two-layer wave,
consistent with two-layer wave dynamics.

To determine the characteristic slope of the M2 IT, and hence the critical topographic slope, we calculated⟨N⟩. We extended our N profiles over the whole depth of the water column by assuming N is constant in
the depth intervals nearest the surface and seabed. Wind-mixing in response to the storms on days 168 and
175 decreases the stratification near the surface (Figures 2b and 2d) and, consequently, the depth-averaged
stratification (Figure 3a). The buoyancy frequency at the bed, Nbot, is roughly half the depth-averaged
stratification (Figure 3a). At ST5, ⟨N⟩ decreases from an initial value of 4.8 × 10−3s−1 on year-day 166 to
3.0 × 10−3s−1 on year-day 168 (Figure 3b). Restratification follows the reduction in wind speed; ⟨N⟩ increases
to 4.8 × 10−3 s−1 by year-day 172. However, the wind event on day 176 is followed by a slight decrease
in stratification. ST4 shows a similar restratification to ST5 (Figure 3a). Figure 3a also shows the average
stratification in the upper 200 m at ST1, to represent how conditions might vary south and west of ST4 and
ST5, nearer the shelf break. The decreases in ⟨N⟩ on day 175 are larger at ST1 and ST5 than at ST4, most likely
due to spatial variability in the wind field. Conditions over the shelf were likely intermediate between the
values at ST1 and those at ST4 and ST5.

The slope of critical topography is estimated according to equation (2), using measured values of ⟨N⟩, with
𝜔= 1.4 × 10−4 s−1 (i.e., for the semidiurnal M2 tide) and f = 1.1 × 10−4 s−1. For the range of stratification
observed at the moorings (⟨N⟩= 2.9 − 5.8 × 10−3 s−1), potentially critical topographic slopes are between
0.015 and 0.030 (Figure 3b). Topographic slope ranges from 10−3 to 10−1 over the Celtic Sea shelf break
(Figure 4a). Figure 4a shows distribution functions of the maximum topographic slope along a ray directed
from the shelf break to ST4 and ST5 for varying angles ranging from 148◦ to 328◦, measured clockwise from
north (i.e., from the “off-shelf” direction defined in Hopkins et al. [2014]). The proximity of the rise south of
ST5 makes those slopes generally larger for ST5 than ST4. We suggest that topographic slopes between
0.015 and 0.030 are supercritical at the start of the experiment—before the wind-mixing event—and reflect
IT wave energy back toward the open ocean. As stratification is reduced, these slopes become subcritical
and allow M2 energy to propagate onto the shelf. Figure 4 illustrates the criticality parameter (𝛼∕𝛾) for
𝛼 = 0.015 (Figure 4b) and 𝛼 = 0.030 (Figure 4c). After mixing, there are fewer areas of critical topography on
the shelf, and fewer obstacles in the path of an internal wave from the shelf break to the moorings.
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Figure 3. (a) Depth-averaged stratification (⟨N⟩) at ST4 (blue) and ST5 (red). Average stratification in the top 200 m at
ST1 is shown in black. We assumed constant stratification above the shallowest measurement and below the deepest
measurement. Near-bed stratification is represented by the deepest value of N at ST4 (gray) and ST5 (magenta).
(b) Characteristic slope of the M2 internal tide for the values of ⟨N⟩ in Figure 3a at ST1 (black), ST4 (blue), and ST5 (red).
(c) Magnitude of the M2 energy flux at ST1 (black), ST4 (blue), and ST5 (red) calculated by Hopkins et al. [2014]. (d) Modal
speed of the first baroclinic mode calculated for N2 profile at ST4 (blue) and ST5 (red). Missing values occur when values
of N(z) were less than f .

4. Propagation of M2 Internal Waves at ST4 and ST5

The response of the IT to the wind events is evident in changes in the strength of baroclinic energy fluxes at
the moorings following the wind-mixing. The magnitude of the M2 energy fluxes at the on-shelf moorings
is very low at the start of the experiment but increases following the storm until a maximum of ∼100 W m−2

is reached on year-day 172.6 (Figure 3c) at both ST4 and ST5. At the shelf slope mooring, ST1, a local
minimum in M2 baroclinic energy flux occurs on the same day (Figure 3c). The flux magnitude at ST1 appears
to decrease by ∼100 W m−1 from year-day 171 to 172.6, seemingly balancing out the increase seen at ST4
and ST5. Note, however, that ST1 may very well be located within the generation zone of the IT, which may
lead to biased results [e.g., Green et al., 2008]. Nonetheless, Figure 3c shows that during days 171–174 there
was a decrease in M2 energy on the shelf slope and an increase in M2 energy on the shelf, suggesting a
change in propagation of the IT following the storm. This is further supported by the fact that the decrease
in energy during days 173–174 at ST4 and ST5 takes place at spring tides, i.e., during a period when we
would expect to see an increase in the energy flux. A small increase in M2 energy flux is seen at ST5 on day
178, and M2 energy flux of ∼100 W m−2 is evident on day 179 at ST4. Bathymetry has gentler slopes, in
general, between ST4 and the shelf break (Figure 4a) than between ST5 and the shelf break; therefore, the
smaller reduction in stratification during the second wind event on days 175–176 results in a larger increase
in the internal tide energy reaching ST4.

While the decrease in energy flux from days 173 to 174 coincides with a period of restratification, the
peaks in M2 baroclinic energy fluxes on days 172–173 and 178–179 are delayed by a few days (∼4 days and
∼3 days, respectively) relative to the minima in stratifications on days 168 and 176. These delays may reflect
the time required for energy to propagate from internal tide generation sites near the shelf break to the
moorings. We estimate the propagation speed of the internal tide by numerically solving the standard
eigenvalue problem of linear internal wave theory [e.g., MacKinnon and Gregg, 2003], solving for the
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Figure 4. (a) Distribution function of the maximum topographic slopes
between the 200 m isobath and moorings ST4 (blue) and ST5 (red) for
paths approaching each mooring from an offshore direction. Log10 of
the criticality parameter (𝛼∕𝛾) for (b) stratified (𝛼 = 0.015) and (c) mixed
(𝛼 = 0.030) conditions.

dynamical modes using a routine by
Klinck [1999]. Based on profiles of N2

at ST4 and ST5 (Figures 2c and 2e),
the speed of the first baroclinic mode
ranges from 0.12 m s−1 shortly after
the first storm to 0.18 m s−1 toward
the end of the record. At these speeds,
a wave travels ∼10 to 15 km per day,
so an M2 internal wave generated at
the point on the shelf break nearest
ST5 during the stratification minimum
on year-day 168 would appear at ST5
around day 172. Our observations
show that the M2 baroclinic energy
flux at ST5 begins increasing on
day 169 but peaks at day 172. The
proximity of ST5 to the potentially
subcriticaltopography may explain
why the increase in M2 energy flux is
seen earlier at ST5 than at ST4. The
duration of the energy flux maximum
at ST4 and minimum at ST1 is
∼3.3 days (Figure 3c), similar to the
3.6 days duration of the near-surface
minimum in stratification at ST5
(Figure 3e).

5. Discussion

Baroclinic energy at the semidiurnal
tidal frequency appears at moorings
on the Celtic Sea continental shelf
1–4 days after a strong wind event
thoroughly mixed the upper 50 m of
the water column. The timing of the
maximum in M2 frequency baroclinic
energy is consistent with the propa-

gation of the M2 IT from generation sites at the shelf break to moorings ∼40 km away. The ∼3 day duration
of the peak in M2 baroclinic energy at the moorings matches the time required for the upper water column
to restratify following the initial storm.

What caused the increase in M2 energy at the on-shelf moorings at ST4 and ST5? The increase could be
explained by increased IT generation at the shelf break. However, the stratification is shown to decrease
during the storm, which would lead to a decreased tidal conversion rate [e.g., Baines, 1982]. What we
see must therefore be a redistribution of the baroclinic energy. A shift in the location of tidal generation
toward ST4 and ST5 and away from ST1 would accomplish this redistribution; being closer to the generation
site would allow for less dissipation and more energy reaching ST4 and ST5, while less energy would reach
a more distant ST1. This situation also seems unlikely: reduced stratification implies a steeper critical slope,
and steeper topographic slopes are generally found farther off-shelf, toward ST1 and away from ST4 and
ST5. Storm-induced changes in internal wave reflection would also redistribute baroclinic energy. We
conclude that a reduction in stratification over the shelf region changed the criticality of topography
between the shelf break and moorings from supercritical to subcritical. During a well-mixed “subcritical
window” the M2 IT was able to propagate on-shelf, over previously supercritical topographic slopes.
Following restratification, these slopes became supercritical again and resumed reflecting incoming M2

baroclinic energy.
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Our assumption that stratification at ST5 is representative of stratification over most of the shelf is useful.
If wind-mixing affects stratification no deeper than 100 m, the effect of wind-mixing on stratification is
reduced in deeper water; stratification changes at ST1 are smaller than those at ST4 and ST5. However, the
depth at ST5 is 170 m, compared with ∼200 m near the shelf break, where we posit the IT generation sites,
and 157 m at ST4, so the error on our estimates of critical topographic slopes resulting from depth variations
is only ∼20%. Qualitatively, the story is robust; with our approximation, the critical topographic slope
increased by a factor of 2. Small errors in the critical topographic slope will affect only slightly the timing
and duration of the subcritical window for the relevant topography. Here we have used a depth-average
stratification, ⟨N⟩, rather than the near-bed stratification, an approach which has been shown to be more
accurate for the first baroclinic mode [Zarroug et al., 2009]. Future studies on how the vertical structure of
N controls internal wave reflection are required to confirm our hypothesis that ⟨N⟩ is sufficient for the first
baroclinic mode and to extend our results to higher modes.

In summary, our results demonstrate the potential of time-varying stratification to drastically alter the
propagation of internal waves across the continental shelf. The proposed mechanism of changes in
criticality at the shelf break and on the shelf is a potential source of temporal variability in the IT. We
observed variability with a time scale of a few days, but our results may be more broadly applicable
to changes in shelf sea stratification on, for example, seasonal time scales. Changes in the internal tide
propagation affect where the IT breaks and, consequently, the location of energy dissipation and mixing
in shelf seas. This is crucially important to estimates of the vertical nutrient transport that supports shelf
seas fisheries. Near-critical slopes are ubiquitous in the ocean and global tidal energy budgets or tidal
models would therefore benefit from consideration of time-varying stratification. We conjecture that this
mechanism may also be relevant to waters not directly mixed by the wind. Where a topographic slope is
close to sea ice or sheltered areas (e.g., a fjord), a supercritical/subcritical switch induced by wind-mixing
over a near-critical slope may allow IT energy to propagate into normally sheltered water.
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