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Abstract

Ice shelves play an important role in the mass balance of an ice sheet, by providing
a link between the ocean and ice. Melting at the base of an ice shelf can play a
vital role in its mass balance and stability. Topographic channel features have been
found on the base of ice shelves, and have been found to alter melting, however
the mechanism behind this alteration is unknown. Petermann Glacier is a major
outlet glacier in North West Greenland, draining approximately 6% of Greenland
Ice Sheet. It terminates in a long, thin ice shelf, constrained within a high-walled
fjord. The ice shelf has pronounced longitudinal channel features on its base, which
limited observations suggest direct ocean currents in a mixed layer of ocean and
melt waters, focusing melt in these regions. Petermann Glacier underwent two large
calving events in 2010 and 2012, and the impact of these events, or possible further
calving events, on basal melting is unknown.

Using the MITgcm to model the ocean cavity beneath an idealised ice shelf, this
thesis discusses the impact of basal channels on interactions at the ice base and
circulation within the cavity. This is supplemented with a modelling investigation
into the interactions beneath Petermann Glacier, and the impact of recent calving
events. The inclusion of channels was found to have a stabilising effect on the ice
shelf by decreasing the mean basal melt rate, caused by the refocusing, and decrease
in intensity of, the meltwater layer flow beneath the ice shelf. This stabilisation and
resulting ‘survivor bias’ explains why channels are commonly found on the base of
warm water ice shelves. The model of Petermann Glacier found similar melt patterns
to observational studies, however with a lesser magnitude. The calving events of 2010
and 2012 removed areas of ice shelf with low melt rates, resulting in little impact
on the overall volume of ice removed through ocean melting, though further calving
would vastly reduce the volume of ice melted. One consequence of calving is the
increase in melting-induced undercutting at the ice front, leading to the potential for
enhanced secondary calving.

Part of the results contained within this thesis are published as: Millgate, T., P.R.
Holland, A. Jenkins and H.L. Johnson (2013), The effect of basal channels on oceanic
ice-shelf melting, Journal of Geophysical Research Oceans, 118, doi:10.1002/2013JC009402.

v





Extended Abstract

The marine-terminating outlet glaciers of the Greenland Ice Sheet can be split into
two classifications; tidewater glaciers, where the glacier reaches the coastline and
doesn’t start to float; and glaciers ending in floating ice shelves. The vast majority
of these glaciers are tidewater glaciers with only a handful of ice shelves, constrained
within glacial fjords, surviving around the north of the ice sheet (Moon et al., 2012).

The existence of ice shelves in this region has been attributed to the ocean waters
in this region being cooler than around more southerly regions of Greenland, which
are fed with water from the warm Irminger Current (Straneo et al., 2012). The
ocean water temperature is an important factor for the continued existence of these
ice shelves as warm ocean waters have been attributed to ice shelf disintegration and
glacier acceleration (Holland et al., 2008a; Rignot et al., 2012; Straneo et al., 2010).
Low surface slope of the glaciers (Koch, 1928) and high levels of sea ice cover in
the fjords, slowing down and preventing large iceberg calving events (Higgins , 1991)
have also been attributed as reasons for ice shelves remaining in this region.

Petermann Glacier in north-western Greenland is one such outlet glacier which
terminates in a long thin floating ice shelf. It is one of the most influential glaciers
in northern Greenland in terms of both the drainage area of the Greenland Ice Sheet
(Rignot et al., 2001) and ice discharge into the ocean (Rignot et al., 1997).

In August 2010 a large calving event occurred, removing about 270-290 km2 (Box
and Decker , 2011), retreating the ice front closer to the grounding line than previ-
ously recorded (Falkner et al.). Although larger than any previously known calving
event, it tied in with the ice shelf’s near decadal time scale of calving (Johannessen
et al., 2011). In 2012 another large calving event occurred, removing a further 120
km2 from the ice shelf (Münchow et al., 2014). Whether the short time span between
these two large calving events is the beginning of a change in the stability of the ice
shelf, or it is unrecorded natural variability, is unknown. What we do know is that
these two large calving events have occurred over a much shorter time interval, and
have resulted in the ice shelf terminus retreating further than previously recorded.

The base of Petermann Glacier’s ice shelf was found to have several prominent
basal channels, aligned with the direction of ice flow (Rignot and Steffen, 2008).
Such channels have been found underneath several ice shelves both in Greenland
and Antarctica (Rignot and Steffen, 2008; Motyka et al., 2011; Vaughan et al., 2012;
Dutrieux et al., 2013). These ice shelves have typically experienced strong oceanic
thermal driving.

The presence of these channels has been found to have an impact on the oceanog-
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raphy within the sub-ice-shelf cavity, directing the meltwater along the channels from
the inner cavity towards the ice front (Payne et al., 2007; Mankoff et al., 2012). It
has been suggested that this would lead to enhanced melting within the channels
and channel deepening (Payne et al., 2007). The importance of basal channels on
the stability of ice shelves has been debated. Some studies suggest they decrease
the mechanical strength of the ice shelf through crevasse formation as the ice set-
tles into hydrostatic equilibrium (Rignot and Steffen, 2008; Vaughan et al., 2012).
A model study has shown the channelized redirection of flow beneath the ice shelf
prevents the formation of focused high melt rate areas, leading to a reduction in
mean basal melt rate (Gladish et al., 2012) and therefore stabilising the ice. The
reduced ocean physics of this model study, however, precluded an investigation of
the physical mechanism behind this sensitivity.

Using the MITgcm ocean model, this thesis investigates the impact of basal
channels on idealised and realistic representations of Petermann Glacier ice shelf,
and the underlying physical mechanism present.

The idealised domain was chosen to represent Petermann Glacier, but be adapt-
able so that the number of channels could be easily altered. The ice shelf thins with
a tangential shape, from a draft off 600 m at the grounding line to 60 m at the ice
front. Channels with a similar along-shelf profile to the realistic domain are added
with a sinusoidal across-shelf profile.

The realistic representation was created using a digital elevation map, created
from satellite imagery, corrected using airbourne radar data. Due to the floating
nature of an ice shelf, the elevation was subsequently converted to ice draft by ap-
plying the assumption of hydrostatic equilibrium. Due to the inherent difficulties
with accessing the cavity of an ice shelf, the bathymetry beneath Petermann Glacier
is unknown, however both the grounding line (Rignot , 1998), and bathymetry for
the open ocean section of the fjord (Johnson et al., 2011) are known. Three different
bathymetry scenarios were created for the realistic domain to assess the impact of
bathymetry on ice-ocean interactions beneath Petermann Glacier.

The idealised model showed that when no basal channels were present, a strong,
geostrophically-balanced boundary current was formed in the sub-ice layer directly
beneath the ice shelf, rising along the eastern boundary and leaning on the right-
hand wall of the fjord. Due to the velocity-dependence of melting, the strongest
basal melting was focused underneath the strongest part of the boundary current.

As a small number of wide channels were introduced, the formation of this bound-
ary current was modified, with a circulation within each channel induced instead.
This circulation consisted of a southward flow on the western slope of the channel
and a northward flow on the eastern slope, with little flow in the channel crests.
There was some transfer over the keels between the channels in an eastward di-
rection, leading to slightly faster flows and stronger melting in the more easterly
channels. Within each channel, melting was strongest in the steepest part of the ice
shelf near the grounding line, where the channels begin, and on the eastern slope of
the channels.

The mean melt rate for the whole ice shelf was roughly the same for the 0- and 1-
channel cases, but as more channels were introduced, the mean melt rate decreased
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monotonically. There was a reduction of approximately 40% in melting between the
1- and 4- channel cases. The introduction of further, narrower channels caused the
sensitivity of the mean melt rate to the number of channels to decline, with only a
further 8% reduction between the 4- and 8- channel cases.

The change in sensitivity is explained through consideration of the flow beneath
the ice shelf. For a smaller number of wide channels, a geostrophic flow circulated
around the channels. As more channels were initially added, more keels and crests
were introduced to the base of the ice shelf. There was little or no flow beneath these
areas, where the isopycnals were flat. This led to a decrease in sub-ice layer flow and
hence basal melting.

The introduction of further channels resulted in the channels becoming too nar-
row for the horizontally sheared circulation to be viable, causing a change to an
overturning circulation within each channel. This was much less sensitive to the
channel width due to the increase in ”no flow” area being smaller, reducing the
mean basal melt rate sensitivity.

These results suggest that, although basal channels decrease the mechanical sta-
bility of an ice shelf, they also decrease an ice shelf’s susceptibility to basal melting.
This stabilising effect is a possible explanation as to why basal channels are observed
in warm-water ice shelves in Greenland and Antarctica. If the channels stabilise ice
shelves, ice shelves with channels are more likely to persist, and a ‘survivor bias’
makes them more likely to be observed.

The idealised model was also used to assess the impact of changing oceanic condi-
tions within the fjord on the ice-ocean interactions beneath the ice shelf. The changes
in conditions included a deepening of the surface stratified layer, the introduction
of a seasonal restoring cycle, warming of the subsurface waters and ice shelf calving
events.

With the Arctic experiencing lower levels of sea ice cover (Serreze et al., 2007),
it is possible that Petermann Fjord could spend longer periods of the year ice-free,
allowing the wind within the fjord to have a larger mixing effect on the ocean surface
layer leading to a deeper, yet more weakly stratified, surface layer. The model
showed that, where the surface stratified layer protrudes underneath the ice shelf,
it acted as an insulating layer, protecting the ice base from the meltwater layer and
preventing basal melting. The deepening of the surface stratified layer resulted in
greater portions of the ice shelf being protected from basal melting, hence leading to
a reduction in mean basal melt rate.

The depth of the surface stratified layer plays an important role in controlling
melting for the areas of the ice shelf with a shallow ice draft. There are several
factors which affect the depth and strength of stratification including freshwater
run-off from land melt, sea-ice cover and wind conditions, meaning that the surface
stratified layer will vary on a seasonal cycle. During the winter, brine rejection from
sea-ice formation results in a more saline surface mixed layer, which can intrude
underneath the ice shelf and into channel crests. This surface mixed layer is eroded
away in the summer due to a number of factors including freshwater land run-off, sea
ice melt and rain. Inclusion of such seasonal forcing in the model showed that the
mean basal melt rate closely followed the pattern of mixed layer depth, with greater



x EXTENDED ABSTRACT

levels of basal melting during the summer and weaker levels during the winter. A
slight lag was found due to the time it takes for water to fully penetrate the ice shelf
cavity from the open ocean.

Ocean warming has been hypothesized as a cause of glacial destabilisation (Hol-
land et al., 2008a; Christoffersen et al., 2011), and model studies have shown ocean
warming to enhance melting (Holland et al., 2008b; Xu et al., 2012). The disintegra-
tion of Jakobshavn Isbræ’s ice shelf has been attributed to the arrival of relatively
warm water originating in the Irminger Sea (Holland et al., 2008a), whilst a sim-
ilar source of warm water has been suggested as the cause of glacial acceleration
on Greenlands eastern coast (Howat et al., 2008; Straneo et al., 2010). Both model
studies and observations suggest that the subsurface waters of Petermann Fjord have
warmed (Rignot et al., 2012; Johnson et al., 2011) and if Petermann Glacier were
to follow the trend seen in southern and eastern Greenland, this increase in ocean
temperature may lead to an increase in basal melting, glacier acceleration and ice
shelf instability.

Increasing the temperature of the subsurface waters in the idealised domain led
to a quadratic increase in basal melting. Johnson et al. (2011) concluded that there
was already more than the required heat being supplied to the ice shelf cavity for
the current levels of basal melting, suggesting that an increase in heat content, be
it interannual variability or a continuous trend, would not increase this further.
Therefore the increased melting found here must depend upon the actual ice-ocean
interactions themselves rather than just the further input of heat to the cavity.

In all cases the meltwater layer detached from the base of the ice shelf at the
pycnocline depth. This constant detachment indicated that, even though there was
an increase in mean melt rate, as long as the pycnocline remained at this depth,
the ice shelf would not experience an increase in basal melting above the pycnocline
depth as the ocean warms. However greater melt rates near to the grounding line,
caused by an increase in thermal forcing, indicate that the ice shelf would thin closer
to the grounding line. This thinning near to the grounding line could lead to a
decrease in ice shelf stability and increase the probability of large calving events
similar to those seen in 2010 and 2012.

The impact of large calving events was assessed in the idealised model and it was
found that as the ice shelf retreated, the in-situ melt rates were unchanged, implying
that the mean basal melt rate increased. This was caused by the removal of areas of
the ice shelf which have a shallower draft and therefore lower melt rates. However the
ice shelf decreased at a larger rate than the mean basal melt rate increased, leading
to a reduction in ice volume lost by basal melting.

One consequence of ice shelf retreat was a deepening of the draft at the ice front.
This resulted in the ice front coming into contact with the deeper warmer waters,
leading to large melt rates on the ice front and melting induced undercutting. The
increased volume of ice melted from the ice front was smaller than the decrease in
volume melted by basal melting, leading to an overall reduction in ice volume melted
as the ice shelf retreats. The melting induced undercutting can cause an increase in
surface stress near to the ice front, with the potential to cause further calving events,
some distance up the ice shelf (O’Leary and Christoffersen, 2013).
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Modelling of the realistic Petermann Glacier domain was found to provide a
qualitative agreement between observations and both the modelled circulation within
the fjord and ice-ocean interactions beneath the ice shelf. Smaller melt rates were
found than those observed, caused by errors in the observed melt rates and potential
discrepancies in model ice shelf geometry.

Comparison of the several different possibilities for the unknown fjord bathymetry
showed consistent basal melting, yet varying cavity circulation, suggesting sufficient
heat is entering the ice-shelf cavity, irrespective of the chosen bathymetry. However
it is worth noting that unknown features not included in the modelled bathymetries,
such as seabed ridges, could affect both circulation and ice-ocean interactions.

An investigation into ice shelf calving events showed similar results to those found
for the idealised domain, with an increase in mean melt rate, but decrease in total
ice volume melted, as the ice shelf retreated. The results indicated that the calving
events of 2010 and 2012 had little effect on the basal melt rates and pattern under
the remaining ice shelf. Further to the idealised study, it was found that the change
in mean basal melt rate was caused by the mean oceanic thermal forcing felt by the
ice shelf base increasing as shallow sections of the ice shelf were removed through
calving.

It was also found that the melting induced undercutting was more pronounced
in a stratified water column, compared to a well mixed water column. This suggests
that calving of ice shelves floating in a water column with a large stratification are at
greater risk of further calving, compared to those floating in a warmer, less stratified,
water column.

Part of the results contained within this thesis are published as: Millgate, T., P.R.
Holland, A. Jenkins and H.L. Johnson (2013), The effect of basal channels on oceanic
ice-shelf melting, Journal of Geophysical Research Oceans, 118, doi:10.1002/2013JC009402.
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Chapter 1

Introduction

1.1 Aim of Thesis

When glaciers come into contact with the ocean, they either terminate as a tidewater

glacier (no floatation occurs) or in an ice shelf, the floating section of a glacier. Ice

shelves are in contact with both the atmosphere and the ocean, making them highly

sensitive to changes in climatic forcing.

The ocean cavity beneath an ice shelf is inherently difficult to observe, yet the

interactions that take place between the ocean and the base of an ice shelf can play

an important role in the mass balance of both the ice shelf and the ice sheet. The

topography of the base of an ice shelf can also have an important role in modifying

these interactions.

It is with this in mind that this study uses a regional, high resolution, general

circulation model to study the ice-ocean interactions in the sub-ice cavity of a Green-

land ice shelf to address the following questions:

• How do basal features, such as channels, affect the melting at the base of an

ice shelf, and the circulation within the cavity?

• What is the impact of potential changes in future oceanic forcing on ice-ocean

1
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interactions?

• How do large calving events influence ice-ocean interactions?

• How well does the model predict basal melting and oceanic circulation beneath

Petermann Glacier, when compared to available estimates and observations?

1.2 Greenland Ice Sheet

The Greenland Ice Sheet (Fig. 1.1) is one of the planet’s two ice sheets. Located

in the northern hemisphere, with an area of 1.801×10 4 km 2 (Kargel et al., 2012),

and at up to 3 km thick (Michelsen, 2013), it contains enough ice to raise global sea

levels by 7.36 m (Bamber et al., 2013).

Figure 1.1: Map showing Greenland Ice Sheet (red box) in it’s geographical context.The
ice sheet’s outlet glaciers are highlighted in yellow. (Source: Vaughan et al. (2013)).
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1.2.1 Ice shelves of Greenland’s outlet glaciers

Figure 1.1 shows the location of Greenland’s numerous outlet glaciers in yellow.

There are three types of outlet glaciers: land-terminating; tidewater glaciers, where

the glacier reaches the coastline and doesn’t go into flotation; and glaciers ending

in ice shelves. Moon et al. (2012) surveyed all outlet glaciers with a width of at

least 2 km between 1992 and 2007 and found that the vast majority (187 out of 203)

were tidewater glaciers and these were found around the whole of Greenland. Of the

remaining 16 glaciers, 10 were land-terminating glaciers found in northern and south-

western Greenland and only 6 terminated in ice shelves; Petermann, Zachariæ Is-

strom, 79N, Ostenfeld, Ryder and Jakobshavn Isbræ. Of these six glaciers, Zachariæ

Isstrom and Ostenfeld were found to have lost ice shelf area during this study (Moon

et al., 2012), whilst the ice shelf of Jakobshavn Isbræ has since disintegrated (Wei-

dick et al., 2004) and Petermann Glacier has experienced two large calving events

(Falkner et al.; Münchow et al., 2014).

The remaining ice shelves are all in the northern region of Greenland (Moon et al.,

2012) and are constrained within glacial fjords (Higgins , 1991), with, in some cases,

high fjord walls and a sill near the entrance to the fjord (e.g. Johnson et al. (2011)).

The existence of ice shelves in this region has been attributed to the ocean waters in

this region being cooler than around more southerly regions of Greenland, which are

fed with water from the warm Irminger Current (Straneo et al., 2012). The ocean

water temperature is an important factor for the continued existence of these ice

shelves as warm ocean waters have been attributed to ice shelf disintegration and

glacier acceleration (Holland et al., 2008a; Rignot et al., 2012; Straneo et al., 2010).

Low surface slope of the glaciers (Koch, 1928) and high levels of sea ice cover in

the fjords, slowing down and preventing large iceberg calving events (Higgins , 1991)

have also been attributed as reasons for ice shelves remaining in this region.
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1.2.2 Ice shelf mass balance

The balance between the addition and removal of mass from an ice-shelf can tell us

about it’s current state. If the mass balance is positive (more mass addition than

removal) then the ice shelf will grow, if it is negative (more removal than addition)

then it will shrink, whilst if it is neutral (addition balances removal) then it is in

a steady state. Ice shelf growth can occur through an increase in either ice shelf

thickness, extent or both. Likewise a shrinking of an ice shelf can occur through

reduction in either thickness, extent or both.

a 

b 

c 

d 

Figure 1.2: Schematic showing the mass balance of an ice shelf with a) ice flux across
grounding line, b) ice base mass balance, c) surface mass balance and d) iceberg calving.

The mass balance is affected by several different processes, namely the flux across

the grounding line, the ice base mass balance, the surface mass balance and calving

at the ice front (Fig. 1.2). The flux across the grounding line brings ice from the

grounded section of the glacier into the ice shelf and is thus a positive term in the

mass balance. The ice base mass balance is the sum of ice lost due to oceanic melting

and the addition of ice due to oceanic water freezing onto the base of the ice shelf.

The surface mass balance is the sum of ice lost due to melting and the accumulation

of snow over the ice shelf. Calving is the loss of large chunks of ice from the ice front,
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and is therefore a negative term in the mass balance.

The relative importance of each term in the balance varies between ice shelves and

is dependent on many factors including 1) air temperature, 2) ocean temperature,

3) sea-ice cover, 4) topography and 5) local precipitation. These relative sizes can

be used to hypothesize the future stability of an ice shelf under differing scenarios.

1.2.3 Ice sheet mass loss mechanisms

There are several different mechanisms through which ice can be removed from an

ice sheet, these includes, but are not restricted to, the following:

1) Air temperature, when above the local freezing point, will increase the levels of

surface melt. However an increase in air temperature will also increase its moisture

bearing capacity, allowing for a higher level of snowfall. The surface air temperature

over Greenland has been increasing for the past two decades (Box et al., 2009), with

2010 being an exceptionally warm year for west Greenland where Nuuk experienced

it’s warmest year since records began (Tedesco et al., 2011).

2) Ocean circulation brings warm water into contact with the edge of the ice sheet.

The interactions that occur here have a major effect on the ice sheet’s mass budget

(Holland et al., 2008a; Pritchard et al., 2012). The warm ocean waters provide

enough thermal forcing to drive the high submarine melt rates seen at both ice

shelves (Holland and Jenkins , 1999; Rignot and Jacobs , 2002; Pritchard et al., 2012)

and tidewater glaciers (Holland et al., 2008a; Rignot et al., 2010).

3) Oceanic ice melt rates can be very large (Motyka et al., 2003; Dutrieux et al.,

2013), with the melt rate proportional to the oceanic thermal forcing and oceanic

flow speed (Holland and Jenkins , 1999). The acceleration of glaciers in southern

Greenland at the beginning of the century has been attributed to enhanced melting

caused by the intrusion of warm water of subtropical origin into fjords (Holland et al.,

2008a; Murray et al., 2010; Straneo et al., 2011). Modelling studies have shown that
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an increase in submarine melting leads to a reduction in back stress felt by the

glacier, leading to glacier acceleration (Payne, 2004; Nick et al., 2013; O’Leary and

Christoffersen, 2013).

4) As surface meltwater drains through the ice shelf to the bed, water pressure is

increased and basal friction is reduced, leading to a speed up of the ice above, result-

ing in an increase in ice discharge. This process is known as basal lubrication (Zwally

et al., 2002). Drainage events leading to basal lubrication are common in northeast

and southwest Greenland, but rarely seen in the southeast and northwestern regions

(Selmes et al., 2011).

5) Iceberg calving, from both ice shelves and tidewater glaciers, is an important

mechanism for mass loss. It can lead to a reduction in buttressing, through a loss

of back stress, leading to an acceleration of the glacier and hence an increase in

ice crossing the grounding line (Nick et al., 2012). The potential causes of calving

are varied and include melt-driven processes (Benn et al., 2007), ocean swell and

tsunamis (MacAyeal et al., 2006; Brunt et al., 2011) and as a final response to

gradual change (Scambos et al., 2000).

1.2.4 Changing Arctic and Greenland

The latest Intergovernmental Panel on Climate Change (IPCC) report confirms that

over the last two decades, the ice sheet has been losing ice mass and contributed to

global sea level rise (Fig. 1.3), with an average ice mass change of -121 [-149 to -94]

Gt/a (equivalent to a sea level rise of 0.33 [0.41 to 0.26] mm/a) between 1993 and

2010. Over the last five years of this period, the average rate of change in ice mass

increased to -229 [-290 to -169] Gt/a (a sea level rise equivalent of 0.63 [0.80 to 0.47]

mm/a) (Vaughan et al., 2013).

van den Broeke et al. (2009) have shown that the increase in mass loss can be split

approximately evenly between the surface mass balance (surface melt and runoff)
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Figure 1.3: Cumulative Greenland Ice Sheet mass loss and sea level equivalent (Source:
Vaughan et al. (2013).

and ice discharge across grounding lines of the ice sheet’s outlet glaciers. Regionally,

however, the relative importance of these two mechanisms varies, with surface mass

balance being dominant in north, southwest and northeast regions, whilst discharge

across grounding lines is dominant in the southeast, west and northwest regions

(Howat et al., 2007; van den Broeke et al., 2009; Pritchard et al., 2009).

During this period of increasing mass loss, the surface melt area has been in-

creasing, with an acceleration over the past few years (Fettweis et al., 2011; Tedesco

et al., 2011). In July 2012, an extreme melt event occurred, lasting a couple of days,

where the melt area increased to cover 90% of the ice sheet (Tedesco et al., 2013).

This increase in surface melt area has led to a change in the surface albedo of the ice

sheet, allowing more solar energy to be absorbed by the ice sheet, leading to higher

levels of surface melting. Over the 12 summers between 2000 and 2011, the largest

change in albedo (-0.091 ± 0.021) was found over the coastal ablation area whilst a

significant change in albedo of -0.046 ± 0.006 was observed over the accumulation

area (Box et al., 2012).

It should be noted, however, that this positive feedback is not seen over the
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whole ice sheet. In the ablation zone, the cold season accumulated snow is being

melted earlier, exposing the darker, impurity rich, bare ice surface, reducing the

albedo and hence amplifying melt volume. This positive feedback accounts for 85%

of the increase in surface melt in the ablation area between 2000 and 2011. In

the accumulation area, melting occurs over a much shorter time period, and the

additional absorbed solar energy is used in snowpack heating rather than surface

melting, providing a dampening to the positive albedo feedback seen in the ablation

area. However this dampening of the positive feedback is not sufficient to balance

the effect of warming, and there is a resultant overall albedo decline (Box et al.,

2012).

Results from the Gravity Recovery and Climate Experience (GRACE) satellite

show that ice loss in southeast Greenland was greatest in 2005 with a subsequent

decrease in ice loss, whilst ice loss decreased in the northwest after 2007 (Khan

et al., 2010; Chen et al., 2011; Harig and Simons , 2012). These results agree with

measurements of ice discharge from major outlet glaciers, confirming the importance

of ice flowing across grounding lines in these regions (van den Broeke et al., 2009).

In the northwest, it is probable that the increase in ice mass loss seen between

the 1996-2006 period and 2006-2010 period was at least partially caused by higher

accumulation rates in the late 1990’s compared to other years (Sasgen et al., 2012),

however an increase in outlet glacier flow speed between 2000-2010 indicates that

ice dynamics also played an important role (Moon et al., 2012). An 80-year-long

aerial photograph record of the south east shows that many land-terminating glaciers

retreated faster in the 1930’s, whilst tidewater glaciers retreated at a faster rate

during the most recent warming (Bjørk et al., 2012).

The environment of the Arctic and regions surrounding Greenland is changing

with the potential for global impacts through climate feedback mechanisms. Some

of these changes have been in the form of long term trends, such as the decrease in
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sea ice extent (Serreze et al., 2007), whilst others have been more sudden, such as

the disintegration of Ayles Ice Shelf in northern Canada (Copland et al., 2007), but

they all either have an affect on, or provide insight into, the long term future of the

Greenland Ice Sheet and its ice shelves.

The disintegration of ice shelves in northern Canada (Copland et al., 2007) and

the fast retreat of Jakobshavn Isbræ’s ice shelf (Holland et al., 2008a; Weidick et al.,

2004) indicate that ice shelves around Greenland and the Arctic regions are suscep-

tible to sudden, potentially irreversible, changes which have a knock-on effect on the

stability of the ice sheet.

Over the latter decades of the 20th Century and into the 21st Century the ocean

temperatures in the subpolar North Atlantic have been increasing (Bersch et al.,

2007; Straneo and Heimbach, 2013). Figure 1.4 shows the major oceanic currents

around Greenland. It shows that the warming North Atlantic water would first come

into contact with marine terminating glaciers in the southeast of Greenland, before

spreading to the southwest and then northwest. This circulation agrees with the

observed spread of ice mass loss into the northwest of Greenland (Khan et al., 2010).

There is some spatial variability in terms of glacier retreat along the western coast

of Greenland, for instance Jakobshavn Isbræretreated prior to the more southerly

Kangerlussuaq glacier, however the overall trend is that described previously.

An increase in subsurface water temperature was found to have a linear effect

on melting at the calving face of tidewater glaciers (Xu et al., 2012), whilst Holland

et al. (2008b) found a quadratic relationship between subsurface water temperature

and ice shelf basal melting. In both these studies, under some assumptions, melt

rate was expressed as the product of mixed layer flow speed and the temperature

difference between the mixed layer and deep-water. Xu et al. (2012) used a three-

dimensional z-coordinate general circulation model containing the vertical ice face

of the calving front, with melting occurring on the vertical face, whilst the model
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Figure 1.4: Schematic of the large scale ocean circulation around Greenland. The
Atlantic-origin pathways are in red to yellow, whilst Arctic-origin pathways are in blue.
The Dynamic thinning of the Greenland Ice Sheet (in m/yr) is superimposed (Source:
Straneo and Heimbach (2013)).

used by Holland et al. (2010) was a three-dimensional iso-pycnic coordinate model,

consisting of ten uniform density layers beneath a mixed layer which interacts with

the overlying ice shelf or atmosphere. In the model of Holland et al. (2010) melting

occurred along the base of a floating ice shelf.

In both cases the relationship between the temperature difference and ocean

warming was found to be linear. Xu et al. (2012) found no increase in ocean flow

speed with ocean warming, whilst Holland et al. (2008b) found a linear increase

in ocean flow speed, hence explaining the difference in relationships between ocean

warming and basal melting in these two studies. These relationships show that ma-

rine terminating glaciers and hence their grounded portions, are highly affected by

oceanic warming, with Holland et al. (2008a) attributing the acceleration of Jakob-

shavn Isbræ, prior to it’s rapid retreat, to a warming of subsurface ocean waters.

The extent of Arctic sea ice has been decreasing since the late 1970’s with negative

trends found in the annual means as well as for the four seasons and all months
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(Serreze et al., 2007; Parkinson and Cavalieri , 2008). As well as a reduction in

extent, sea ice thickness was found to have reduced after the 2007 minimum by 0.26

m compared to the previous 6-year mean, with the thinning more pronounced in the

Western Arctic with reduction of 0.49 m compared to the 6-year mean (Giles et al.,

2008). An increase in surface air temperature has been raised as one potential driver

of this decrease (Serreze et al., 2007), however other thermodynamic and dynamic

processes such as changes in radiative fluxes and ocean currents have been suggested.

The observed decrease in sea ice extent has led to an increase in area of darker

open water that readily absorbs solar radiation, increasing the heat content of the

surface mixed layer. This has the potential for multiple impacts, including the posi-

tive feedback of the warmer water melting further sea ice, in turn increasing the area

of open water, leading to greater absorbtion of solar radiation and further increase

the heat content of the ocean (Serreze and Barry , 2011).

This increased absorption of solar radiation in the Arctic climate system can af-

fect the Greenland Ice Sheet in two ways. The warmer water of the Arctic Ocean is

advected southwards through both Nares Strait, powered by the Beaufort Gyre, and

through Fram Strait in the East Greenland Current. This warmer water can prop-

agate into Greenland’s fjords and come into contact with outlet glaciers, increasing

oceanic melting and glacier acceleration. Whilst the increase in heat transfer from

the ocean to the atmosphere in the winter due to a smaller ice extent (Serreze and

Barry , 2011) can lead to warmer winter air temperatures with the potential to in-

crease ice sheet surface melt and hence thinning and acceleration.

1.3 Ice-Ocean Interactions

Ice-ocean interactions include, but are not restricted to, basal melting, basal freezing

and water mass transformation. These interactions are controlled by the circulation

of the ocean beneath the ice shelf.
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1.3.1 Circulation beneath an ice shelf

Melting at the base of an ice shelf is dependent on the temperature of the water

in contact with the ice shelf being greater than the in-situ freezing point, which is

dependent on pressure and the salinity:

TF = aSb + b+ cp (1.1)

where TF is the in-situ freezing point, Sb is the salinity, p is the pressure, a =

−0.0575 ◦C psu−1 , b = 0.0901 ◦C and c = −7.61 × 10−4 ◦C Pa−1. An increase in

either pressure or salinity will result in a decrease in the in-situ freezing point. It is

this decrease in TF with depth that plays an important role in ice-ocean interactions.

However, it is not just TF that is important to the melt rate, the internal temperature

of the ice shelf, roughness of the ice base, temperature of the water in contact with

the ice base, and the speed with which that water flows are all important factors.

Full details are given in Section 3.2.

A turbulent boundary layer is formed by the water flowing past the base of the ice

shelf. It is through this boundary layer that the energy required for basal melting and

freezing is transported. If the boundary layer temperature is greater than TF , then

melting occurs. The meltwater mixes with the boundary layer, causing a freshening

and cooling. This freshening causes the boundary layer to be less dense than the

surrounding water, and it rises up the ice base. As the fresher water rises, TF changes.

If the temperature of the boundary layer is still greater than TF , further melting will

occur resulting in continued freshening and cooling of the boundary layer. This

continues until one of two things happen. Either the meltwater reaches a level of

neutral buoyancy and flows away from the ice shelf, or the boundary layer becomes

cooler than the in-situ freezing point.

When the buoyancy layer becomes cooler than the in-situ freezing point, seawa-



1.3 Ice-Ocean Interactions 13

ter freezing starts to occur on the base of the ice shelf, causing an increase in the

boundary layer temperature and salinity, further altering it’s buoyancy. The bound-

ary current continues to rise up the base of the ice shelf until it either reaches a level

of neutral buoyancy or it reaches the surface (Fig. 1.5).
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Figure 1.5: Schematic showing the circulation within a sub-ice shelf cavity, a) warm water
enters the cavity, b) warm water causes basal melting, c) change in buoyancy causes mixed
layer to rise and entrain warm water, d) mixed layer is cooler than local freezing point
and seawater freezes onto base of ice shelf and e) mixed layer reaches a level of neutral
buoyancy and flows away from the ice shelf.

As described above, relatively warm water comes into contact with the base of

an ice shelf, causing the ice to warm until it melts. When considering the energy

budget, to a first approximation some assumptions can be made. The energy required

to warm the ice to it’s melting temperature (sensible heat transfer from the ocean to

the ice) is small relative to the energy required to melt the ice (latent heat uptake)

and can therefore be neglected (Latent heat uptake : sensible heat transfer = 334:2

Jkg−1 ◦C−1). The energy required to heat the meltwater is also small relative to the

latent heat (due to the small volume of meltwater compared to oceanic water) and

can also be neglected. Under these assumptions it can be shown that the boundary

layer will have temperature (TM) and salinity (SM) properties which follow the line
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in Θ - S space defined by (Gade, 1979; Jenkins , 1999):

TM(SM) = TO +
L

cO

(
1− SO

SM

)
, (1.2)

where TO and SO are the temperature and salinity of the warm ocean waters prior to

melting, L is the latent heat of fusion for ice and co is the specific heat of sea water.

This line is known as a Gade Line and can be calculated for ocean waters with

differing properties and is useful for determining whether water has been modified

by interactions with an ice shelf. When plotted in potential temperature-salinity

space (Θ - S space), water which has been modified by an ice shelf will lie on the

Gade Line, whilst water that has been modified by other means, such as freshwater

run-off, will lie off the line.

1.3.2 Current knowledge on channel influenced melting

Channels carved into the base of ice shelves (basal channels) have been recorded

in several ice shelves around both Greenland and Antarctica, typically those with

a strong oceanic thermal driving. In Greenland, Rignot and Steffen (2008) found

that the floating tongue of Petermann Glacier has pronounced channels aligned in

the direction of ice flow, while Motyka et al. (2011) revealed the existence of a large

channel in the base of Jacobshavn Isbræ’s ice tongue before it’s retreat from 1998

onwards. Basal channels have also been found under the ice shelf of Antarctica’s

Pine Island Glacier (Payne et al., 2007; Mankoff et al., 2012; Vaughan et al., 2012;

Dutrieux et al., 2013).

Both Payne et al. (2007) and Mankoff et al. (2012) found that the presence of

these channels had an impact on the oceanography within the sub-ice-shelf cavity,

directing the meltwater along the channels from the inner cavity towards the ice

front. Payne et al. (2007) suggested this would lead to enhanced melting within the
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channels and channel deepening. Instead, Dutrieux et al. (2013) show that these

channels are carved by ocean melting near the grounding line, and then diminished

downstream by melting at the keels between channels. Payne et al. (2007) found

that the channeling of meltwater plumes resulted in enough residual heat reaching

the sea surface at the ice front to cause the formation of small polynyas. Mankoff

et al. (2012) noted that basal channels are common on ice shelves, but are only

prominent on those which undergo intense basal melting.

There are several proposed mechanisms for the formation of basal channels. Glad-

ish et al. (2012) found that undulations in ice thickness at the grounding line are

amplified by oceanic melting to form longitudinal channels, whilst channels failed to

form under an ice shelf with a constant grounding line thickness. Le Brocq et al.

(2013) suggest that ice shelf channels can be formed by subglacial water crossing the

grounding lines in a channelized manner, entraining warmer ocean water, inducing

large localised melt rates, forming small basal channels which are further enhanced by

oceanic melting. Sergienko (2013) found that in the presence of lateral shear, basal

channels can spontaneously appear, even without undulations at the grounding line.

The question of the overall importance of basal channels to ice shelf stability

remains open. Rignot and Steffen (2008) suggested that there is an increase in

mechanical weakness at the crest of channels, where the ice is thinnest. Vaughan et al.

(2012) showed that the settling of crests and keels towards hydrostatic equilibrium

is responsible for fracturing the ice, weakening it further.

In contrast, Gladish et al. (2012) formulated a coupled ice shelf-meltwater layer

model, finding that basal channels actually increased the stability of ice shelves by

preventing the development of focussed high melt rates which melted completely

through the ice shelf in the absence of channels. Moreover, the basal melt rate of the

ice shelf decreased monotonically with an increasing number of (smaller) channels.

The reduced ocean physics in the simple model of Gladish et al. (2012), however,
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precluded an investigation of the physical mechanism behind this sensitivity.

1.4 Petermann Glacier

1.4.1 Introduction

Petermann Glacier, named after the German geographer and cartographer August

Petermann, is a major outlet glacier on the north-western coastline of Greenland,

located at approximately 81◦N and 61◦W (Fig. 1.6). The glacier flows northwest

into Petermann Fjord where it forms a long thin floating ice shelf. The fjord has high

cliff faces on each side and narrows from 20 km at the grounding line to 15 km near

the ice front, after which it opens out into Hall Basin in Nares Strait, which links

the Arctic Ocean to the north with Baffin Bay to the south (Johnson et al., 2011).

It is one of the most influential glaciers in northern Greenland in terms of both the

drainage area of the Greenland Ice Sheet (Rignot et al., 2001) and ice discharge into

the ocean (Rignot et al., 1997). It is one of four Greenland outlet glaciers where a

significant portion of its drainage basin is substantially below sea level (Bamber and

Layberry , 2001). Petermann Glacier is also one of only two Greenland glaciers which

have retained a significant floating ice shelf (Falkner et al.).

Petermann Fjord was first discovered in August 1871 by the U.S. Steamer Polaris

expedition (Koch, 1928), however it was not until 1876 that Coppinger and Fulford

realized that the fjord was filled with a glacier and it was not until 1892 that Peary

discovered that the glacier reached far inland (Koch, 1940). The presence of the

floating ice shelf was not noted until 1917, when Koch (1928) discovered that the

downstream section of the glacier beyond a line drawn between Cape Agnes and

Cape Coppinger was afloat.

In 2010 the floating section of the glacier was observed to be approximately 70

km long, 20 km wide and thinned from 600 m at the grounding line to 60 m at the
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Figure 1.6: Modis image from 28th July 2010 showing Petermann Glacier, Hall Basin,
Ellesmere Island and Kennedy Channel.

ice front (Johnson et al., 2011). Since 2010 there have been two large calving events

which are discussed in section 1.4.5. The ice front was first mapped by the British

Arctic Expedition in 1876, and subsequently in 1922 where it had a similar position

and again in 1962 where it was within 6 km of the first mapped position (Falkner

et al.). Historical aerial photographs suggest that the ice front position changed very

little in the later half of the 20th century (Higgins , 1991).

Despite the evidence of stability of the ice front position, Petermann Glacier is

far from slow moving. It flows at over 1 km/a (Higgins , 1991; Rignot et al., 1997)

making it the fastest flowing outlet glacier in northern Greenland (Rignot et al.,

1997), with 12 ± 1 Gt/a of ice crossing the grounding line each year (see section

1.4.3).
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1.4.2 Oceanography of Petermann Fjord and Nares Strait

Petermann Fjord opens into the Hall Basin section of Nares Strait, which connects

the Arctic Ocean in the north to Baffin Bay in the South, and runs between Ellesmere

Island and Western Greenland. Nares Strait, along with Fram Strait to the east of

Greenland, provide important pathways for freshwater fluxes towards the North At-

lantic (Aagaard and Carmack , 1989). Simple models suggest that freshwater trans-

port through Fram Strait is only approximately 60% of that transported through

Nares Strait and the Canadian Arctic Archipelago (CAA) (Steele et al., 1996), how-

ever contributions of ice through the CAA are small due to the presence of land-fast

ice (Melling et al., 2008).

Rabe et al. (2010) found that the 3-year mean geostrophic velocity across Kennedy

Channel, just to the south of Hall Basin and Petermann Fjord, had two distinct

surface-intensified southward flows, one on the eastern side of the channel and one in

the middle of the strait with velocities up to 0.20 and 0.14 m/s respectively. Direct

ADCP measurements by Münchow and Melling (2008) found a northward flow near

the coast of Greenland during the same time period.

The water on the Ellesmere Island side of the strait was found to be the coolest

and freshest, with the water warming and becoming more saline with both depth

and moving across the strait to Western Greenland. The isopycnals were found to

generally have their maximum slope in the centre of the channel which is consistent

with the enhanced flow in the centre of the strait (Rabe et al., 2010).

Johnson et al. (2011) recorded the presence of a sill in the mouth of Petermann

Fjord separating the fjord from the adjacent Nares Strait, with the sill no deeper

than about 450 m. They found that the water column structure was similar to that

of many Arctic regions with a cold fresh water mass overlaying a warmer, saltier

layer of modified Atlantic Water. Below about 100 m, both isotherms and isohalines

sloped across the fjord with cooler, fresher water on the northeastern side of the
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fjord, with the coldest water at a depth of approximately 50 m on the northeastern

side. Johnson et al. (2011) estimated a necessary heat flux into the fjord of 1.1×1011

W to melt the ice shelf at the rate reported by (Rignot and Steffen, 2008) (0.327

mSv). Using the information collected across a section near the ice front, Johnson

et al. (2011) calculated a net heat transport into the fjord of 3.1×1011 W, indicating

that, at least during summer when the measurements were made, there was ample

heat throughout the water whole water column to melt the volume of ice calculated

by Rignot and Steffen (2008) (Section 1.4.3), including in the coldest water, with

temperatures several degrees greater than the in-situ freezing temperature at depths

greater than 200 m. The surface salinity was found to be similar to that of water in

Nares Strait.

Johnson et al. (2011) found that below a depth of 185 m, the Θ − S profiles

close to the north eastern fjord wall exhibited a slope of approximately 2.5 ◦C/PSU

which is similar to the Gade line for the modified Atlantic Waters found in Peter-

mann Fjord. Above this depth and away from the north-eastern wall, the profiles

have a shallower slope in Θ - S space, indicating the modified Atlantic Water is

mixing with fresher water, without providing the latent heat required to accomplish

melting. These profiles indicate that the meltwater leaves the ice shelf cavity along

the north-eastern boundary between depths of approximately 185 and 500 m. The

intrusion of a relatively low density surface layer blocks the rising meltwater plume,

forcing it to detach from the base of the ice shelf, explaining why no signal is seen

above approximately 135 m. Water properties below the sill depth were relatively

homogenous and distinct from those at corresponding depths in Nares Strait, indi-

cating that the fjord had been filled to sill depth by Nares Strait water from within

a narrow range of depths. Figure 1.7 is a graphical representation of the distribution

of water masses within Petermann Fjord.

Hydrographic sections across the fjord, taken in 2007 and 2009, were used to
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Figure 1.7: Schematic representing the distribution of water masses within Petermann
Fjord (Source Johnson et al. (2011)).

determine the geostrophic flow within the fjord. In determining the flow, a uniform

barotropic velocity was added across the section to ensure there was no net flow into

the fjord above 500 m. This was an approximation due to the fjord extending deeper

than 500 m, and there being a small net flux out of the fjord equal to the amount of

freshwater crossing the grounding line. Below 50 m, there is a flow out of the fjord

on the northeastern side, with 2009 velocities reaching a maximum of 0.2 m/s at a

depth of 100 m. The outward flow was compensated by a flow into the fjord on it’s

southwestern side, with the inward flow extending to the surface. The 2007 velocity

field was similar to the 2009 data, with weaker velocities (Johnson et al., 2011).

Properties of the water between 180 and 500 m depth on the southwestern side of

the fjord are indistinguishable from those from north Kennedy Channel (just south

of the fjord mouth) in Θ − S space which, when paired with the inflow described

above, suggests that water from the northward flow in Kennedy Channel enters into
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the fjord along the southwestern side (Johnson et al., 2011).

Tidal currents within Petermann Fjord were calculated by Johnson et al. (2011)

using shipboard ADCP measurements, assuming htat the tide was entirely semi-

diurnal. The tidal amplitude was found to decrease by a factor of 2 from 0.16 m/s

at a depth of 30 m, to 0.08 m/s at a depth of 100 m. These tidal amplitudes are

smaller than those recorded in Nares Strait which can reach 0.24 m/s (Münchow and

Melling , 2008). The decrease in tidal amplitude may be caused by either the strong

stratification within the fjord and/or inertial oscillations which have a period similar

to that of the semidiurnal tide at this latitude. As Petermann Fjord is north of

the critical latitude for the M2 tide (74.5 ◦N), density anomalies generated between

the barotropic tide and the sill are unlikely to propagate as internal waves, with the

energy channeled into near-inertial motions instead (Johnson et al., 2011).

Although the tidal amplitudes are smaller than those seen in Nares Strait, tides

are a potential source of kinetic energy for mixing underneath the ice shelf, which

has implications for the ice-ocean interaction processes, detailed in Chapter 3, which

govern basal melting (Johnson et al., 2011).

1.4.3 Mass balance of Petermann Glacier Ice Shelf

The mass balance of Petermann Glacier Ice Shelf was calculated by Rignot and

Steffen (2008). Radarsat-1 InSAR ice velocity data was used between the years of

2000 and 2006, to show that the ice shelf could be treated as stable in terms of ice

velocity interannual variability.

Grounding line ice thickness of 600 m was recorded by Kansas University’s 150-

MHz Ice Sounding Radar (Gogineni et al., 2001), which combined with the InSAR

velocity data, provided an ice input estimate of 12±1 Gt/yr. As discussed in Section

1.2.2, there are three main processes through which an ice shelf can lose mass; iceberg

calving, surface mass balance and ice base mass balance.
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Higgins (1991) estimated iceberg production at Petermann Glacier to be 0.6

Gt/yr. Rignot and Steffen (2008) deployed two automated weather systems on the

ice shelf in 2002 to measure the surface energy balance and calculated a surface

ablation of 1.2 m/yr water equivalent between the years of 2002 and 2005, whilst

annual snow accumulation was negligible in 2002 and approximately 10 cm between

2003 and 2005 (Steffen and Box , 2001). The remainder of the mass lost from the ice

shelf, approximately 80%, occurs through basal melting.

Figure 1.8: Petermann Glacier steady state basal melt rates (m/y) calculated from diver-
gence of ice flux. The black line represents the grounding line (Source: Rignot and Steffen
(2008)).

Rignot and Steffen (2008) calculated basal melt rates (Fig. 1.8) from the di-

vergence of ice discharge assuming that the ice thickness is in steady state, and a
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uniform 1.2 m/yr surface melt rate. Melt rates were found to increase from 0 m/yr

near the grounding line to a maximum of approximately 25 m/yr 10 km downstream

and subsequently decrease towards the ice front. The whole width of the ice shelf

was not used in these calculations as ice thickness measurements were not well con-

strained along the ice shelf/fjord margins. Johnson et al. (2011) calculated that,

in summer time at least, there was ample heat contained in the modified Atlantic

Water entering the fjord to account for these high levels of basal melting.

1.4.4 Presence of basal channels

Whilst calculating the mass balance, Rignot and Steffen (2008) noticed pronounced

across-shelf variations, or channels in ice thickness. These channels were 1-2 km

wide, 200-400 m deep, spaced approximately 5 km apart and were aligned with the

ice shelf flow direction (Fig. 1.9). The channels were found to develop initially

near the ice-shelf’s grounding line, however there were no significant variations in ice

thickness on the grounded ice. Their formation was therefore attributed entirely to

ice-ocean interactions.

Figure 1.9: Ice Sounding Radar across-shelf profiles of Petermann Glacier’s ice shelf
surface and base. The black and red profiles are across the grounded section of the ice
shelf, whilst the blue profile is close to the grounding line and the yellow profile further
downstream form the grounding line (Source: Rignot and Steffen (2008)).
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Airborne radar data profiles, collected before the 2010 calving event, (see section

2.1.2) taken along both channel crests and keels, show that the channels deepen

rapidly by approximately 20 km upstream, after which the crest remains at a rel-

atively constant depth for the rest of the ice shelf, whilst the channel keels tend

to shallow linearly. The channel keel and crest profiles approach the same depth

approximately 50 km downstream from the grounding line, suggesting that at this

location the channels have been removed. This channel structure is confirmed by

a satellite digital elevation model of the ice surface, which, since the ice is floating,

can be used to infer the topography of the ice shelf base by applying Archimedes’

principle (see section 2.1.1).

1.4.5 Recent ice-island calving

As seen in section 1.4.3, calving accounts for only a small portion of the mass lost

from Petermann Glacier’s ice shelf. Higgins (1991) showed that icebergs calve as

large tabular bergs at intervals of 5-10 years or more and predicted that the largest

tabular bergs were of the order 12 km by 10 km. A review of calving events between

1958 and 2001 showed this to be largely true, with three large calving events in this

period. Between 1959 and 1961 the ice-shelf calved approximately 153 km2 (Higgins ,

1991; Johannessen et al., 2011), a further 168 km2 calved in 1991 (Johannessen et al.,

2011) and in 2001 a calving event removing approximately 70-80 km2 occurred (Box

and Decker , 2011; Johannessen et al., 2011). There was a further smaller calving

event of about 31 km2 in 2008 (Box and Decker , 2011; Johannessen et al., 2011).

This history indicates that Petermann Glacier undergoes a cycle of large tabular

calving events followed by a period of ice front advance. During these periods of

advancement, there are small levels of calving along the margins of the ice shelf,

due to the opening of crevasses caused by the velocity difference between the centre

and margins of the ice shelf (Higgins , 1991). This results in a central tongue of
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ice protruding from the ice shelf which can be seen in satellite imagery (Fig. 1.6.

Observations from satellite imagery suggest that the majority of mass lost through

calving occurs as large tabular bergs of the order 70 - 150 km2 on a near decadal

timescale (Johannessen et al., 2011).

In August 2010 another large calving event occurred, which tied in with the near

decadal time scale. This event, however, was distinguishable from the other known

events for two reasons; firstly it was significantly larger then the previous calving

events at about 270-290 km2 (Box and Decker , 2011; Johannessen et al., 2011) and

secondly because the ice front retreated further than any previous observations (Box

and Decker , 2011; Falkner et al.). This is not to say that the ice front has not

retreated to this point previously. Falkner et al. argue that gaps in the observational

record allow for scenarios where the ice front could have hypothetically retreated to

a similar distance between 1880 and 1920 and between 1920 and 1940.

Box and Decker (2011) noted that there was a large rift upstream of the 2010

calving front and predicted a further calving event of approximately 150 km2. In

2012 another large tabular berg of around 120 km2 calved from the terminus of

Petermann Glacier (Münchow et al., 2014). Whether the short time span between

these two large calving events is the beginning of a change in the stability of the ice

shelf, or it is previously unrecorded natural variability is unknown. What is known is

that these two large calving events have occurred over a much shorter time interval,

and has resulted in the ice shelf terminus retreating further than previously recorded.

The location of the ice front post calving events, and grounding line estimate, are

shown in Figure 1.10.
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a b c 

Figure 1.10: MODIS images of Petermann Glacier acquired a) in 2003 before major
calving events, b) post 2010 calving event and c) post 2012 calving event. The thick black
line near y = 0 km is the grounding line from Rignot and Steffen (2008) (Source: Münchow
et al. (2014)).



Chapter 2

Topography of Petermann Glacier

Ice Shelf and Fjord

2.1 Data

To be able to model the ice shelf cavity beneath the floating ice shelf of Petermann

Glacier, the fjord bathymetry and ice shelf topography are required. However, due to

it’s remote location and the inherent difficulties with accessing sub-ice shelf cavities,

it is difficult to directly map these. To combat this, the ice shelf topography is

inferred from satellite imagery and airborne radar data, via the creation of a digital

elevation model (DEM) of the ice surface topography, whilst the fjord bathymetry can

be interpolated from the available swath bathymetry in the fjord and bedrock profile

at the grounding line. The following sections introduce the data and methodology

used to create the topography and bathymetry required to model Petermann Glacier.

2.1.1 Satellite images

The DEM of the ice shelf was created using images from two satellites; Landsat7 and

Terra. The Landsat7 satellite provided imagery of the area from which a mask of

27
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the ice shelf was created, whilst the Terra satellite’s instrument ASTER (Advanced

Spaceborne Thermal Emission and Reflection Radiometer) provided a DEM of the

ice shelf and surrounding area.

Landsat7 was launched in April 1999 as part of the Landsat program which is

jointly managed by NASA and the US Geological Survey. The Enhanced Thematic

Mapper Plus (ETM+) is a satellite-mounted earth observing instrument, providing

images of the Earth’s surface. The ETM+ senses electromagnetic radiation in seven

bands ranging from 0.45 to 12.50 µm with a resolution of 30 m and an eighth band

(panchromatic) which measures radiation in the range 0.52 to 0.90 µm at a resolution

of 15 m. Each image produced by the ETM+ is 183 km by 170 km in size and images

are taken with a temporal resolution of 16 days. The mask of the area was created

using Landsat 7 ETM+ images of Petermann Glacier and the surrounding area taken

on 21st July 2001. The images used consisted of data from bands 1, 2 and 3 (blue,

green and red respectively) and from band 8 (panchromatic) (Landsat , 2010).

The ASTER instrument is mounted aboard the Terra satellite, which is part of

NASA’s Earth Observing System. The DEM consists of a mosaic of overlapping tiles,

arranged such that there are no inconsistent boundaries between tiles. Each tile is

approximately 1 degree by 1 degree in size and consists of a smaller DEM which

was calculated relative to the WGS84 ellipsoid, from a stereoscopic-pair of images of

the same area taken with nadir (downwards) and backwards angles. Depending on

the size and location of the area of interest, a DEM can consist of data from several

different tiles.

It is possible to use a DEM to infer the topography of the base of an ice shelf since

it is floating. This means that the assumption that the ice shelf is in hydrostatic

equilibrium can be made which, means the ice draft can be calculated as a function

of freeboard (ice thickness above the sea surface) and densities of the ocean and ice.

This is explained further in Section 2.3.
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Figure 2.1: Landsat7 ETM+ panchromatic image of Peterman Glacier and the surround-
ing area.

DEMs over large areas such as the Greenland Ice Sheet are most commonly

created from satellite-borne instruments as they are the only sensors to date that

provide elevation data of sufficient coverage, accuracy and density for such large

areas. DEMs created from stereoscopic imagery have a high level of precision yet low

accuracy (between ±7 m and ±15 m (Hirano et al., 2003)), therefore it is important

to calibrate the Satellite data with airborne radar data to reduce these errors and

obtain a more accurate DEM.
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2.1.2 Radar data

The Centre for Remote Sensing of Ice Sheets (CReSIS), led from the University of

Kansas, was formed with the aim of developing new technologies and models to

predict and measure the response of sea level change to the mass balance of both

the Greenland and Antarctic ice sheets (CReSIS , 2014). This involved collecting

aerial radar measurements over the Greenland Ice Sheet and it’s outlet glaciers.

Measurements recorded included the elevation of the onboard radar relative to the

WGS84 geoid, the time for the radar signal to return from the ice surface, time and

location. The distance between the plane and ice surface is calculated using the

speed of the radar signal in air.

Campaigns were flown over Petermann Glacier Ice Shelf in May 1999, May 2002

and May 2003 (Fig. 2.2). The 1999 campaign consisted of one flight line along the

length of the ice shelf and one in the across shelf direction, over the grounded ice just

upstream of the grounding line. The 2002 campaign consisted of 9 along shelf flight

lines and the 2003 campaign consisted of two along shelf flight lines and three across

shelf flight lines, two of which spanned the whole ice shelf and one which crossed the

grounding line from grounded to floating ice halfway across the ice shelf.

The across shelf flight lines are all situated near to the grounding line and there

are not any close to the ice shelf terminus. This is due to the high cliff faces of

the fjord, which make it difficult for an aircraft to descend to the ice shelf and then

ascend again before reaching the opposite fjord wall. Like wise the along shelf profiles

are situated away from the fjord walls.

This means that the margins and downstream across shelf structure from the

satellite imagery and radar data cannot be directly compared. The existing radar

profiles will have to be relied upon to correct the satellite imagery to discover the

ice shelf basal structure of these areas.
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Figure 2.2: Locations of CReSIS radar flights over Petermann Glacier’s ice shelf (blue
area) in a) 1999, b) 2002 and c) 2003.

2.1.3 Grounding line

The grounding line, used to locate the change from the grounded ice to the floating

ice of Petermann Glacier, was provided by Professor Eric Rignot and is the 1996

grounding line defined by Rignot (1998). Professor Rignot located the grounding

line using satellite-radar interferometry, which is a technique using two radar inter-

ferograms spanning the same time interval. The interferograms were created using
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data from the European Space Agency’s Earth Remote Sensing Satellites (ERS-1

and ERS-2). The interferograms were first corrected for surface topography, using

a digital elevation map of north Greenland (Ekholm, 1996), before being differenced

to create a measure of tidal displacement of the glacier.

This difference interferogram highlighted the section of the glacier affected by

tides (ice shelf), along with the areas which were not (grounded ice). Rignot (1998)

defined the grounding line location as the point at which the glacier stopped being

affected by the tide and, using this technique, could be located with a lateral precision

of 30m. This technique relied on the assumption that the glacier creep remained

constant during the observation period so that the displacement signal due to creep

was cancelled out during the differencing process (Rignot , 1998).

Rignot (1998) found that the grounding line migrated back and forth on a short

term basis (days to months), which was attributed to changes in ocean tides. A

retreat of several hundred metres was identified between 1992 and 1996, this retreat

was attributed to a change in the glacier thickness.

2.2 Methodology

2.2.1 Image processing

The first stage in creating the DEM of the ice shelf was to create a mask of the

area to allow the differentiation between floating ice, ocean and land/grounded ice

using the Landsat7 ETM+ imagery. ArcMap 9.3.1 was used to view the images,

which were projected into the North Polar Stereographic (NPS) projection. This

projection was applied as it preserves the relative areas of features. The location

of the grounding line was overlain on top of the images, and the outline of the ice

shelf, land/grounded ice and ocean were visually drawn. Once obtained the mask

was saved on a 10 m resolution grid.
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Landsat band 8 (Fig. 2.1) was predominantly used to create the mask due to

its higher spatial resolution, allowing for a more detailed mapping of the area. The

panchromatic band was, however, unable to easily differentiate between shadow and

the bottom of the fjord cliffs and also between the front of the glacier and sea ice.

Bands 1 to 3 were used to distinguish between these features, albeit at a slightly

lower resolution (Fig. 2.3). Once created (Fig. 2.4), I applied the mask to the

ASTER DEM of the whole area to create a DEM of the ice shelf.

Figure 2.3: Landsat Band 1 image, focusing on a section of the western edge of Petermann
Fjord. It is possible to distinguish between the shadow of the cliff and the edge of the Fjord
using the imagery from this band.

The World Geodetic System 84 (WGS84) is an ellipsoid co-ordinate system used

by satellites and to which their measurements are referenced. The raw ASTER

DEM values are relative to WGS84. As the freeboard of a floating ice shelf is being

considered, the DEM needs to be found relative to the geoid (the equipotential

surface corresponding to a hypothetical motionless ocean) rather than to WGS84.

Therefore I subtracted geoid-ellipsoid differences, obtained from the International

Centre for Global Earth Models (ICGEM , 2014), from the ASTER DEM after the

mask was applied, resulting in a DEM of Petermann Glacier’s ice shelf (Fig. 2.5).

An area of ice shelf height of 0 m can be seen at the ice front. This is most likely

caused due by calving events changing the ice front position between the Landsat

and ASTER images being collected. This issue is addressed in Section 2.4.2.
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Figure 2.4: Landsat7 mask of Petermann Glacier ice shelf in polar stereographic pro-
jection. The ice shelf flows from bottom left to top right. Dark Blue represents the ice
shelf, light blue represents tributary glaciers, green represents land or grounded ice and
red represents water or sea ice .

2.2.2 Radar data correction

The Satellite data needed to be calibrated with airborne radar data to correct for

any error in elevation due to the angle between the satellite and the Earth. To be

able to do this the location of the radar data first needed to be converted into NPS

projection. This was done using equations (2.1) to (2.5):

x = ρ sin(λ− Cm), (2.1)

y = −ρ cos(λ− Cm), (2.2)
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Figure 2.5: ASTER DEM of Petermann Glacier’s ice shelf, corrected for the Geoid, in
polar stereographic projection.

ρ =
2at

[(1 + e)(1+e)(1− e)(1−e)]1/2
, (2.3)

t =
tan(π/4− φ/2)

[(1− e sinφ)(1 + e sinφ)]e/2
, (2.4)

e2 = 2f − f 2, (2.5)

where Cm is the central meridian for the projection, (φ,λ) is the latitude and lon-

gitude of the point to be projected, f is the flattening of the ellipsoid and a is the

semi-major axis.

Due to the onboard radar’s elevation being relative to the WGS84 ellipsoid, this

needed to be corrected for before any calibrations could take place. The corrections
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were made using the same Geoid corrections as used for the ASTER DEM correction.

The Landsat7 mask was then applied to the radar data to extract the corrected

surface elevation measurements for use in calibrating the ASTER DEM.

2.2.3 Calibration

Due to the orbit of the Terra satellite, ASTER imagery is taken from an oblique angle.

This results in a dataset with high relative precision but poor accuracy. There is a

2-D field of bias in the DEM. To counteract this bias and the problems discussed in

Section 2.1.1, the DEM is calibrated using airbourne radar data.

Figure 2.6: Difference between CReSIS and ASTER DEM elevations.

To investigate the relationship in differences between DEM and Radar surface

elevations, the spatial pattern of differences was plotted (Fig. 2.6). The figure shows

that as you move downstream of the grounding line, there is a decreasing trend (red

to green) in elevation differences. This decreasing trend continues until a northing

of approximately 54 km, after which point the differences become more consistent

before beginning to increase again near the ice front.
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To be able to observe the change in trend more easily, the differences were re-

plotted with the colour scale readjusted to focus on the shallower elevations near the

ice front (Fig. 2.7). This figure shows that north of 54 km near to the margins, the

differences become relatively consistent at approximately 8 m, whilst in the centre

of the ice shelf the differences increase again to the order of 15 m.

Figure 2.7: Difference between CReSIS and ASTER DEM elevations with a focused
colour scale to show increasing pattern at ice front. Dashed red-line indicates 54 km
North.

This change in the pattern of differences is most likely caused by the dynamic

nature of an ice front. Having a shallow draft, the ice front it susceptible to both

tidal flexing and calving, meaning that the ice shelf could have different elevations

between two measurements collected at different times. This is supported by the

area of ice shelf with an elevation of 0 m near to the ice front (Fig. 2.5). Further

upstream from the ice front where the ice shelf is thicker, tidal flexing is of a smaller

amplitude, and the risk of calving is significantly lower, therefore resulting in more

reliable elevation measurements.

Therefore, due to the dynamic nature of the ice front, and the potential incon-
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sistencies between measurements, only elevations southwards of 54 km north were

included in the calibration. The calibration took the form of a linear fit through

the data, with a gradient of 1.1922 and an intercept of 23.9133 m. The error in the

calibration was calculated using the method of Root Mean Square Error and was

calculated as 6.61 (Fig. 2.8).
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Figure 2.8: Relationship between ASTER surface elevations and radar surface elevations
south of 54 km North (red line). Black dashed line represents a one to one relationship.

Figure 2.9 shows the elevation map of the ice shelf after it has been calibrated

with the airborne radar data. The data near the ice front are still included in this

figure and are discussed when creating the realistic model domain in Section 2.4.2

after the DEM has been converted to ice draft.
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Figure 2.9: Calibrated ASTER DEM.

2.3 Corrected Ice Draft Map

To convert the DEM into a map of the draft of Petermann Glacier’s ice shelf, the

assumption of hydrostatic equilibrium was made. This means that the ice is assumed

to be floating and not supported by either the grounded portion of the glacier or

the vertical cliffs of the fjord walls. This assumption is valid for the majority of

the ice shelf; however, in areas of small scale gradients in ice thickness, ‘bridging

stresses’ will prevent the ice from floating in equilibrium. However within a distance

of several ice thicknesses from the grounding line, the assumption is typically not

valid. This is due to a number of factors including ice rheology, dynamics and bedrock

topography (Griggs and Bamber , 2011). Although the assumption is not valid close

to the grounding line, confidence is gained in the resultant ice draft map due to the

continuation of ice shelf features upstream from the grounding line, into a portion

of the ice shelf where the assumption of hydrostatic equilibrium is valid.
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Using the assumption of hydrostatic equilibrium, the draft of the ice shelf can be

calculated (depth of submerged ice) using Archimedes’ principle, which states that

the mass of water displaced by the ice is equal to the mass of the ice displacing it.

As ice is less dense then seawater, we know that the volume of water displaced is less

than the volume of ice doing the displacement, resulting in floating ice. Figure 2.10

shows a schematic of floating ice and defines the dimensions used to calculate ice

draft (Eqns. 2.6 to 2.8).

Figure 2.10: Schematic showing ice in hydrostatic balance. H is height of ice column, S
is surface elevation, D is ice draft ρw is the density of water and ρi is the density of ice.

Dρw = Hρi (2.6)

and

H = D + S, (2.7)

⇒

D = S

(
ρi

ρw − ρi

)
. (2.8)

In converting ice surface elevations to ice draft the values of 1028 kg/m for ρw

and 918 kg/m for ρi were used. Figure 2.11 shows the corrected ice draft map for



2.4 Model Domain 41

Petermann Glacier’s ice shelf. The prominent basal channels are clearly seen evolving

near the grounding line, before widening and reducing in amplitude.
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Figure 2.11: Ice draft map of Petermann Glacier’s ice shelf assuming it is floating in
hydrostatic equilibrium.

2.4 Model Domain

2.4.1 Idealised Representation

The MITgcm is used to model the circulation in the ocean cavity beneath an idealised

version of Petermann Glacier with ice shelf topography based on the final ice draft

map (Fig 2.11). The model is a north-south orientated rectangle, 100 km long,

20 km wide and 900 m deep, with a horizontal resolution of 250 m and a vertical

resolution of 10 m. Free-slip walls on the southern, eastern and western edges of the

domain represent the glacier’s grounding line and the fjord walls respectively. Free

slip boundary conditions were used as, given the model horizontal resolution, it was
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not expected to be able to resolve the boundary layer at the edge of the domain.

The ice shelf extends 70 km from the southern boundary, spans the width of the

domain, and thins from a draft of 600 m at the grounding line to 60 m at the ice

front,roughly in accordance with observational data from Petermann Fjord (Rignot

and Steffen, 2008) (Fig. 2.12). Channels which run north-south and are sinusoidal in

the cross-shelf direction are introduced across the entire width of the ice shelf base.

The ice draft under the channel crests thins quadratically at first in the along-

stream direction, before thinning linearly to the ice front (Eqn. (2.9)). This profile

was chosen to approximately reproduce the features seen in the ice draft map and in

Rignot and Steffen (2008). We will run test cases with a variable number of channels,

ranging from no channels to 8 channels.

The along-shelf shape of the channel keels is based on a tangent function (Eqn.

(2.10)). For a case of no basal channels, the ice profile is taken as the across shelf

mean profile of the channel cases, ensuring that the mean ice draft is consistent for

all model runs. The domain size remains fixed for each configuration of channel

number, implying a decrease in channel width and an increase in the steepness of

channel slopes as the number of channels increases. The ice base is given by:

dc =


ay2 + by + c if y ≤ 20km,

−116 + (y × 4
5
) if y > 20km,

(2.9)

dk = ka × arctan(kb × (y − kc))− kd, (2.10)

where dc is the channel crest draft (m), dk is the channel keel draft (m), y is distance

from southern boundary (km), a = -1.21, b = 49.2, c = -600, ka = 229.8041, kb =

0.09, kc = 15 and kd = 375.164. Figure 2.12 shows the ice geometry of the four

channel configuration.
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Figure 2.12: Ice shelf geometry for the idealised four channel configuration.

2.4.2 Realistic Domain

Chapter 6 shows results from modelling the circulation in the cavity beneath an

ice shelf with realistic Petermann Glacier topography. The domain is a north-south

orientated rectangle, 110 km long and 30 km wide. The bathymetry and ice shelf

draft data are in a north polar stereographic projection, which has been rotated so

that the ice shelf is aligned with the long dimension of the domain.

2.4.2.1 Ice Draft

The ice draft map used in the realistic domain is based upon the pre-calving, cali-

brated draft (Fig 2.11). The ‘rough’ ice topography can lead to sharp gradients when

represented on a cartesian z-grid, as well as the possibility of individual ocean cells

protruding up into the ice base, with the four surrounding cells being ice. This will

not allow for any melting in the model as no flow will be possible in this cell. To
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combat these problems some manipulation to the ice draft map was required.

The data was first interpolated onto a 10 m by 10 m grid to allow for the data

to be easily ‘binned’ onto the lower resolution (250 m by 250 m) model grid. Data

is ‘binned’ onto a coarser grid by taking an average of all the data from the finer

grid that will be represented by one point on the coarser model grid. So in this

case each point on the model domain is an average of 25 by 25 data points of the

interpolated data. The interpolation was necessary so that the resolution of the

model grid could be altered easily if needed. Once the data was ‘binned’ the ice shelf

topography was still relatively rough, although the finer resolution perturbations had

been removed. To combat the remaining steps in the ice draft map, it was smoothed

using a discretised spline smoothing function with the influence of outlying data

minimised.

Due to the sharp edges and unreliable DEM mosaic tiles near the ice front, the

ice shelf was cropped at 66.75 km north of the grounding line. This left a thickening

of the ice shelf at the ice front which was not thought to be realistic and a relic

of unreliable DEM tiles. To remove this thickening, the ice draft at 51.5 km was

simply extended to the ice front. This prevented ice shelf thickening, however it also

extended the channels present at this point to the ice front.

Channels are not believed to extend to the ice front at Petermann Glacier, how-

ever in extending this draft profile to the ice front, the potential for pooling of

meltwater behind thicker ice in the model, which could prevent realistic model re-

sults, is prevented. The extension of channels to the ice front is not expected to have

a significant effect on basal melting, water mass transformation or flow patterns as

it is shallow and not in contact with the deeper ‘warm’ water. Figure 2.13 shows the

final realistic ice shelf topography.



2.4 Model Domain 45

Figure 2.13: Ice shelf topography for the realistic Petermann Glacier domain.

2.4.2.2 Bathymetry

Due to its remote location and ice shelf covering a large portion of the fjord, detailed

measurements of the fjord bathymetry are limited. The International Bathymetric

Chart of the Arctic Ocean (IBCAO) (Jakobsson et al., 2012) has an accurate coastline

of the fjord mouth and Hall Basin, however its coverage of the fjord’s bathymetry

is limited. Therefore the IBCAO data set was used to create the coastline only and

depth data from within the fjord was not incorporated.

Bathymetry data was collected during three research cruises to the area. Two

of these cruises were conducted before the calving events of 2010 and 2012 aboard

the USCGC Healy in 2003 and the CCGS Henry Larsen in 2009. These data were

used by Johnson et al. (2011) in producing their bathymetry map of Hall Basin and

the mouth of Petermann Fjord. The third research cruise aboard the CCGS Henry
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Larsen in 2012 was after these calving events, allowing the vessel to enter further

into the fjord. This research cruise provides bathymetry data for underneath the

pre-calving ice shelf used in the realistic domain.

These data show the presence of a shallow sill as noted by Johnson et al. (2011)

with a deep basin inshore of the sill. Further to Johnson et al. (2011) the data show

that the basin is on the north-eastern side of the fjord, whilst there is a shelf at a

shallower depth on the south-western side. We do not know the extent to which the

deep basin protrudes underneath the ice shelf, however we do know the thickness

of the ice at the grounding line, from the DEM, and the bedrock follows the profile

of the ice draft at this location. There is also an indication of a shelf in the south-

western side in the grounding line depths, however the contrast with the depths on

the north-eastern side of the fjord is less extreme.

Although the bathymetry in the fjord mouth and at the grounding line is known,

it is not known how the bathymetry is behaving underneath the ice shelf. Therefore

I combined the data in three different ways to investigate the effect of bathymetry

on the circulation and ice-ocean interactions with the fjord.

To allow the construction of these different bathymetries, bathymetry data was

first interpolated onto a 10 m grid before being ‘binned’, using the same method a

for the ice shelf topography, onto the model grid. The data was then interpolated

between the data sets to create the following three bathymetry scenarios.

1. The deep basin shallows quickly to the grounding line depth and then remains

at this depth for majority of the fjord.

2. Bathymetry shallows linearly between the cruise data and grounding line.

3. The deep basin protrudes close to the grounding line, at which point the

bathymetry shallows steeply to the grounding line depth.

To create the first scenario, the grounding line profile was added close to the cruise
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data before interpolation took place, the second scenario was created by linearly

interpolating the cruise and grounding line data, whilst the third scenario was created

by adding an across fjord profile which bisected the deep basin, close to the grounding

line before interpolating. All three of these scenarios were smoothed using the same

technique as used for the ice shelf topography. After smoothing, bedrock was removed

wherever necessary to ensure that there was at least 10 m of ocean underneath the

whole ice shelf. 10 m was chosen as this is the vertical resolution of the model and the

distance which ice-ocean interaction processes occur over (See Chapter 3). Figure

2.14 shows the three different bathymetry scenarios.
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Figure 2.14: Realistic bathymetry scenarios with a) small basin, b) linear shallowing and
c) large basin.

It should be noted that of the three scenarios, the linearly sloping bathymetry

looks the most geophysically realistic. However even this scenario has some poten-
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tially unrealistic features. It is possible that there are undulations on the seabed

with the potential for across fjord ridges or further basins. However as the geology

underneath the ice shelf is unknown, these scenarios were chosen by interpolating

known data without the addition of other potential features.



Chapter 3

Modelling Ice-Ocean Interaction

3.1 Dominant momentum balance

To be able to understand the flow of a layer of meltwater beneath an ice shelf, an un-

derstanding of its momentum balance is required. To do this we consider the depth

integrated Boussinesq Navier-Stokes equations of Jungclaus and Backhaus (1994),

as applied by Holland and Feltham (2006). Figure 3.1 shows a layer of meltwa-

ter beneath an ice shelf with the relevant coordinates used in the depth integrated

equations 3.1 and 3.2.
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where D is the meltwater layer depth, U is depth integrated u-velocity, V is depth

integrated v-velocity, A is the depth of the meltwater layer base, g′ is the reduced

gravity, g is the gravitational constant, cd is the drag coefficient between the meltwa-

ter layer and base of the ice shelf, ρa is the plume density, ρo is a reference density,

Ah is the eddy viscosity for momentum and f is the coriolis parameter.

Figure 3.1: Schematic of a layer of meltwater (ISW) between a floating ice shelf and
ambient seawater. Relevant processes (melting, freezing and entrainment) along with co-
ordinates used in equations 3.1 and 3.2 are shown (Source: Holland and Feltham (2006)).

A scaling analysis was performed to find the relative importance of each term

in equations (3.1) and (3.2).The following values were used in the scale analysis;

t = 1.5552×10 8 s, D =15 m, U/V = 0.5 m/s, δx = 2500 m, δA = 300 m, g′ =

2.8628×10 −2 m/s 2, cd = 1.5×10 −3, f = 1.4301×10 −4 s −1, Ah = 15 m 2s −1, g =

9.81m/s 2, ρo = 1028 kg m −3 and δρa
δx

=1×10 −4 kg m −4. These values represent either

model parameters, model geometry, or scales representative of scales representative

of model runs.

These values gave the following scales for the terms in order; 4.82×10 −8, 1.50×10 −3,

1.50×10 −3, 1.80×10 −5, 1.80×10 −5, 1.07×10 −4, 1.43×10 −3, 5.30×10 −4 and 1.07×10 −3.

The buoyancy term is dependent on the slope of the ice shelf, however a sensitivity

analysis of basal slope found the buoyancy term to be important for basal gradients

as low as 20% of the value used in this scaling analysis. The effect of the value of the

viscosity parameter was investigated and found to need a 70 fold increase before it
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affected the scaling analysis. Reducing equations (3.1) and (3.2) to dominant terms

(scales of the order ×10 −3) results in:

δ(DUU)

δx
+
δ(DV U)

δx
= g′D

δA

δx
+DfV, (3.3)

δ(DV V )

δy
+
δ(DUV )

δy
= g′D

δA

δy
−DfU, (3.4)

Whether the buoyancy term (3rd term) is balanced by the inertial (1st and 2nd

terms) or rotational (4th term) terms is dependent on their relative sizes. If the

inertial term is much bigger than the rotation term then the balance is between

buoyancy and inertia.

δ(DUU)

δx
+
δ(DV U)

δx
= g′D

δA

δx
, (3.5)

δ(DV V )

δy
+
δ(DUV )

δy
= g′D

δA

δy
, (3.6)

If the rotational term is much larger than the inertial term then the balance is

geostrophic between buoyancy and rotation.

g′D
δA

δx
= −DfV, (3.7)

g′D
δA

δy
= DfU, (3.8)

If the two terms are of the same relative importance then the balance remains that

in equations (3.3) and (3.4). The conditions that define which balance is involved

can be found by considering the ratio of scales between the inertial and rotational
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terms. Inertial terms dominate rotational terms when:

D∗U2
∗

∆x

D∗U∗f
� 1, (3.9)

or

∆x� U∗
f
, (3.10)

where D∗ is the meltwater layer depth scale, U∗ is the velocity scale and ∆x is

a horizontal length scale. If the horizontal length scale is much smaller than U∗
f

then the flow will be inertial, if they are approximately even then both inertial and

rotational terms are important, whilst if the horizontal length scale is much larger

than U∗
f

then the flow will be geostrophic. This length scale is different from the

traditional Rossby radius.

LR =
(g′D)

1
2

|f |
(3.11)

The two scale are equal when the plume is ‘critical’, that is the meltwater layer

travels at its gravity-wave speed (U∗ = (g′D)
1
2 ).

3.2 Ice-ocean thermodynamics

Both melting and freezing at the base of an ice shelf are affected by, and impact on,

the sub-ice shelf circulation and the resultant modification of water masses (Hellmer

and Olbers , 1989). The fluxes of both heat and salt across the ice-ocean boundary

layer are an important driver in the sub-cavity circulation, as described in section

1.3.1. To be able to predict and model these interactions at the base of an ice shelf

we need to be able to describe these fluxes and their impacts mathematically.

Figure 3.2, redrawn from Holland and Jenkins (1999), shows a schematic rep-

resentation of the a) heat and b) salt fluxes at the base of an ice shelf. The total

oceanic heat flux towards the ice-ocean interface (QT
M) is balanced by the latent heat
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Figure 3.2: Schematic of a) heat and b) salt balance at the base of an ice shelf (Redrawn
from: Holland and Jenkins (1999)).

consumed during melting or released during freezing (QT
latent) and the molecular heat

conduction through the ice (QT
I ):

QT
M = QT

latent +QT
I , (3.12)
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The individual terms can be expressed as:

QT
M = ρOcOγT (TB − TM) (3.13)

QT
latent = mρIL (3.14)

QT
I = ρIcIκI

TS − TB
HI

(3.15)

where m is the basal melt rate; co = 3994 Jkg−1 ◦C−1 and cI = 2000 Jkg−1 ◦C−1 are

the specific heat capacity of water and ice respectively; L = 3.34× 105 Jkg−1 is the

latent heat of ice fusion; ρO is the density of the boundary layer; ρI = 917 kgm−3

is the density of the ice shelf; κI = 1.541×10 −6 m2s−1 is the molecular thermal

conductivity of the ice shelf; HI is the ice shelf thickness; TM is the temperature of

the mixed layer; TB is the temperature at the ice-ocean interface; TS =−20 ◦C is the

far-field internal temperature of the ice shelf and γT is the thermal exchange velocity.

Substituting equations (3.13) to (3.15) into equation (3.12) we get:

ρOcOγT (TB − TM) = mρIL+ ρIcIκI

(
TS − TB
HI

)
(3.16)

As there is no diffusive flux of salt into the ice shelf (QS
I ) (Holland and Jenkins ,

1999), it is neglected from the salt balance. The total oceanic salt flux towards the

ice-ocean interface (QS
M) is therefore balanced by the freshwater or salt flux due to

melting or freezing respectively at the interface (QS
brine):

QS
M = QS

brine (3.17)
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The individual terms can be expressed as:

QS
M = ρOγS(SB − SM) (3.18)

QS
brine = mρISB (3.19)

where γS is the haline exchange velocity, SB is the salinity at the ice-ocean interface

and SM is the salinity of the mixed layer. Substituting equations (3.18) and (3.19)

into equation (3.17) we get:

ρOγS(SB − SM) = mρISB (3.20)

The ice-ocean interface is at the in-situ freezing point (TF ) which can be expressed

as a function of the interface salinity and pressure (p).

TF = aSB + b+ cp, (3.21)

where a = −0.0575 ◦Cpsu−1 , b = 0.0901 ◦C and c = −7.61× 10−4 ◦CPa−1.

Equations (3.16), (3.20) and (3.21) can be solved for SB and hence the melt rate,

m, in terms of TS, TM and SM .

There are several different approaches which have been used to mathematically

describe the thermal and haline exchange velocities γT/S. The simplest of these is to

choose a constant value for each exchange velocity, which is an approach followed by

Hellmer and Olbers (1989). However the exchange of both heat and salt across the

boundary layer is due to the turbulence within the layer, therefore it is more realistic

to make the exchange velocities functions of the friction velocity u∗:

u2
∗ = cd(u

2
m + v2

m), (3.22)



56 CHAPTER 3. Modelling Ice-Ocean Interaction

where cd = 1.5 × 10−3 is a drag coefficient, and um and vm are the mixed layer

velocity components. This approach was initially developed for sea-ice study and was

adapted for ice shelf-ocean interaction by Jenkins (1991). The exchange velocities

were parameterised as:

γT =
u∗

2.12ln (u∗h/ν) + 12.5Pr2/3 − 9
, (3.23)

γS =
u∗

2.12ln (u∗h/ν) + 12.5Sc2/3 − 9
, (3.24)

where Pr is the molecular Prandtl number (ratio of viscosity to thermal diffusivity);

Sc is the molecular Schmidt number (ratio of viscosity to haline diffusivity); ν is the

kinematic viscosity of seawater and h is the thickness of the boundary layer.

Holland and Jenkins (1999) went further by considering the buoyancy flux at the

ice-ocean interface and its impact on turbulence within the boundary layer. Melting

of ice at the interface is a stabilizing buoyancy flux and will suppress mixing, whilst

freezing of ocean water is a destabilizing buoyancy flux and will enhance mixing.

Holland and Jenkins (1999) parameterized the exchange velocities after McPhee et al.

(1987) as:

γT,S =
u∗

Γturb + ΓT,Smole
(3.25)

where

Γturb =
1

κ

(
u2
∗ξNη

2
∗

|5fν|

)
+

1

(2ξNη∗)
− 1

κ
(3.26)

and

ΓT,SMole = 12.5(Pr, Sc)2/3 − 6 (3.27)

In these parameterisations Γturb is the turbulent transfer parameter and ΓT,Smole is the

thermal/haline molecular transfer parameter; κ = 0.4 is von Kármán’s constant,

ξN = 0.052 is a stability constant, η∗ = 1 is a stability parameter, f is the Coriolis
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parameter, ν = 1.95× 10−6m2s−1, Pr = 13.8 and Sc = 2432.

3.3 The MITgcm

The Massachusetts Institute of Technology general circulation model (MITgcm) is a

finite-volume, incompressible Navier-Stokes model designed for the study of the at-

mosphere, ocean and climate. It can solve hydrostatic and non-hydrostatic equations

enabling it to simulate fluid phenomena over a wide range of scales, from global cir-

culation to local convection (Marshall et al., 1997a,b). Its adjoint capability enables

it to be applied to parameter and state estimation problems (MITgcm, 2014).

The MITgcm works by enabling different code packages depending on the problem

to be solved. For example the ‘gfd’ package is used when solving fluid dynamics

problems. Further packages can be added to the model depending on the problem

being solved, for instance the ‘shelfice’ package (Section 3.3.2) and ‘icefront’ package

(Section 3.3.3) which model ice-ocean interactions at the base of an ice shelf and

at the vertical ice front of a marine-terminating glacier respectively. The following

sections introduce the packages specific to the problems studied here.

3.3.1 The ocean in MITgcm

Within the following models the ocean is treated as hydrostatic ocean and a linear

free surface is used. The domain is small and therefore it is treated as an f -plane

with a Coriolis parameter of 1.4301×10 −4 s −1, which is equivalent to a latitude of

80°N.

The model uses a horizontal diffusivity of 2.5 m 2s −1, a vertical diffusivity of

1.4×10 −4 m 2s −1, a vertical eddy viscosity of 2×10 −3 m 2s −1, a horizontal eddy

viscosity of 15 m 2s −1, and a horizontal biharmonic viscosity of 2.5 m 4s −1. A third-

order flux-limited advection scheme is used. These values are scaled from those
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used by Losch (2008) and tuned so that the four channel idealised case provides

a relatively consistent mean met rate compared to the observations of Rignot and

Steffen (2008). These values assume that mixing processed are consistent throughout

the whole water column, which does not take into account different levels of mixing

within the stratified layer and deeper ambient water. Mixing closure schemes, such

as Mellor-Yamada, attempt to model the turbulent fluxes in the model equations.

These schemes can be computationally expensive and were therefore not included

within the model.

For the idealised model domain, the models were spun up with a 60-second

timestep until the maximum strength of barotropic circulation was steady, after five

years. Five years was chosen as it allowed all of the different idealised geometries

to reach a steady state needed for comparison of simulations. The realistic model

domain was spun up with a 6-second timestep until steady, using the same criteria,

after a 12 month period. Unless stated otherwise all results are presented as monthly

averages of the final month.

3.3.2 Representation of ice shelves in MITgcm

The MITgcm ‘shelfice’ package (Losch, 2008) models processes in the cavity beneath

an ice shelf and at the interface between the ice shelf base and the ocean. The ice shelf

impacts the ice shelf cavity in two ways, dynamically through altering the pressure

in the water column beneath the ice shelf, and thermodynamically via freezing and

melting at the ice-ocean interface.

From Losch (2008), the total pressure ptot in the ocean can be divided into the

pressure at the top of the water column ptop, the hydrostatic pressure and the non-

hydrostatic pressure contribution pNH :

ptot = ptop +

∫ η−h

z

gρdz + pNH , (3.28)
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where g is gravitational acceleration, ρ is the density of the water, η is the dynamic

sea surface height and z is the vertical coordinate. z is positive upwards, meaning

that in the following equations it takes negative values. For the open ocean, ptop is

the atmospheric pressure pa, and h is zero. Underneath an ice shelf, which is assumed

to be floating in isostatic equilibrium, ptop is the sum of the atmospheric pressure

and the weight of the ice shelf. It is this weight that is provided to the model as a

boundary condition at the top of the water column.

The weight is computed by integrating a density profile ρ∗, that is constant in

time and corresponds to the seawater replaced by the ice shelf, from z = 0 to a

“reference” ice shelf draft at z = −h:

ptop = pa +

∫ 0

−h
gρ∗dz. (3.29)

Beneath the ice shelf, η is the deviation from the “reference” ice shelf draft h. During

the model integration, η adjusts such that isostatic equilibrium is maintained for

sufficiently slow and large-scale motions.

In the MITgcm, the total pressure anomaly p′tot, which is used for pressure gradi-

ent calculations, can be found by substituting a depth-dependent contribution gρ0z

with a constant reference density ρ0 into ptot. Equation (3.28) then becomes:

ptot = ptop − gρ0(z + h) + gρ0η +

∫ η−h

z

g(ρ− ρ0)dz + pNH , (3.30)

which, after rearranging becomes:

p′tot = p′top + gρ0η +

∫ η−h

z

g(ρ− ρ0)dz + pNH , (3.31)

where p′tot = ptot + gρ0z and p′top = ptop − gρ0h. The non-hydrostatic pressure

contribution pNH is neglected in the following.
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The ice shelf contribution to ptop is computed by integrating equation 3.29 from

z = 0 to the bottom of the last fully dry cell within the ice shelf:

ptop = g

n−1∑
k′=1

ρ∗k′∆zk′ + pa, (3.32)

where k′ is the layer index, n is the vertical index of the first “wet” cell and ∆zk′

is the thickness of the k′th layer. The pressure anomaly for evaluating the pressure

gradient is calculated in the centre of the “wet” cell k as:

p′k = p′top + gρ0η + g
k∑

k′=n

(
(ρk′ − ρ0)∆zk′

1 +H(k′ − k)

2

)
, (3.33)

where H(k′ − k) = 1 for k′<k and 0 otherwise.

One of the severe limitations of z coordinates is the ‘staircase’ representation of

complex geometry. One way to overcome this limitation is to increase the vertical

resolution, however this brings with it an increase in computational cost. Another

method of addressing this issue is by implementing the partial cell method. Partial

cells are those which have a portion of the cell which is “dry” and a portion that is

“wet”. This method allows for sea bed topography and ice shelf topography to be

approximated more accurately than with full cells and leads to a generally smoother

solution (Adcroft et al., 1997). A minimum size of partial cell (hFacMin) can be

defined to avoid tiny volumes. Here a value of 0.05 is used for hFacMin, meaning

that a wet cell will not be less than 5% ocean, which is equivalent to 50 cm at the 10

m vertical resolution used. For topography which lies between a fully “dry” cell and

a cell with a “wet” portion less than hFacMin, then the fraction of the cell which is

“wet” is rounded to either 0 or the hFacMin value.

The ‘shelfice’ package implements ice shelf basal melting using the thermody-

namic equations from section 3.2. The calculations depend upon the ocean prop-

erties beneath the ice, for which the simple method of Losch (2008) is used, which
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takes the mean temperature and salinity from all cells within a distance dz from the

ice base, where dz is a fixed vertical lengthscale (here dz = 10 m). This distance

spans both the partial cell and a portion of the full cell below it. We also use the

mean velocity components (um and vm) over a distance of dz to calculate the fric-

tion velocity u∗. The velocity in the centre of a cell is calculated from v velocity

components at the north and south edges of the cell and u velocity components on

the east and west edges (MITgcm uses a ‘C’ grid), so, over a vertical distance dz,

the calculation of the friction velocity u∗ is dependent on eight um and vm velocity

components in total.

3.3.3 Ice Front Melting

Tidewater glaciers, and ice shelves whose ice front is thick enough to penetrate into

deeper warm waters, experience significant melting on their near-vertical ice fronts.

Such melting may control glacier retreat rates, grounding line position and glacier

flow speeds (Nick et al., 2009). Undercutting of a tidewater glacier’s ice front, caused

by enhanced subaqueous melting, has been found to enhance calving rates by up to

ten times the mean melt rate (O’Leary and Christoffersen, 2013). It is reasonable

to hypothesize that a similar mechanism could occur at the ice front of an ice shelf,

meaning that the inclusion of ice front melting is important when assessing the mass

balance of an ice shelf.

The ‘shelfice’ package (section 3.3.2) calculates ice-ocean interactions on the hor-

izontal base of an ice shelf only and not on the vertical face of an ice shelf. This

latter feature was introduced in the ‘icefront’ package by Xu et al. (2012), using an

equivalent three-equation formula to that used below floating ice shelves (e.g. Hol-

land et al. (2008b); Losch (2008)). The three equations used in the ‘icefront’ package
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are:

TB = aSB + b+ cp, (3.34)

cOρOγT ′ |w|(T − TB) = m[L+ cI(TS − TB)], (3.35)

ρOγS′ |w|(S − SB) = mSB, (3.36)

where w is the vertical velocity next to the ice face and γ(T ′/S′) are parameterisations

of the heat and salinity transfer coefficients. As melting and freezing on a vertical ice

face do not have the same stabilizing or destabilizing effect on the buoyant flow as

on a near horizontal ice shelf base, it would not be sensible to use the same transfer

parameters in Eqn. 3.25. Therefore constant values of c
1/2
d Γ(T/S) from Jenkins et al.

(2010b) are used. Equations (3.34) to (3.36) are solved at the vertical ice face to

obtain melt rates.

3.3.4 Boundary conditions

There are three different possibilities for the vertical boundaries of a domain in

MITgcm. They can be set as a wall, a restoring boundary or an open boundary, all

three of which are used at different times in the following modelling studies.

The wall boundary condition is used in all of the following modelling studies to

represent the side walls of the fjord. When a boundary is set as a wall, there is

no flow or diffusion of tracers across the boundary. The modelling studies contained

within this thesis all use free slip walls. This is because we expect the boundary layer

to be much smaller than the 250 m horizontal resolution and would therefore not be

resolved by a no-slip condition. The free slip boundary condition for boundaries in

the x direction is δu
δy

= 0 and for boundaries in the y direction δv
δx

= 0.
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Restoring boundary conditions are used as a ‘sponge’ layer with a northern wall

in the majority of the following idealistic domain studies. They are used to restore

salinity and potential temperature to prescribed profiles and to prevent flow from

leaving the domain. In all studies involving restoring boundary conditions, salinity

and potential temperature are restored over a 24-hour timescale. Restoring bound-

aries maintain a heat flux into the domain as the properties of the water flowing

southwards after contact with the northern boundary have been restored to the pre-

scribed profiles. This maintaining of heat flux means that a flow into the domain

does not need to be prescribed on the northern boundary.

Open boundary conditions are used in the realistic domain for the open ocean

boundaries on the northern boundary, and the northern section of the eastern and

western boundaries. Open boundaries allow water to flow into and out of the domain

according to the model calculations. Water flowing into the domain has properties

set to a predefined profile, with values depending on the depth of the inflow. Water

flowing out of the domain maintains its properties defined by the model. The open

boundary conditions balance the flow in and out of the domain to ensure that the

volume of water within the domain is conserved.

In all of the modelling studies the sea bed has a prescribed no-slip setting; u =

v = 0 at z = −H, where H is the local depth of the domain. This no-slip setting

is implemented as the vertical resolution is of the order of the expected bottom

boundary layer and therefore becomes resolvable.





Chapter 4

Impact of Basal Channels in an

Idealised Domain

Basal channels have been shown to alter the circulation of melt water in a sub-ice

shelf cavity, directing the melt water out of the cavity within the channels (Payne

et al., 2007; Mankoff et al., 2012), leading Payne et al. (2007) to suggest that this

would lead to enhanced melting within the channel crest, causing a deepening of

the channel downstream. Dutrieux et al. (2013), however, showed that the channels

were initially carved via ocean melting, before diminishing downstream as the channel

keels were preferentially melted.

The channels’ impact on basal melting was investigated by Gladish et al. (2012)

who created a coupled ice shelf-ocean plume model. They found that basal channels

actually increased the stability of ice shelves by preventing the development of fo-

cussed high melt rates which melted completely through the ice shelf in the absence

of channels. However, the reduced ocean physics of this simple model precluded a

study of the physical mechanism behind this sensitivity. Here I use the MITgcm to

investigate how the channels impact the channeling of the meltwater, the location

and strength of basal melting and their impact on ice shelf stability.

65



66 CHAPTER 4. Impact of Basal Channels in an Idealised Domain

4.1 Model specifics

To investigate the impact of basal channels, the MITgcm, as described in Chapter

3, was used with restoring boundary conditions on the northern boundary. The

initial conditions and restoring profiles are detailed below. The ‘icefront’ package

was turned off for models run during this chapter, meaning that melting on the

vertical face of the ice front was not modelled.

Nine differing versions of the idealised ice shelf geometry, discussed in Section

2.4.1, with the number of channels varying from 0 to 8, are included. As the channels

sinusoidally span the entire width of the ice shelf, as the number of channels increases,

the channel width decreases and the channel slope gradient increases. This means

that we have a spectrum of ice shelf geometries from a low number of wide, shallowly

sloping channels to a higher number of steeper, narrower channels. The no-channel

case is a special case where the draft is taken as the across-shelf mean channel and

keel profile to ensure the mean draft of all nine geometries remains constant. A

Cartesian grid with a resolution of 250 m in the horizontal and 10 m in the vertical

was implemented, and partial cells with a minimum height of 0.5 m were used to

better represent the ice shelf base. The domain is south to north orientated with

the ice shelf extending into the domain from the southern boundary. All model runs

were spun up for a total of 5 years with a time-step of 60s.

In 2009, Johnson et al. (2011) conducted a CTD section across Petermann Fjord,

between the ice front and fjord-mouth sill, and found a cold, fresh water mass over-

laying a warmer, saltier layer of modified Atlantic Water. The temperature and

salinity profiles used for initial conditions and boundary restoring within the model

were based on this observational data. In the top 100 m of the water column the tem-

perature profile increases linearly with depth from −1.7 ◦C at the surface to 0.3 ◦C,

and salinity increases linearly from 30 to 34.8. The sharp inflection in the profiles

represents the sharp pycnocline seen by Johnson et al. (2011). The water column is
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homogenous below 100 m (Fig. 4.1).
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Figure 4.1: a) Salinity and b) potential temperature profiles used for model initialisation
and restoring on the northern boundary for all 9 scenarios.

4.2 Results

4.2.1 Oceanography

Within the fjord there is a geostrophic circulation bringing warm modified Atlantic

Water into the cavity beneath the ice shelf along the western boundary of the domain,

whilst a return flow transports water out of the cavity along the eastern boundary

(Fig. 4.2). The warm water melts the ice base, introducing a source of freshwater

and hence buoyancy. This buoyant meltwater forms a cooler plume rising against

the base of the ice shelf (Fig. 4.3), introducing an overturning element to the cavity

circulation. Whilst this water is warmer than the localised freezing point, it will

continue to melt the ice base, further increasing the buoyancy of the plume.
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Figure 4.2: Barotropic stream function (contours) overlying ice draft (colored) for a)
0-channel, b) 2-channel, c) 4-channel and d) 8-channel cases. The coloured dots denote
the location of the corresponding profiles used in Figures 4.4 and 4.5.

Figure 4.2 shows the barotropic stream function (contours) beneath ice shelves

with 0, 2, 4 and 8 channels. The color represents the ice draft. The barotropic stream

function beneath an ice shelf with no basal channels (Fig. 4.2a) shows a strong

cyclonic circulation within the domain, with a fast flow out of the cavity against

the eastern wall (Coriolis favoured), as found previously (e.g. Losch (2008)). The

flow returning under the ice shelf on the western boundary brings warm fjord water

towards the ice shelf and diverts across the ice shelf to feed this jet, approximately 40

km north of the grounding line. As channels are introduced to the base of the ice shelf
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(Fig. 4.2b - d) a number of changes occur. The asymmetric nature of the stream

function and the strength of the barotropic circulation decrease as the number of

channels increases. This weakening occurs in conjunction with a decrease in ice-shelf

basal melting (Section 4.2.2), which reduces the buoyancy forcing on the circulation.

The weakening reduces the supply of heat to the cavity and ice base, in turn reducing

the level of basal melting and hence further reducing the buoyancy forcing.

Figures 4.2c and 4.2d show that when there are more than four basal channels, a

separate anticyclonic circulation is spun up in the open ocean section at the mouth

of the fjord. As the water column exits the ice shelf cavity on the eastern boundary,

there is a step change in water column thickness, due to the transit past the ice

front. This leads to a stretching of the water column which, the principle of the

conservation of potential vorticity dictates, will result in the water column turning

westward after passing the ice front. Viscosity causes water to the north of the exiting

flow to also have a westward flow, and the conservation of mass dictates this must

cause a southward flow on the northern edge of the eastern boundary, hence setting

up the anticyclonic circulation seen. As the step change in water column thickness

is small (60 m), this only occurs for weak flows out of the cavity, i.e. cases with a

larger number of channels. It should be noted that this fjord mouth circulation may

not be realistic since this is a closed domain, unlike Petermann Fjord which opens

into Hall Basin. This will be investigated in Chapter 6.

The path of the buoyant meltwater layer formed when the warm modified Atlantic

water melts the ice is apparent from the north-south sections of temperature and

salinity anomalies (Fig. 4.3). This figure shows the difference between the modelled

temperature and salinity at the end of the model run and their corresponding initial

conditions in the 2-channel case. For both differences blue represents a decrease from

the initial condition whilst red indicates an increase.

The meltwater is cooler and fresher than the initial deep water and flows up
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Figure 4.3: Anomaly profiles for the two channel case a) temperature anomaly along the
keel down the centre of the domain, b) temperature anomaly along the crest of the eastern
channel, c) salinity anomaly along the keel down the centre of the domain and d) salinity
anomaly along the crest of the eastern channel. The profile locations are denoted by yellow
lines in Figure 4.6.

within the channels until it reaches neutral buoyancy at the prescribed pycnocline,

detaches from the ice shelf base, and flows northwards away from the ice shelf.

This occurs approximately 20 km north of the grounding line and bears a striking

resemblance to the observational interpretation of Johnson et al. (2011). This flow is

contained within the channels until the keels become shallower than the pycnocline

depth, approximately 40 km north of the grounding line. The model has smoothed

the potential temperature and salinity depth profiles, from the open ocean section,

when compared with the initial conditions. This results in the positive anomalies

seen at the surface in Figure 4.3 for both potential temperature and salinity.

Figure 4.4 shows the Θ − S diagram for selected water columns from the four-
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channel configuration, 2 km north of the ice front. There are 3 depth profiles, 2

located in the centre of the first and third channels (blue and green respectively

from the western fjord wall) and one 0.5 km from the eastern boundary (red), in the

boundary current flowing out of the ice shelf cavity as described above. The black

profile is the northern boundary restoring profile.
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Figure 4.4: Θ−S diagram for the 4 channel configuration. The solid black line represents
the Gade line with gradient 2.77 ◦C/PSU and the dashed black line represents the freezing
temperature. The blue and green profiles are situated in the middle of the first and third
channel respectively, whilst the red profile is situated 0.5 km from the eastern fjord wall.
The black profile is the northern boundary restoring profile. Contours are density contours
(density -1000 kg/m3) separated by 0.5 kg/m3. The location of the profiles are shown by
the coloured dots in Figure 4.2.

At depths greater than the grounding line, water in the fjord is uniform in all of

the profiles. Between a depth of 100 m and the depth of the grounding line, water in

all profiles fall on a straight line with gradient 2.77 ◦C/PSU, which is in agreement

with glacial ice melted by sea water with a potential temperature of 0.3 ◦C and a

salinity of 34.8 PSU (Eqn. 1.2). Above 100 m in all profiles the gradient shallows

indicating a mixing between waters on the Gade line and cool surface layer waters.

Even though all of the 3 profiles show a meltwater signal up to depths of 100 m,
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the temperature of water in the more eastern profiles is cooler, indicating that there

is a higher meltwater fraction in these waters than in the more western profiles. This

suggests that the majority of meltwater is exiting the ice shelf cavity in the eastern

boundary current as seen in Section 4.2.2.

As the number of channels is reduced (Fig. 4.5 a&b) the profiles on the western

side of the fjord deviate from the Gade line deeper in the water column whilst the

profiles on the eastern side of the fjord deviate at 100 m as in the four channel

configuration. For the 8 channel configuration, (Fig. 4.5c), all of the profiles have

deviated from the Gade line below a similar depth, 110 m. The meltwater signal

seen in configurations with a fewer number of channels is cooler than those with a

greater number of channels, indicating that there is a higher meltwater fraction in

these channels. This is due to the change in melt rates described in Section 4.2.2.
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Figure 4.5: Θ − S space for the a) 0-, b) 2- and c) 8-channel configurations. The solid
black line represents the Gade line with gradient 2.77 ◦C/PSU and the dashed black line
represents the freezing temperature. Contours are density contours (density -1000kg/m3)
separated by 0.5kg/m3. The profiles are taken in the same location as the four channel
configuration and their locations are denoted by the coloured dots in Figure 4.2.

This sensitivity indicates that for a configuration with a small number of chan-

nels, more of the meltwater deflects towards the eastern boundary and exits the

cavity in the boundary current. As the number of channels increases, the meltwater

signal can be seen at shallower depths in profiles moving further west across the
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domain, indicating a change in sub-ice shelf flow. As the number of channels contin-

ues to increase, the meltwater signal deviates from the Gade line at greater depths,

suggesting a reduced buoyancy of the meltwater plume, caused by a reduction in

melt rates.

4.2.2 Basal Melting

When there are no channels in the base of the ice shelf, a strong geostrophically

balanced boundary current is formed in the sub-ice layer, rising along the eastern

boundary and leaning on the right hand wall of the fjord (Fig. 4.6a) [e.g. Holland

et al. (2008b)]. Due to the velocity dependence of melting, the strongest basal melt-

ing is focused underneath the strongest part of the boundary current. The Rossby

deformation radius (LR) of the buoyant meltwater layer can be calculated using

equation 3.10 and the length scales used for reducing equations 3.1 and 3.2. This

gives a Rossby deformation radius of 2.8 km and this is the length scale at which

rotational effects become important. We would expect the width of the geostrophi-

cally balanced boundary current to be in agreement with this, and we can see from

Figure 4.6a that indeed the width is approximately 2.5 to 3 km.

Figure 4.6 shows the monthly averaged sub-ice layer velocities (velocities from the

10 m of the ocean column immediately beneath the ice) overlain on monthly averaged

basal melt rates (m/a) for the final month of each simulation. It can be seen that the

introduction of channels modifies the formation of the boundary current, inducing

a circulation within each channel (Figs. 4.6b and 4.6c). This circulation consists of

a southward flow on the western slope of the channel and a northward flow on the

eastern slope. There is little flow in the channel crests. There is some transfer over

the keels between the channels in an eastward direction, which leads to slightly faster

flows and stronger melting in the more easterly channels.

The strong geostrophically balanced boundary current persists for several hun-
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Figure 4.6: Modelled monthly averaged sub-ice layer velocities for a) 0-, b) 1- and c)
2- channel cases overlain on monthly averaged basal melt rates (m/a). Vectors are shown
every 5 grid points. The yellow lines in panel c indicate the location of the profiles shown
in Figure 4.3, whilst the blue lines show the location of the profiles shown in Figure 4.12.

dred metres beneath the ice shelf. Near the grounding line the impact of the channels

on ocean flow can be felt up to 100m deeper than the channel keels. This depth de-

creases with both an increase in distance downstream of the grounding line, and an

increase in the number of basal channels. As the ice shelf draft shallows to above

the stratification depth (100 m), the meltwater layer detaches from the ice shelf and

there is no channel signature beneath the stratification depth.

Within each channel, melting is strongest in the steepest part of the ice shelf
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near the grounding line, where the channels begin, and on the eastern slope of the

channels. The current is still strongest on the eastern boundary of the domain, but

the maximum flow is decreased, as is the peak melting associated with it. The melt

rate is low near the ice front where the meltwater layer is detached from the ice base

and the flow is not topographically constrained.

The mean melt rate for the whole ice shelf is roughly the same for the 0- and 1-

channel cases, but as more channels are introduced, the mean melt rate decreases

monotonically (Fig. 4.7a). There is a reduction of approximately 40% in melting

between the 1- and 4- channel cases, after which the sensitivity of the mean melt

rate to the number of channels declines, with only a further 8% reduction between

the 4- and 8- channel cases.
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Figure 4.7: (a) Mean melt rate as a function of number of basal channels. (b) derived melt
rate as proportion of 1 channel model case for modelled results (blue) keeping (TB − TM )
constant (red) and keeping u∗ constant (green).
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To a good level of approximation, the melt rate is proportional to the product

of friction velocity, u∗, and thermal driving, (TB − TM), (neglecting heat conduction

in (3.16)) (Holland and Jenkins , 1999; Holland et al., 2008b). To investigate the

relative effects of these quantities, the spatial mean values of both were calculated

for each model run. I then investigated their effect by substituting these values

into (3.16), (3.20), (3.21) and (3.25) - (3.27), and calculating the domain averaged

melt rate. We then investigate the effect of u∗ in the cases with different channels

by keeping (TB − TM) constant at the one-channel modelled mean, and likewise we

investigate (TB − TM) by keeping u∗ constant at the one-channel modelled mean.

Figure 4.7b shows modelled and derived melt rates as a percentage of the modelled

1-channel case. The blue dots represent the modelled mean melt rates as a percentage

of the 1-channel modelled mean melt rate. The green dots represent the derived mean

melt rates when varying only the mean (TB−TM) and the red dots represent derived

mean melt rates when varying only the mean u∗. The melt rate estimates when

varying (TB − TM) are basically constant, with only a slight increase, as the number

of channels increases, in contrast to the modelled melt rates. The slight increase

is caused by the domain mean (TB − TM) increasing with the addition of more

channels due to the decrease in basal melting. Therefore when the friction velocity

is kept constant at the one-channel modelled mean, the increase in thermal forcing

will lead to an increase in derived mean melt rate. Varying u∗ provides melt rate

estimates which are consistent with the modelled melt rates, implying that a change

in friction velocity drives the change in melting as more channels are introduced. An

understanding of the mechanism behind the change in u∗ is therefore necessary to

understand the change in the mean melt rates.

Due to the change in sensitivity between the group of ice shelf geometries with a

small number of wide channels and the group with a large number of narrow channels,

these groups are considered separately.



4.2 Results 77

4.2.3 Wide Channels

To understand the initial strong decrease in u∗, and hence mean basal melt rates

when the number of channels is increased, we consider the difference in sub-ice layer

u∗, |vm| and |um| between the 1- and 2- channel cases (Fig. 4.8). The figures show

the 1-channel field subtracted from the 2-channel field, meaning that a blue color

represents a decrease when going from 1-channel to 2-channel, whilst a yellow or red

color represents an increase.

Figure 4.8: Difference in monthly averaged (a) u∗, (b) |v| and (c) |u| between 1- and
2-channel cases

All three panels show a decrease as the number of channels is increased. In the

areas representing the channel crests in the two channel case, the flow has changed

from a north-south flow to little or no flow, hence the dark blue regions in Figures

4.8a and b. The channel crest on the one channel case has become a keel in the two

channel case so the flow has changed from little or no flow to an across shelf flow,
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represented by the yellow region in Figure 4.8(c).

Comparison of the spatial patterns show that there is a higher correlation between

u∗ and |vm| (0.847) than u∗ and |um| (0.394),when comparing the first 50 km of the

ice shelf, meaning that the majority of the decrease in u∗ can be explained by a

decrease in |vm|. (Note that the final 20 km of the ice shelf was excluded from

the analysis as the channel depth is less than 10 m under this section of ice shelf,

and the ocean surface layer is no longer topographically constrained). Therefore to

understand the decrease in mean melt rate it is necessary to understand the decrease

in |vm|.

Figure 4.9 shows |vm| 20 km downstream of the grounding line for the 1- (blue)

and 2- (red) channel cases. It can be seen that the maximum velocity (excluding the

current leaning on the eastern boundary wall) in both cases is similar. The main

difference between the cases is the inclusion of more ’no flow’ regions; the 1-channel

case has one crest, whilst the 2-channel case has two crests and one keel. These extra

stagnant regions lead to a decrease in mean |vm| and hence u∗.
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Figure 4.9: |v| velocities 20km downstream of the grounding line (1-channel - blue, 2-
channels - red)

The inclusion of these extra ’no flow’ regions persists for changing viscosity and

diffusivity model parameters, however the maximum |vm| varies, as does the point at
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which the sensitivity of mean basal melt rates to the number of channels, the latter

is discussed later in this chapter. Therefore it is believed that the inclusion of further

’no flow’ regions is a physical mechanism, rather than model artifact.

Figures 4.10 and 4.11 show the individual terms in the MITgcm momentum

balance for the 1- and 2- channel cases. Unlike all other variables these are plotted

as an instantaneous ‘snapshot’ to ensure they are balanced quantities. In both cases

the primary balance is between the pressure gradient and Coriolis terms, so the flow

is basically geostrophic. This means that the magnitude of the v velocity component

is governed by the across-shelf pressure gradients. As more channels are introduced

to the ice shelf, the across-shelf gradients in ice draft increase. One might expect

that the across-shelf isopycnal slope, and hence pressure gradients, is proportional to

the ice base slope. This would imply that the speed of the geostrophic north-south

flow on the channel sides would increase as the number of channels is increased,

compensating the addition of ’no flow’ areas as described above. However this is not

the case (Fig. 4.9).

Figure 4.12 shows across-shelf density gradients and isopycnal contours 20 km

downstream of the grounding line for the 1- and 2- channel cases. The largest

density gradients are closest to the channel slopes, in the rising meltwater, whilst in

the middle of the channels the isopycnals are flat. Density gradients are similar in

the 1- and 2- channel cases. It is this consistency in isopycnal gradients, despite a

doubling of ice-shelf draft gradients, that causes the constant maximum flow speed

seen in Figure 4.9.

In summary, for 0 - 4 channels, increasing the number of channels increases the

number of ‘no-flow’ regions, beneath ice keels and crests. The isopycnal gradients

beneath ice slopes do not increase to compensate this effect, so the mean north-

south velocity decreases overall. This reduction in velocity in turn leads to a rapid

reduction in u∗ and hence the overall melt rate. However, Figure 4.7 shows that
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Figure 4.10: Instantaneous momentum terms for 1-channel case. Top row is u-
momentum, bottom row is v-momentum.
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Figure 4.11: Instantaneous momentum terms for 2-channel case. Top row is u-
momentum, bottom row is v-momentum)
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Figure 4.12: Monthly averaged density contours overlaying density gradients for 1- and
2-channel cases, 10 km (top row) and 20 km (bottom row) downstream from the grounding
line.

cases with a larger number of channels have a weaker melting sensitivity, suggesting

that a different mechanism operates.

4.2.4 Narrow Channels

Figure 4.13 shows the sub-ice layer flow pattern and melt rate under ice shelves

with higher numbers of channels. It can be seen that as more basal channels are

added, the sub-ice layer circulation within each channel changes from a two-way

flow located on both channel slopes, to a single northward flow in the centre of the

channels. This represents a change of flow from a geostrophic horizontal circulation to

a vertical overturning circulation within the channel. This can be seen by comparing

the terms in the momentum equation (Figure 4.14) where it can be seen that the

advection and viscosity terms become of the same order as the pressure and rotational
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terms. The flow speed is no longer governed by across-shelf density gradients, and

all of the above arguments break down. The overturning circulation is driven by

mean gradients in the along-shelf direction, which are unaffected, on average, by

the number of channels. This explains the insensitivity to channel number after the

circulation changes from geostrophic to overturning.
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Figure 4.13: Modelled monthly averaged sub-ice layer velocities for 4, 6 and 8 channel
cases overlain on monthly averaged basal melt rates (m/a). Vector are shown every 4 grid
points. Green lines denote location of channel keels.

Insight into the change in circulation can be gained by varying the horizontal and

vertical viscosity values. Figure 4.15 shows the mean melt rates of simulations with

1 to 8 channels for the original prescribed viscosity values along with halved and

doubled viscosities. As the viscosity is increased, the change in melting sensitivity

to channel number occurs when there are fewer basal channels, likewise when the
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Figure 4.14: Instantaneous momentum terms for 8-channel case. Top row is u-
momentum, bottom row is v-momentum.
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viscosity is decreased, the change in melting sensitivity occurs when there are more

basal channels. This shows that, for a given channel width, there is a viscosity

for which the horizontal shear inherent in a geostrophic circulation regime is not

permitted; altering the viscosity changes the point at which the flow changes from

circulating to overturning. Altering diffusivity was not found to have an effect on

the overall pattern and did not change the point at which the mean basal melt rates

started to plateau.
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Figure 4.15: Modelled mean basal melt rates for 1 to 8 channels with original prescribed
viscosity (blue), halved original viscosity (red) and double original viscosity (green).

It is expected that, for channels narrower than twice than the Rossby radius,

the geostrophic circulation will fail, even for low viscosities. However, we find that

viscosity also plays an important role in effecting the change between circulations.

Viscosity can cause the circulation to change at length scales larger that the Rossby

radius by not allowing the shear inherent in the reversing geostrophic regime within

the channel. We are unable to separate the two mechanisms as our maximum pos-

sible resolution prevents us from properly resolving channels that are narrower than

currently considered.
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4.3 Discussion

I have used the MITgcm to assess the impact of ice shelf basal channels on ice

shelf melting and circulation within an ice-shelf cavity. I find that the inclusion of

channels alters the flow of the sub-ice layer beneath the ice shelf, changing the focus

and intensity of the melt. In agreement with the findings of Gladish et al. (2012),

the overall mean melt rate decreases as the number of channels increases. For a

small number of larger channels, this sensitivity is high, but for a greater number of

smaller channels the sensitivity drops.

For larger channels, a geostrophic flow circulates around the channels. As chan-

nels are narrowed, more ”no flow” regions are added beneath crests and keels, where

isopycnals are flat, whilst geostrophic flow on slopes remains the same. This leads

to a decrease in mean mixed layer flow and therefore basal melting.

For narrow channels, this sheared circulation is not viable and is replaced by an

overturning circulation. This is much less sensitive to the channel width due to the

increase in ”no flow” area being smaller, reducing the mean basal melt rate sensitivity

to number of channels. Varying the prescribed viscosity changes the number of

channels permitted before the circulation changes from a geostrophic circulation to

an overturning circulation.

Dutrieux et al. (2013) suggested that basal melt enhances channel features near

the grounding line such that they rapidly reach maximum surface expression before

thinning towards the ice front. This is in agreement with our modelling results

near the grounding line, which suggest strong melting in the steeper section of the

channel, and further downstream where melting promotes a widening and shallowing

of the channels, also in agreement with the channel profiles seen in the ASTER DEM

image.

The presence of basal channels decreases the mechanical stability of an ice shelf

(Rignot and Steffen, 2008; Vaughan et al., 2012). However the addition of channels
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also decreases an ice-shelf’s susceptibility to basal melting for two reasons. Firstly,

the melting is more evenly distributed, moving away from predominantly beneath the

eastern Coriolis-generated boundary current to over more of the ice shelf. Secondly,

the mean melt rate decreases for the reasons outlined above. This stabilising effect

is a possible explanation as to why basal channels are observed in warm-water ice

shelves in Greenland and Antarctica. If the channels stabilise ice shelves, ice shelves

with channels are more likely to persist, and a ‘survivor bias’ makes them more likely

to be observed.

There are of course limitations to the model used in this study. Coupled models

with an evolving ice shelf are required to test the full impact of the physical processes

described here. The profile of the channels is also highly idealised. Nevertheless the

principal conclusions are believed to be robust. The findings of this chapter are

published as Millgate et al. (2013).
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Chapter 5

Perturbations to Idealised Domain

This chapter focuses on the changes to both the ice-ocean interactions beneath Pe-

termann Glacier and the conditions within Petermann Fjord for a set of differing

scenarios. These scenarios include a change in the stratification of the water column,

a seasonal water column signal, warming of the deeper modified Atlantic Water and

the calving of large ice-bergs similar to those seen by Falkner et al. and Johannessen

et al. (2011).

In all of the following investigations, the ice shelf and fjord geometry from the

idealised four channel case in Chapter 4 were used (Fig. 2.12). The potential temper-

ature and salinity profiles from the same case are used for both model initialisation

and restoring on the northern boundary (Fig. 4.1). This forms a base case about

which all of the following investigations are perturbed. All model parameters are

kept consistent with those in Section 4.1 unless otherwise specified. Likewise, all re-

sults shown are monthly averages obtained after the model was spun up to a steady

state over a period of 5 years unless stated otherwise. A spin up period of 5 years,

with a 60 second time step, was chosen for consistency with the results of Chapter

4, to allow for reliable comparison with the chosen base case.

89
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5.1 Impact of a deepening of the stratified layer

5.1.1 Introduction

With the Arctic experiencing lower levels of sea-ice cover (Serreze et al., 2007), it is

possible that Petermann Fjord could spend longer periods of the year ice-free. This

would allow the wind within the fjord to have a larger mixing effect on the surface

stratified layer of the open ocean sections of the fjord.

This enhanced mixing could lead to a deeper, yet more weakly surface stratified

layer, which could impact the circulation beneath the ice shelf and hence the ice-

ocean interactions. Conversely if the winds in the area were to die down or there be

a change in sea-ice cover trend, the surface stratified layer could become shallower

and more strongly stratified.

To investigate the potential changes in ice-ocean interactions and fjord oceanog-

raphy due to a changing of the surface stratified layer, four perturbations around the

base case (stratification depth of 100 m) were run. The stratification depth is de-

fined as the point in the water column above which the water column is stratified and

beneath which the water column is homogenous. In all of the perturbations, the po-

tential temperature and salinity values at the surface and at depth remain constant,

with the depth over which the stratification occurs varied. One perturbation reduced

the stratification depth to 50 m, whilst the remaining 3 perturbations increased the

stratification depth to 250 m in 50 m intervals. The stratification was varied in both

the potential temperature and salinity profiles. Figure 5.1 shows the salinity and

potential temperature profiles for both the initial conditions and restoring on the

northern boundary.
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Figure 5.1: a) Salinity and b) Potential Temperature profiles used as initial conditions
and restoring at the northern boundary for stratification depths of 50 m (dark blue), 100
m (red), 150 m (black), 200 m (green) and 250 m (cyan).

5.1.2 Results

5.1.2.1 Basal Melting

Figure 5.2 shows the monthly average sub-ice layer velocities overlain on monthly

averaged basal melt rates (m/a). A dark red color represents high level of basal

melting whilst white represents no basal melting. It can be seen that decreasing the

stratification depth to 50 m (Fig. 5.2a), shallower than the minimum draft of the

ice shelf (60 m), caused basal melting to extend to the ice front, further downstream

than in the base case (Fig. 5.2b). It can also be seen that as the stratification depth

is increased (Fig. 5.2 c-e) the distance to which basal melting extends downstream

of the grounding line decreases. The pattern of flow within the sub-ice layer is the

same as that described in Section 4.2.2, with flow constrained within the channels.
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Figure 5.2: Modelled monthly averaged sub-ice layer velocities (m/s) for a) 50 m, b) 100
m, c) 150 m, d) 200 m and e) 250 m stratification depths overlain on monthly averaged
basal melt rates (m/a). Vectors are shown every 5 grid points.

The flow is strongest and extends further along the eastern boundary of the

domain in the case where the stratification depth is 50 m. Both the strength and

extent of the boundary flow decreases as the stratification depth is increased. Close

to the grounding line the pattern and magnitude of both basal melting and ocean

surface flow is relatively consistent across all 5 scenarios.

Increasing the stratification depth leads to a decrease of the mean melt rate,

with the sensitivity decreasing as the stratification depth increases (Fig. 5.3a). As

the stratification depth increases, the melt area (area of the ice shelf beneath the

stratification depth) decreases in a non-linear fashion, due to the non-linear geometry

chosen for the ice shelf.
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Figure 5.3: a) Relationship between mean melt rate and stratification depth, b) relation-
ship between melt area and stratification depth, c) relationship between mean melt rate
and melt area.

Figure 5.3c shows a near linear relationship, indicating that the reduction in melt

area is the primary driver behind the reduction in mean melt rate. The stratification

depth was chosen as the cut off for melt area, due to the sharp gradient in potential

temperature at this depth. This leads to a large difference in T − Tb either side of

the pycnocline depth, and therefore a large difference in expected basal melt rates.

5.1.2.2 Fjord Circulation

Within the fjord there is the same geostrophic circulation as seen in Chapter 4, with

warm modified Atlantic Water being brought into the cavity beneath the ice shelf
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along the western boundary of the domain, and a return flow, transporting water

out of the cavity, along the eastern boundary (Fig. 5.4).

Figure 5.4: Barotropic stream function (contours) overlying ice draft (colored) for a) 50
m, b) 100 m, c) 150 m, d) 200m, e) 250 m stratification depth.

It can be seen from Figure 5.4 that the circulation is strongest for the scenario

with a 50 m stratification depth due to the largest levels of basal melting. It can also

be seen that as the stratification depth is increased, the strength of the barotropic

stream function is decreased in tandem with the reduction in buoyancy forcing from

basal melting. As the cyclonic circulation decreases from its maximum strength

in the 50 m scenario, it also decreases in extent, so that the northern edge of the

circulation moves away from the northern boundary.

In its place an anticyclonic circulation forms in the open ocean section of the

fjord as in Section 4.2.1. In the base case, the anticyclonic circulation is about half

as strong as the cyclonic circulation and is only 20 km in size compared to the 50 km
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size of the cyclonic circulation. As the stratification depth increases, the strength

of the anticyclonic circulation decreases. However the cyclonic circulation weakens

at a faster rate and, by a stratification depth of 200 m, the anticyclonic circulation

has become stronger than the cyclonic circulation. The anticyclonic circulation also

becomes larger than the cyclonic circulation and protrudes underneath the ice shelf.

It should be noted that this fjord mouth circulation may not be realistic since this

is a closed domain, unlike Petermann Fjord which opens into Hall Basin. This will

be investigated in Chapter 6.

The overturning circulation due to melting at the ice base introducing a source

of cold, fresh buoyant water, as seen Chapter 4, is also present in these scenarios,

however its structure is slightly altered (Fig. 5.5 and 5.6), see below.

5.1.2.3 Water Properties

The path of the buoyant meltwater layer formed when the warm modified Atlantic

water interacts with, and melts, the ice is apparent from the North-South sections of

salinity and potential temperature anomalies (Fig. 5.5 and 5.6). These figures show

the difference between the modelled salinity and potential temperature profiles at

the end of the model run and their corresponding initial conditions. Negative values

mean that the water is fresher / cooler respectively than the initial water condition.

The meltwater is cooler and fresher than the initial deep water and flows up the

base of the ice shelf, within the channels, until it reaches a level of neutral buoyancy,

where it detaches from the ice shelf base and flows northwards away from the ice

shelf (denoted by the strong negative values in Fig. 5.5 and 5.6). These figures show

that the depth at which the meltwater finds neutral buoyancy, and hence detaches

from the ice base, is dependent on the stratification of the water column. Where the

water column has a deeper stratification layer, the meltwater detaches deeper, and

hence closer to the grounding line (Fig. 5.5d), whilst for a shallower stratification
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Figure 5.5: Salinity anomaly profiles along the central keel for a) 50 m, b) 150 m, c) 200
m, and d) 250 m stratification depth.
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depth, the meltwater detaches from the ice base closer to the surface and therefore

closer to the ice front (Fig. 5.5a). The point at which the meltwater detaches from

the ice base corresponds with the distance to which basal melting extends from the

grounding line.

There is an inherent frictional velocity, u∗, on the base of the ice shelf from the

meltwater flow. This frictional velocity plays an important role in basal melting,

as shown in Chapter 4. By detaching from the ice base, this frictional velocity is

removed, leading to a decrease in basal melt rates. As the detachment occurs deeper

in the water column as the stratification depth increases, the meltwater detaches

from the ice shelf closer to the grounding line, meaning there is a larger portion of

the ice shelf with lower melt rates. This is the main driver for the reduction in basal

melt rates.

5.1.3 Discussion

The surface stratified layer of the ocean column in Petermann Fjord acts as a protec-

tive layer to the base of the ice shelf. The meltwater layer, caused by melting of the

deeper sections of the ice shelf, detaches from the ice base and flows along the pycn-

ocline. Therefore any ice above this depth is insulated from the friction velocity that

is inherent with this flow, and also from the warmer water that this flow entrains.

Holland and Jenkins (1999) and Holland et al. (2008b) showed that to a good level

of approximation (and neglecting heat conduction), that melt rate is proportional to

the product of friction velocity, u∗, and thermal driving from entrained warm water,

(TB − TM), therefore by protecting the ice base from these two factors, little or no

melting of the ice base occurs.

If the stratified layer of Petermann Fjord were to deepen, the area near the ice

front that is shallower than the stratified layer will increase. As ocean flow and

basal melt rates are not dependent on melting downstream, the interactions near the
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grounding line remain constant, resulting in a decrease in both ice shelf mean melt

rate and strength of ocean circulation. As melt rates decrease at a greater depth, it

is possible that the ice shelf could thicken near the ice front, with the potential of

increasing the stability of the ice shelf to calving and lead to an advancement of the

ice front.

If Petermann Fjord were to tend towards a period of time with prolonged ice-free

conditions, assuming oceanic temperature and salinity remain constant, then it is

possible for the ice shelf to begin to thicken due to a reduced level of basal melting

near the ice front, potentially leading to the ice shelf becoming stronger and growing

in length. However this is dependent on the mechanisms which control calving, such

as ice front undercutting.

The assumption of constant oceanic temperatures is likely to be invalid. Ice free

conditions will decrease the albedo, leading to an increase in the absorbtion of solar

energy. This could lead to an increase in surface temperatures, which could be mixed

through the surface stratified layer. This would increase the thermal forcing (T −Tb)

in the surface stratified layer, with the potential to lead to increased melt rates above

the pycnocline, negating the impact of a deepening pycnocline.

However it is more plausible that the stratification will vary on a seasonal basis

with the input of freshwater in the summer, due to seasonal glacier melt, and the

growth of a winter mixed layer at the surface of the water column, affecting the

temperature and salinity profiles. The following section investigates the impacts of

a seasonal signal in fjord temperature and salinity, and how changes in this signal

could impact upon Petermann Glacier and Fjord.
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5.2 Impact of Seasonal Restoring

5.2.1 Introduction

It has been seen in Section 5.1 that the surface stratified layer insulates the ice shelf

from the meltwater layer and hence limits basal melting for the insulated area. There

are several factors which affect the depth and strength of stratification including

freshwater run-off from land melt, sea-ice cover and wind conditions.

During the winter season, Nares Strait experiences full sea-ice cover. During sea

ice formation, brine is rejected into the surface layer, increasing its density, causing

convection within the water column and the formation of a homogenous surface layer

(the surface mixed layer). This layer can be caused by either local sea-ice formation

or can advected into the strait from sea-ice formation in the Arctic. Within Nares

Strait this layer has a base between 100 and 135 m, which, after advection into

Petermann Fjord, allows it to intrude underneath the ice shelf and into the channel

crests (Johnson et al., 2011).

Such an intrusion was seen by Rignot and Steffen (2008) when drilling through the

crest of the most easterly channel approximately 15 km downstream of the grounding

line of Petermann Glacier. Figure 5.7 shows the potential temperature and salinity

profiles of the through ice CTD casts. The surface mixed layer can be seen as the

vertical section of the profiles between depths of approximately 60 and 100 m.

The presence of this layer in the winter means that the profile of the water entering

the fjord from Nares Strait varies on a seasonal basis. Such a seasonal signal can be

implemented in the MITgcm by introducing a surface mixed layer into the restoring

profiles, with the depth of the mixed layer varying sinusoidally throughout the year.

To investigate the effect of such a seasonal signal, three different seasonally-

varying scenarios were investigated, one following observation of Johnson et al.

(2011), one with a deeper surface mixed layer maximum, and one investigating the
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Figure 5.7: Through ice profiles of salinity and potential temperature approximately 15
km downstream of the grounding line. The inset shows the Θ−S diagram. (Source: Rignot
and Steffen (2008)).

impact of an extended winter. In each scenario the depth of the mixed layer varies

sinusoidally, whilst the thickness of the pycnocline beneath remains constant at 100

m. The temperature profile varies by simply moving the surface stratified layer up

and down by the prescribed mixed layer depth. Repeating this for salinity would

produce the counterintuitive result that the deepest winter mixed layer would have

the greatest freshwater content. The salinity profiles are therefore adjusted such that

the total salt content of the water column remains constant throughout the year.

The first seasonally-varying scenario is based upon the maximum surface mixed

layer depth reported by Johnson et al. (2011). The mixed layer depth is set to vary

between a minimum of 0 m in the summer and a maximum of 140 m in the winter.

The salinity profile consists of three sections; the mixed layer with a depth of d and

a salinity sML, the pycnocline which has a depth of 100 m and a slope of (34.8−sML)
100

psu m−1 and finally the deep homogenous layer with a salinity of 34.8 psu (Fig.

5.8). The total salt content was calculated from the salinity restoring profile used in
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Chapter 4 as this is the prescribed profile when the mixed layer depth is 0 m.
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Figure 5.8: Profile used to determine mixed layer depth and salinity for seasonal restoring.

Given the mixed layer depth, the salinity of the surface mixed layer can be found

by balancing the depth integrated salinity of the whole water column, with the depth

integrated salinity for the surface mixed layer, stratified layer and deep modified

Atlantic Water layer.

Using this balance the restoring profiles for the scenario where the surface mixed

layer has a maximum depth of 140 m is shown in Figure 5.9. Due to the sinusoidal

nature by which the mixed layer depths varies with time, the restoring profiles for

August and June are identical, as are the profiles for September and May and so

forth. July (height of summer) and January (the height of winter) are the only

months to have restoring profiles which are distinct from any other month.

The second scenario maintains the same sinusoidal nature and increases the maxi-

mum depth of the surface mixed layer to 200 m, whilst the third scenario encompasses

an extended winter. This was achieved by setting the depth of the mixed layer to

150 m for the three winter months (December, January and February), whilst the
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Figure 5.9: a) Salinity and b) Potential Temperature monthly restoring profiles for the
140 m mixed layer scenario.

remaining 9 months followed the sinusoidal pattern for mixed layer depth.

Each scenario is spun up for 5 years, with the January profiles used for initial

conditions and the first restoring on the northern boundary. Following this the

restoring profiles changed on a monthly basis for the duration of model spin up.

5.2.2 Results

5.2.2.1 Basal Melting and Water Properties

Figure 5.10 shows the mean melt rate and sub-ice layer flow pattern for the months

of July and January, along with the difference between these melt rates. A positive

difference indicates that more melting occurred during July than January. Sub-

ice layer flow and melt rate patterns follow those described in Chapter 4. During

July, when there is no mixed layer, melting extends 40 km downstream from the

grounding line beneath the eastern boundary current. In January, when the surface
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Figure 5.10: Melt rates (m/a) and sub-ice layer flow patterns (m/s) during a) January
and b) July for the 140 m surface mixed layer scenario. c) shows the difference in melt
rates (m/a) between July and January. The 140 m ice draft contour is shown in black.

mixed layer is at its maximum, the melting under the boundary current only extends

approximately 26 km downstream from the grounding line. The difference in melt

rates appear to be just deeper than the 140 m (maximum mixed layer depth) ice

draft contour (Fig. 5.10c). The melt rate difference is greatest just beneath the

maximum mixed layer depth as the mixed layer flows away from the ice base along

the stratified layer, which extends from 140 m to 240 m during the winter.

This change in melt rate patterns can be explained when looking at the salinity

and potential temperature (Fig. 5.11) sections for July and January. The differences

for represent the July - January difference with a positive value meaning that the

water was warmer and saltier in July. In summer (July) a cool and fresh layer is

confined to the surface layer (Figs. 5.11a/d). In winter (January) there is a layer

of cooler and relatively fresh water protruding underneath the ice shelf. This layer

insulates the ice shelf from the meltwater plume in winter, similar to that seen
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January difference.

in Section 5.1. Similar melt differences and changes in potential temperature and

salinity are seen, but not shown, for the 200 m and extended winter scenarios.

The monthly melt rates follow the same pattern throughout the year for each

of the three mixed layer scenarios (Fig. 5.12). For each case the maximum melt

rate is reached during July and the minimum during January, with the melt pattern

following the sinusoidal pattern of the restoring profiles. The 140 m surface mixed

layer scenario has the highest maximum melt, whilst the 200 m scenario has the

lowest maximum melt rate. The three-month extended winter has a more constant

winter (DJF) minimum melt rate than the other two scenarios, however due to the

shape of a sinusoid, the winter melt rates of each scenario have a degree of consistency
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Figure 5.12: Monthly mean melt rates (m/a) for the 140 m (dark blue), 200 m (red) and
extended winter (cyan) scenarios.

across these months. The mean annual melt rate was 3.73 m/a for the 140 m scenario,

3.15 m/a for the 200 m scenario and 3.53 m/a for the extended winter scenario.

5.2.2.2 Fjord Circulation

Figure 5.13: Barotropic stream function (contours) overlying ice draft (colored) for the
140 m mixed layer scenario during a) July and b) January.
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The barotropic flow within the fjord during July and January for the 140 m mixed

layer scenario is shown in Figure 5.13. The cyclonic circulation is strongest during

July with a slightly weaker anticyclonic circulation within the open ocean section of

the fjord. During the winter the cyclonic circulation reduces both in strength and

extent, with a further cyclonic and anticyclonic circulation forming within the fjord.

The reduction in strength of the circulation is caused by the same mechanism as

explained in Chapter 4, i.e. lower melt rates lead to a reduction in buoyancy input

and therefore a reduction in circulation. A similar change in circulations seen in the

140 m scenario is seen in both of the other scenarios. The strength of the circulation

is weakest in the 200 m scenario and strongest in the 140 m scenario. This is due to

the relative levels of basal melting and freshwater flux for each scenario.

5.2.2.3 Sub Ice-Shelf Mixed Layer

Investigation of the potential temperature and salinity profiles beneath the ice shelf

allows for the identification of a mixed layer as seen by Rignot and Steffen (2008).

Figure 5.14 shows these profiles for the 140 m scenario. The profiles are taken from

the centre of the most easterly channel, at a distance of 50 km from the grounding

line. This distance was chosen as the ice thickness is similar to that of the ice at the

drill site of Rignot and Steffen (2008).

It can be seen that although there are the beginnings of the mixed layer in the

potential temperature profiles, especially in the January profile, this is not present

in the salinity profile. However the top of the water column has similar potential

temperature and salinity values as the profile of Rignot and Steffen (2008). This

suggests that perhaps the mixed layer does not extend deep enough into the water

column in the open-ocean forcing. Similar salinity and potential temperature profiles,

taken at the same location, were found for the 200 m mixed layer scenario.

As deepening the mixed layer in the restoring profile on the northern boundary
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Figure 5.14: Seasonal a) salinity and b) potential temperature profiles for the 140 m
scenario, from the centre of the eastern channel 50 km downstream of the grounding line.

did not result in the presence of a mixed layer, this suggests that a longer winter

may be needed. Figure 5.15 shows the salinity and potential temperature profiles,

taken at the same location, for the extended winter scenario. These profiles show the

same features as the previous two scenarios, similar under ice potential temperature

and salinity values, but do not indicate the presence of the winter mixed layer as

observed by Rignot and Steffen (2008).

5.2.3 Discussion

Restoring to a seasonally varying surface mixed layer has had the effect of introducing

an ‘insulating’ layer underneath the ice shelf, similar to that seen in Section 5.1.

As the insulating layer moves up and down with the predefined restoring profile,

less/more of the ice shelf is insulated, resulting in higher/lower levels of mean basal

melting. The insulative layer for the 200 m mixed layer scenario extends deeper into
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Figure 5.15: Seasonal a) salinity and b) potential temperature profiles for the extended
winter scenario, from the centre of the eastern channel 50 km downstream of the grounding
line.

the water column than the 140 m mixed layer scenario. This results in the ice shelf

being insulated to a greater degree from the meltwater plume, leading to lower basal

melt rates.

Even though the prescribed mixed layer depth follows a sinusoidal pattern, the

monthly mean melt rates do not follow this pattern precisely. When comparing the

same mixed layer depths in spring and summer, the monthly mean melt rate are

not the same, with the spring month having a lower mean melt rate. This is due

to the spring month following a month with a deeper, cooler mixed layer, whilst the

autumn month follows a month with a shallower, warmer mixed layer. The lag in

the restoring conditions permeating underneath the ice shelf means that the autumn

month still feels some of the warmer water from the previous restoring, whilst the

spring month still feels some of the cooler water from its previous restoring, leading

to lower melt rate in the spring.
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In the three scenarios investigated here, it was not possible to detect the protrud-

ing mixed layer as seen by Rignot and Steffen (2008) in their through ice CTD casts.

This could be due to the chosen salinity profiles used for restoring which could be

too saline at the surface, have a too shallow surface mixed layer, or do not have a

long enough winter.

It is also possible that the mixed layer detected by Rignot and Steffen (2008) could

be from another source, such as meltwater crossing the grounding line, mixing with

ocean water and rising to the base of the ice shelf, or surface meltwater permeating

through cracks in the ice shelf, as suggested by Johnson et al. (2011). The mixed

layer observed by Rignot and Steffen (2008) could also be a remnant from a year in

which there was a particularly deep, or long lived, surface mixed layer, which has

persisted under the ice shelf.

5.3 Impact of warming subsurface waters

5.3.1 Introduction

Ocean warming has been hypothesized as a cause of glacial destabilisation (Hol-

land et al., 2008a; Christoffersen et al., 2011; Hanna et al., 2009; Murray et al.,

2010; Rignot et al., 2010), and model studies have shown ocean warming to enhance

subaqueous melting (Holland et al., 2008b; Xu et al., 2012). The disintegration of

Jakobshavn Isbræ’s ice shelf, the last remaining ice shelf in Greenland’s low latitudes

(Weidick et al., 2004), has been attributed to the arrival of relatively warm water

originating in the Irminger Sea (Holland et al., 2008a). A similar source of warm

water has been suggested as the cause of glacial acceleration on the eastern coast of

Greenland (Howat et al., 2008; Straneo et al., 2010; Christoffersen et al., 2011).

Rignot et al. (2012) have modelled the spread of warm water around Greenland

and found that warm water can quickly propagate into glaciated fjords and these
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waters are very likely to increase subaqueous melt rates. Rignot et al. (2012) found

that the warming signal is spreading to the northwest sector of Greenland, with a

modelled increase of 0.4 ◦C in temperature of modified Atlantic Water within Peter-

mann Fjord during the 2003-2009 period. This is slightly larger than the value of

0.25 ◦C reported by Johnson et al. (2011) over the same time period. If Petermann

Glacier was to follow the trend seen in southern and eastern Greenland, this increase

in ocean temperature may lead to an increase in basal melting, glacier acceleration

and ice shelf instability.

To investigate the impact of sub-surface ocean warming, a suite of experiments

was completed. The suite consisted of the base case, three warming scenarios ranging

from an increase of 0.3 ◦C in line with Johnson et al. (2011) and Rignot et al. (2012)

to a warming of 0.9 ◦C and seven cooling scenarios ranging from a cooling of 0.3 ◦C

to a cooling of 2.0 ◦C. The final cooling scenario results in the temperature being

homogeneous at −1.7 ◦C throughout the whole water column. The cooling scenarios

were included so that the relationship between temperature and melt rate could be

inferred. The salinity profile remained constant throughout all of the warming and

cooling scenarios. Figure 5.16 shows the salinity profile and the eleven tempera-

ture profiles used for restoring at the northern boundary and as the model initial

conditions.

5.3.2 Results

5.3.2.1 Basal Melting

Figure 5.17 show the mean melt rates and sub-ice layer flow patterns for two warming

scenarios (+0.9 and +0.3 ◦C), the base case and one cooling scenario (−0.3 ◦C). It is

apparent that as the temperature of the deep modified Atlantic Water warms, basal

melt rates at depth are increased. This leads to an increase in the buoyancy of the

sub-ice layer flow, causing it to speed up. This increase in flow speed, along with an
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Figure 5.16: a) Salinity and b) potential temperature restoring profiles for the eleven
warming and cooling scenarios.

increase in thermal forcing, leads to higher melt rates downstream of the grounding

line. The increase in deep water temperature does not lead to a change in the melt

rate pattern or the flow pattern of the sub-ice layer.

Figure 5.18a) shows the relationship between the potential temperature of the

modified Atlantic Water and the mean melt rate. The relationship is positive, as

described above, and quadratic (R2=0.99) in agreement with Holland et al. (2008b).

As the deep waters warm, the mean thermal forcing (T − Tb) supplied to the base

of the ice shelf from the ocean also increases (Fig. 5.18b), as does the mean friction

velocity (u∗) (Fig. 5.18c). The quadratic increase seen in mean melt rate is caused

by the increase in both the mean thermal forcing and mean friction velocity, caused

by the increase in deep water potential temperature, as, to a good level of approx-

imation, the melt rate is proportional to the product of these two factors (Holland

and Jenkins , 1999; Holland et al., 2008b).
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Figure 5.17: Melt rates (m/a) and sub-ice layer flow patterns (m/s) for a temperature
difference of a) +0.6 ◦C, b) +0.3 ◦C, c) +0 ◦C and d) −0.3 ◦C.

5.3.2.2 Fjord Circulation

The increase in both melt rates and sub-ice layer flow speed with warming as seen

above is also evident in the barotropic streamfunction (Fig. 5.19). As the potential

temperature is increased, the strength of the cyclonic circulation increases, as does

its extent, whilst the anticyclonic circulation near the northern boundary decreases

in both strength and extent. This is due to the buoyancy force beneath the ice shelf

increasing, caused by an increase in melt rates as the deep waters warm. Conversely,

as the potential temperature is decreased, the buoyancy force is reduced, due to

lower levels of basal melting. This results in a weaker, small cyclonic circulation and

a growth of the anticyclonic circulation. As the temperature of the deep water cools
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Figure 5.18: Relationship between deep water potential temperature and a) mean melt
rate, b) mean (T − Tb) and c) mean u∗.

to that of the surface waters, basal melting is severely reduced, resulting in a much

smaller buoyancy flux, leading to little or no sub-ice layer flow or circulation within

the fjord.

5.3.2.3 Water Properties

Figure 5.20 shows the potential temperature and salinity anomalies for scenarios with

a temperature difference of +0.9 ◦C, 0 ◦C, and −0.9 ◦C respectively. In all cases the

meltwater layer detaches from the base of the ice shelf and flows along the pycnocline.

It can be seen that the salinity anomaly is stronger for the warming scenario and

weakest for the cooling scenario. This is due the warmer waters causing greater levels
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Figure 5.19: Barotropic stream function (contours) overlying ice draft (colored) for a
temperature difference of a) +0.9 ◦C, b) +0.3 ◦C, c) +0 ◦C and d) −0.3 ◦C.

of melting, and hence higher fractions of meltwater in the meltwater layer resulting

in a greater salinity anomaly, and vice versa for the cooling scenario. The same trend

can be seen in the temperature anomalies, however the signal is aliased with the fact

that as the water get warmer, the difference between initial condition and freezing

temperature increases, causing the anomaly to become stronger.

5.3.3 Discussion

This study suggests that the warming of the Petermann Fjord waters seen by Johnson

et al. (2011) is likely to have led to an increase in basal melting. It also suggests that

further warming will lead to a greater increase in basal melting due to the relationship

seen in Figure 5.18c). This is contrary to the findings of Johnson et al. (2011) who

concluded that there was already more than the required heat being supplied to the

ice shelf cavity for the current levels of basal melting, suggesting that an increase in
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Figure 5.20: Potential temperature anomaly sections along the centre of the domain for a
temperature difference of a) +0.9 ◦C, b) 0 ◦C and c) −0.9 ◦C and salinity anomaly sections
for a temperature difference of d) +0.9 ◦C, e) 0 ◦C and f) −0.9 ◦C.

heat content, be it interannual variability or a continuous trend, would not increase

this further. Therefore the warming effect found here must depend upon the actual

ice-ocean interactions themselves rather than just the further input of heat to the

cavity.

In all cases the meltwater layer detaches from the base of the ice shelf at the

pycnocline depth. This constant detachment indicates that, as long as the pycnocline

remains at this depth, the ice shelf would not experience an increase in melting above

the pycnocline depth as the ocean warms. However greater melt rates near to the

grounding line, caused by an increase in thermal forcing, signals that the ice shelf

would thin closer to the grounding line.

This would lead to a decrease in stability of the ice shelf and increase the possi-
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bility of large calving events, possibly even the collapse of the ice shelf. The thinning

would also mean there is less contact between the ice shelf and fjord walls, leading to

a potential reduction in buttressing and hence back stress on the grounded section

of the glacier. In turn this could lead to an acceleration of the glacier and thinning

of the grounded portion. This would be in agreement with the acceleration and ice

shelf collapse seen at Jakobshavn Isbræ (Holland et al., 2008a; Weidick et al., 2004).

Large calving events would leave more of the fjord uncovered, allowing for the

formation of more sea ice which could form an ice mélange at the terminus, increasing

back stress and helping prevent calving events, however it also means that if there

is not any sea-ice cover, more solar radiation could be absorbed by the fjord waters,

leading to a warming of the surface layer, with the potential to increase melting

underneath the thinner portions of the ice shelf and also on melting on the vertical

ice front.

5.4 Impact of large calving events

5.4.1 Introduction

Recent calving events at Petermann Glacier have caused the ice front to retreat fur-

ther then previously recorded (Falkner et al.; Johannessen et al., 2011; Münchow

et al., 2014). Whether this is previously unrecorded natural variability or the be-

ginning of an irreversible retreat and collapse of the ice shelf is unknown. Nick

et al. (2012) used a numerical ice-flow model to assess the impact of such calving

and found that calving led to glacier acceleration and ice shelf re-advance to its

pre-calving state. However this model did not examine feedbacks of ice calving on

oceanic ice-shelf melting.

One aspect that this model did not capture was melting on the vertical face of

the ice shelf terminus. Melt rates on such faces can be high, especially when fed
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at their base by a source buoyancy (Xu et al., 2012). If Petermann Glacier were

to calve far enough that the ice front were protruding beneath the pycnocline, the

meltwater plume formed through basal melting could well act as such a source of

buoyancy. Melt-induced undercutting on vertical ice faces has been found to have

an affect on calving rates for tidewater glaciers (O’Leary and Christoffersen, 2013)

and it is feasible that such a mechanism could occur for ice shelves.

To investigate the impact of calving events on oceanic melting (both basal and

ice front) and fjord circulation, a suite of 13 calving experiments was completed.

These scenarios represented a no calving case through to a total collapse case. The

location of the calving events are represented by red lines in Figure 5.21. The initial

conditions and restoring profiles for both salinity and potential temperature are those

used for the base case in Chapter 4. The ‘icefront’ package (Section 3.3.3) was used

in all of the scenarios within this section to calculate interactions between the ocean

and vertical ice front.
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Figure 5.21: Ice draft (m) profiles for the calving scenarios. The blue profiles represent
the pre calving channel crest and keel profiles. The red lines represent calving locations.
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5.4.2 Results

5.4.2.1 Fjord Circulation

Figure 5.22 shows the barotropic stream functions for different calving scenarios. It

can be seen that before any calving occurs (Fig. 5.22a), the circulation is the same

as that described in Chapter 4. As the ice is initially calved (Fig. 5.22b), there is

very little change to the circulation pattern and strength.

As further calving occurs (Fig. 5.22c), the strength of both the cyclonic and

anticyclonic circulations decrease. The cyclonic circulation does not extend as far

north from the grounding line, whilst the anticyclonic circulation extends further

from the northern boundary. When the ice shelf has collapsed (Fig. 5.22d) the

cyclonic and anticyclonic circulations disappear.

Figure 5.22: Barotropic stream function (contours) overlying ice draft (colored) for ice
shelves of length a) 70 km, b) 50 km, c) 20 km and d) 0.5 km.
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Figures 5.23 and 5.24 show sections of potential temperature and salinity anoma-

lies along the centre of the domain respectively. The path of the meltwater layer can

be seen as negative values in both plots, representing cooler and fresher water. In

each calving event the meltwater plume detaches from the ice shelf at a depth of 100

m. As the ice shelf calves further, the size of the signal representing the meltwater

layer decreases, suggesting that calving events reduce the volume of fresh meltwater.

This signal is weakest for the total collapse scenario, where the melting is restricted

to ice front melting only (see below), and the signal does not protrude to the same

depths of the water column as it does for the other cases.
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Figure 5.23: Potential temperature anomaly section along the central keel for ice shelves
of length a) 70 km, b) 50 km, c) 20 km and d) 0.5 km.
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Figure 5.24: Salinity anomaly section along the central keel for ice shelves of length a)
70 km, b) 50 km, c) 20 km and d) 0.5 km.

5.4.2.2 Oceanic Melting

Oceanic melting covers both basal melting and melting on the vertical ice front.

Figure 5.25 shows the basal melt rates and ocean surface flow pattern for differing

calving scenarios. The pattern and magnitude of both the basal melting and ocean

surface flow for the no calving case (Fig. 5.25a) is the same as that described in

Chapter 4, with stronger melting on the steep initial section of the ice shelf and the

sloping sides of the channels. The flow is constrained within the channels with a

small level of transport between channels.

As the ice shelf is calved, the melt and flow pattern of the remaining ice shelf is

similar to the corresponding area of the non-calved ice shelf. They are not affected

by the removal of areas of weak or no melting near to the ice front. The areas of

strong melting near to the grounding line remain consistent in all scenarios, apart
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Figure 5.25: Basal melt rates (m/a) and sub-ice layer flow patterns (m/s) for ice shelves
of length a) 70 km, b) 50 km, c) 20 km and d) 10 km.

from the full collapse case, when that area has been calved.

As the ice shelf calves, the draft of the ice front increases, meaning that it pro-

trudes further into the warmer subsurface waters. Figures 5.26 and 5.27 show the

mean melt rates, calculated using the ‘icefront’ package, for the ice front during dif-

ferent calving scenarios, (note the change in colour scale between the two figures).

Before calving, the mean ice front melt rate is relatively low and remains so for the

initial calving events (Fig. 5.26).

As further calving occurs (Fig. 5.27) the levels of ice front melting increase

rapidly to a maximum for the ice shelf collapse scenario. The melt rates are slightly

larger on the eastern edge of the ice front, corresponding with the location of the

meltwater layer exit from the cavity. This is not seen in the full collapse scenario as
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Figure 5.26: Ice front melt rates (m/a) for ice shelves of length a) 70 km, b) 60 km, c)
50 km and d) 40 km. Melt rates are plotted looking out of the fjord.

the meltwater layer does not form beneath the ice shelf. It should be noted, however,

that the model cannot resolve the vertical velocity, due to the horizontal resolution

being 250 m, with the modelled vertical velocity likely to be an underestimate. The

vertical flow is expected to be finer, therefore melting rates and patterns on the

vertical ice front need to be taken with a degree of caution.

The relationship between ice shelf length and mean basal melt rate is shown in

Figure 5.28a. The mean basal melt rate for the entire ice shelf (blue) increases as

calving occurs, to a maximum when the ice shelf is only 5 km long. After this point

the mean basal melt rate decreases rapidly as the area of strong melting is removed.

This increase is due to the removal of the weakly melting areas near to the ice front

which were reducing the mean melt rate. This can be seen by looking at the mean

basal melt rate of the first 20 km of the ice shelf (red). This remains relatively
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Figure 5.27: Ice front melt rates (m/a) for ice shelves of length a) 30 km, b) 20 km, c)
10 km and d) 0.5 km. Melt rates are plotted looking out of the fjord.

constant across calving scenarios, confirming it is the removal of the weakly melted

areas that is causing the increase in mean basal melt rate.

There is a non-linear relationship between mean ice front melt rate and ice shelf

length (fig. 5.28b) with the initial calving events having little effect on the mean ice

front melt rate. After approximately 35 km of calving, the mean ice front melt rate

increases much more rapidly. The relationship between ice shelf length and the total

volume of ice melted through both basal and ice front melting (fig. 5.28c), shows

that although both of the mean melt rates are increasing as the ice shelf calves, the

total volume of ice melted is monotonically reducing, implying that the increase in

melt rates does not compensate for the reduction in ice area.

One consequence of the increase in ice front melting is melt induced undercutting

of the ice shelf at the ice front; melting removes more ice from the bottom of the ice
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Figure 5.28: Relationship between length of ice shelf and a) basal melting for the whole
ice shelf (blue) and first 20 km of the ice shelf (red), b) ice front melt rate and c) the total
volume of ice melted per annum through both basal and ice front melting.

front than from the top. Figure 5.29 shows the inferred profile at the centre of the

ice front for each calving scenario after one year of ice front melting. There is little

undercutting until the calving events increase the draft of the ice shelf to greater

than 100m. After this point the levels of undercutting increase until it reaches a

maximum of approximately 47 m/y for the total collapse case. Again, these results

must be taken with a degree of caution due to the inability to resolve the vertical

flow by the ice front, however it is expected that melting on the ice front would be

depth dependent, as observed in the model.
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Figure 5.29: Profile of ice front melting, showing inferred melt-induced undercutting,
taken at centre of middle keel.

5.4.3 Discussion

As the glacier calves, the draft at the ice front increases, meaning the ice face pro-

trudes deeper into the water column. Therefore a greater proportion of the ice front

is in contact with the warm modified Atlantic Water, leading to an increase in ice

front melting. The rate at which melting at the ice front increases, is due to the rate

at which the ice front deepens, which is controlled by the geometry of the ice shelf.

As the ice is relatively flat near the un-calved ice front of the glacier, and above

the pycnocline, the draft at the ice front increases by only a small amount as calving

events occur and doesn’t penetrate the pycnocline into the warmer Atlantic waters

below, causing only a relatively small increase in mean ice front melting as seen

in Figure 5.28b. Further calving events move the ice front into the portion of the

glacier where the draft increases rapidly, so the ice front draft also increases rapidly

as calving events occur. This increase in draft means that the ice front comes into
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contact with the warmer sub-surface waters, resulting in a rapid increase in mean

melt rate. This implies that it is the area of the ice front in contact with the warmer

sub-surface waters that controls the mean ice front melt rate.

As the calving events occur, basal melt rates and sub-ice layer flow patterns near

the grounding line remain relatively constant, unaffected by events downstream of

their location, with the mean melt rate of the first 20km consistent across all runs

with an ice shelf longer than 20 km. At the same time the mean melt rate for the

ice shelf is increasing as it calves. This is due to the calving events removing areas

of low melt, with areas of higher melt remaining.

The factors affecting the mass balance of the post-calving ice shelf remain the

same as those for the full ice shelf and are discussed in Section 1.2.2. The assump-

tion that the surface ablation rate (per unit area) remains constance implies a small

decrease in total surface ablation. Figure 5.28c shows that as calving events occur,

the total volume, and hence mass, of ice lost to oceanic melting decreases. Under

the assumption that the flux of ice across the grounding line remains constant, these

factors indicate an increase in mass balance. An understanding of calving mecha-

nisms is therefore needed to calculate whether calving rates will increase sufficiently

to counteract this mass increase, or whether the ice shelf will re-advance.

O’Leary and Christoffersen (2013) found that undercutting of tidewater glaciers,

due to melting at the ice front, leads to increased calving rates. Although this

modelling study focused on tidewater glaciers, it is possible that a similar feedback

mechanism could occur for ice shelves. Undercutting thins the ice at the terminus,

resulting in a bending at the end of the ice shelf and an increase in surface stress.

This increase leads to an increased likelihood of fracture and hence calving.

If we take a conservative estimate of the ice flow remaining constant at 1 km/a,

despite the decrease in buttressing due to ice calving, along with a liberal estimate

for undercutting of 50 m/a, then, for the ice front position to remain stable, the melt
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induced undercutting would need to cause calving up to 20 times it’s own magnitude

upstream of the ice front to be solely responsible for ice-front retreat. This estimate

is much greater than any estimate modelled by O’Leary and Christoffersen (2013),

although the use of their estimates is subject to the caveats above.

Nick et al. (2012) used an ice-flow model to study the response of Petermann

Glacier to large calving events. The modelled terminus velocity following the 2010

calving event agreed with observed data in showing only a minor speed-up when

compared to pre-calving velocities. This insensitivity was attributed to the low

along-flow resistive forces for the terminus region of the ice shelf due to it’s limited

attachment to the fjord walls and it’s geometry being thin and wide. The model

found that the glacier re-advanced to its pre-calving extent, with the advance speed

being comparable to the glacier flow speed, indicating a suppression of calving during

the re-advance.

A second calving event, reducing the ice shelf length by a further 20 km, caused

an increase in both glacier velocity and flux across the grounding line. This increase

in flow was attributed to the greater reduction in buttressing caused by the area of

ice shelf removed being thicker than during the first calving event, and the lateral

drag coefficient being larger. The increased influx was found to diminish as the ice

shelf re-advanced and buttressing increased. Similarly to the first calving event, the

ice shelf in this scenario re-advanced to the initial ice shelf length. In both cases no

grounding line retreat occurred, leading the authors to surmise that calving events

of this size are not sufficient to destabilise Petermann Glacier.

Although Nick et al. (2012) did not include ice front or basal melting in their

flow model, their results indicate that the increased ice flux would outweigh any

undercut-induced calving by the mechanism of O’Leary and Christoffersen (2013).

The high levels of ice front melting seen in the above scenarios would decrease as the

ice shelf advanced, leading to a further decrease in undercutting and hence calving.
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5.5 Summary

The simulations within this chapter show that Petermann Glacier is susceptible to

potential changes in conditions within Petermann Fjord.

The impact of changing the depth of the stratified layer, be it permanent or

seasonal, is to change the depth at which the meltwater layer detaches from the ice

shelf base. This, in turn, alters the area of the ice shelf in contact with this layer.

As, to a good approximation, basal melting is reliant on the friction velocity between

this meltwater layer and the ice base, if it were to detach at a greater depth, basal

melting would occur over a smaller area of the ice shelf, hence reducing the mean

melt rate and vice versa.

Model results suggest that should the warming of subsurface waters within the

fjord, as seen by Johnson et al. (2011), to continue, the basal melt rates would

increase. Significantly, melt rates near to the grounding line would increase, leading

to a thinning of the ice shelf in this area. This could lead to am increase in ice

shelf instability and increase the possibility of large calving events and even ice shelf

collapse, in agreement with that seen at Jakobshavn Isbræ (Holland et al., 2008a;

Weidick et al., 2004).

If the ice shelf were to retreat without a warming ocean signal, the model predicts

that the increase in undercutting at the ice front, due to it penetrating further into the

subsurface water, would not be sufficient to prevent the ice shelf from re-advancing

to its previous position. The impact of calving with warming subsurface waters was

not investigated, but it is possible that the increase in both undercutting induced

calving and increased ocean melting would be sufficient to balance or even surpass

the flux of ice across the grounding line.



Chapter 6

Ice-Ocean Interactions Beneath

Petermann Glacier (real-world

domain)

There are currently no realistic modelling estimates for basal melt rate or ocean

circulation beneath Petermann Glacier’s ice shelf. Current melt rate estimates have

been calculated from satellite data (Rignot and Steffen, 2008) whilst knowledge of

the circulation within the fjord has been inferred from hydrographic surveys in the

fjord mouth and adjoining Hall Basin (Johnson et al., 2011).

In this chapter the circulation beneath a realistic Petermann Glacier ice shelf

geometry is modelled. The real bathymetry beneath the ice is unknown, so an inves-

tigation is undertaken into the impact of the different fjord bathymetries, introduced

in Chapter 2, on both basal melt rates and fjord circulation. The impact of the two

recent calving events is also investigated.

129
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6.1 Model Specifics

To investigate the circulation beneath Petermann Glacier, the realistic ice topog-

raphy is used with each of the three possible bathymetries created in Chapter 2.

Calving events are implemented by removing ice from the ice front of the ice shelf,

as in Section 5.4. Melting on the vertical ice front, introduced in section 3.3.3, is

included within the model. A Cartesian grid with a resolution of 250 m in the hori-

zontal and 10 m in the vertical is used, and partial cells with a minimum height of

0.5 m are used, as in Chapter 4. Note that the 250 m horizontal resolution means

that the vertical flow at the ice front cannot be resolved properly.

As the mouth of Petermann Fjord is connected to Hall Basin in Nares Strait, open

boundary conditions (Section 3.3.4) are used on all ocean boundaries. The salinity

and potential temperature profiles used for initial conditions and at the boundaries,

are either the same as those used in Chapter 4 or take the form of an unstratified

water column with potential temperature and salinity homogenous at the deep water

properties. The model was spun up with a 6-second time step until steady after one

year. All results are shown as monthly averages from the last month of the model

run.

To allow comparison with the idealised domain, we refer to the southern boundary

as the boundary to which the grounding line is adjacent, the northern boundary as

the fully open ocean boundary, and the eastern and western boundaries as the right

and left hand side boundaries respectively when looking downstream of the grounding

line. Note however that the domain has been very slightly rotated so that the model

grid is more aligned with the orientation of the fjord. This means that the directions

described above are not the true directions of these boundaries.
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6.2 Bathymetry

6.2.1 Introduction

Due to the remote location of Petermann Fjord and the inherent difficulties in observ-

ing the cavity beneath an ice shelf, the majority of the fjord bathymetry is unknown.

As discussed in Chapter 2, only the bathymetry of Hall Basin, the fjord mouth and

the grounding line depths are known. These data reveal the presence of a sill at the

fjord mouth, with a deep basin inshore of the sill. On the south-western side of the

fjord, inshore of the sill is a shallower shelf.
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Figure 6.1: Realistic bathymetry scenarios with a) small basin, b) linear shallowing and
c) large basin.

It is unknown how far inshore the deep basin or shallow shelf protrudes. Here we

investigate three different possible bathymetries for Petermann Fjord, a deep basin

protruding approximately 10km underneath the ice shelf, a linearly sloping sea bed

from the ice front to the grounding line and a deep basin protruding to within a

couple of kilometers of the grounding line (Fig. 6.1). In all cases the same realistic



132
CHAPTER 6. Ice-Ocean Interactions Beneath Petermann Glacier (real-world

domain)

ice-shelf topography was used (Fig. 6.2).

Figure 6.2: Ice shelf topography for the realistic Petermann Glacier domain.

6.2.2 Effect of Bathymetry

The melt rate and sub-ice layer velocities (velocities from the 10 m of the ocean

column immediately beneath the ice) for the three different bathymetries are shown

in Figure 6.3. It can be seen that the patterns in both melt rate and flow pattern are

similar across all three scenarios, with the area-mean basal melt rates for the three

scenarios being 5.71 m/a for the linearly sloping bathymetry, 5.46 m/a for the small

basin and 5.78 m/a for the large basin bathymetry.

The barotropic stream functions for the three bathymetries are shown in Figure

6.4. It can be seen that in all three cases there is a cyclonic circulation within the

fjord bringing warmer modified Atlantic Water into the cavity along the western

boundary, with a return flow out of the fjord along the eastern boundary. The

strength of these circulations is consistent across all three bathymetries, however the

extent to which the circulation extends beneath the ice shelf varies. The circulation
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Figure 6.3: Melt rates (m/a) and sub-ice layer velocities (m/s) for the a) small-basin, b)
linear-sloping and c) large-basin bathymetries.

extends furthest for the large basin case, and extends the least under the ice shelf for

the small basin case, suggesting a bathymetric control on the circulation, with the

shallowing of the sea bed preventing the deeper water from penetrating further into

the cavity. In all three cases there is an anticyclonic circulation of similar strength

and location in the open ocean section.

6.2.3 Discussion

Comparison of the three investigated bathymetries shows consistent basal melting,

yet varying cavity circulation. This suggests that there is sufficient heat entering the

cavity, irrespective of the chosen bathymetry. For this reason the linearly sloping

bathymetry will be used for the remainder of this chapter. This bathymetry was
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Figure 6.4: Barotropic stream function (contours) overlying ice draft (colored) for the a)
small-basin, b) linear-sloping and c) large-basin bathymetries.

chosen simply because we do not know what happens between the open fjord section

and the grounding line.

It is worth noting, however, that the three bathymetries chosen are only a

small subset of the total possible bathymetries that could lie underneath Peter-

mann Glacier. Neither of the bathymetries are particularly geophysically plausible,

as mentioned in Chapter 2. They were chosen as, due to the inherent difficulties

within collecting data from within ice shelf cavities, the features underneath the ice

shelf are unknown, however further smoothing over this section may have allowed

for the removal of some of the unlikely straight line features present.

It is also possible that there are unknown features which could have a large impact

on both circulation and melt rates. For example there is a large seabed ridge beneath
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Pine Island Glacier (Jenkins et al., 2010a) and De Rydt et al. (2014) found that such

ridges can restrict the flow of warm deep water into the cavity near the grounding line,

reducing the level of basal melting and hence the resulting overturning circulation.

6.3 Comparison of real world model with idealised

model and real world observations

The results from this model simulation are now compared to both the four-channel

idealised model from Chapter 4, and also the current knowledge of Petermann Glacier

Ice Shelf and the oceanography of Petermann Fjord. The four-channel idealised case

is used because there are four pronounced channels beneath Petermann Glacier’s real

ice shelf (Rignot and Steffen, 2008).

6.3.1 Realistic vs. Idealised Models

6.3.1.1 Basal Melting

The basal melt rates and sub-ice layer velocities for the realistic and four-channel

idealised domains are shown in Figure 6.5. The mean melt rates for the two domains

are similar, (realistic = 5.71 m/a, idealised = 5.95 m/a), however direct comparison

of these numbers alone is not sufficient as the topography of both the ice shelves and

their channels differ; a comparison of melt patterns and ocean flow is also required.

As discussed in Chapter 4, under the idealised ice shelf, melt rates are highest in

areas of strong sub-ice layer velocities. This is on the right hand slope of channels,

and in the centre of the channels near the grounding line where the ice-base gradient

is steeper. The flow beneath the ice shelf is constrained by the channels with a

degree of slip-over between the channels. Figure 6.5b shows that the flow beneath

the realistic ice shelf is also constrained within the channels, again with a degree of
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Figure 6.5: a) Melt rates (m/a) overlain by contours of ice draft, melt rates (m/a) and
sub-ice layer velocities (m/s) for the b) realistic and c) idealised domains.

slip-over between the channels.

The highest melt rates are within the channels, again beneath the strongest flow

rate. The weaker melt rates are between these channels, where the velocity of the sub

ice layer is low, and near the ice front where the ice is shallower than the pycnocline.

The meltwater layer detaches from the ice base at the pycnocline depth, flowing

away from the ice shelf. The meltwater layer is replaced by the penetrating surface

stratified layer which flows under the ice shelf near the fjord walls and exits the cavity

in the middle of the ice shelf. This cooler, fresher surface stratified layer protects the

ice shelf from the meltwater layer, preventing higher melt rates. There is a higher

degree of inflow of surface stratified layer under the realistic ice shelf than under the

idealised ice shelf.
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One disparity between the two models is the eastern boundary current, and as-

sociated basal melting, seen in the idealised case, and the idealised model of Gladish

et al. (2012), not forming underneath the ice shelf in the realistic model. This is most

likely caused by detachment of the meltwater layer at the pycnocline approximately

20 km north of the grounding line. This is most likely caused by a discrepancy in

the model draft at this location which can be seen as a shallow area in Figure 6.5a).

6.3.1.2 Oceanography

Figure 6.6 shows the barotropic stream functions for the realistic and idealised cases.

In both cases there is a geostrophic circulation bringing warm modified Atlantic

Water into the ice shelf cavity along the western boundary of the domain, whilst a

return flow transports water out of the cavity along the eastern boundary.

A similar pattern of anticyclonic circulations underneath the ice shelf can be seen

in both cases, with the circulation weaker underneath the realistic ice shelf. Despite

the circulation being weaker, the mean melt rates are similar, suggesting that ocean

heat flux into the cavity is not the limiting factor in determining the melt rate.

This reduction in circulation strength is likely caused by the reduction in volume

of meltwater between the two simulations (both mean melt rate and size of ice shelf is

smaller for the realistic ice shelf). There is also a weak cyclonic circulation present in

the open ocean section of the real world domain, similar to that seen in the idealised

domain, and is constrained to the central section of the domain, likely caused by the

fjord walls extending approximately 20 km further from the grounding line than the

ice shelf. The velocities on the open boundaries show a weak flow into the domain

from the west and a weak flow out of the domain in the east.

The warm Atlantic Water brought into the cavity melts the ice base, freshening

and cooling the water at the ice-ocean interface, creating a plume which rises against

the ice shelf base. An inspection of the anomalies between final and initial conditions
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Figure 6.6: Barotropic stream function (contours) overlying ice draft (colored) for the a)
realistic and b)idealised domains.

of both potential temperature and salinity along the centre of the domain for the

idealised and realistic domains (Fig. 6.7) reveals a similar overturning circulation

caused by the rising meltwater layer in both cases.

In both of the simulations, the meltwater layer can be seen as a cooler, fresher

anomaly (darker blue in both anomalies) detaching from the ice base at the pycn-

ocline depth of 100 m, and flowing towards the northern boundary. The potential

temperature anomalies show that the meltwater layer is thicker and cooler under-

neath the idealised ice shelf, whilst the salinity anomalies indicate that the meltwater

layer is also fresher underneath the idealised ice shelf. This is caused by the larger

volume of cooler, fresh meltwater mixing with the water at the interface. The larger

volume of fresh meltwater leads, in turn, to a larger buoyancy, causing faster melt-
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Figure 6.7: Anomaly profiles along the centre of the domain for a) potential temperature
and b) salinity in the idealised domain, and c) potential temperature and d) salinity in the
realistic domain.

water layer velocities (Fig. 6.5) and a faster barotropic circulation in the idealised

domain (Fig. 6.6).

6.3.2 Realistic Model vs. Observations

6.3.2.1 Oceanography

Due to the difficulties of obtaining oceanographic measurements from beneath an ice

shelf, we are reliant on the hydrographic survey reported by Johnson et al. (2011)
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and the through-ice-shelf profile of Rignot and Steffen (2008) for a comparison of the

fjord circulation. The across-fjord geostrophic velocity profile obtained near the ice

front in 2009 shows a flow out of the fjord near the surface on the north-eastern side

of the fjord, and a surface flow into the fjord on the south-western side. At depth

there is a slow flow into the fjord (Fig. 6.8a).

a) b) 

Figure 6.8: a) Across fjord geostrophic velocity profile (m/s) taken near the ice front,
(Source: Johnson et al. (2011)). b) Across fjord modelled velocity profile (m/s) taken
one kilometer after the ice front. Both profiles look into the fjord and a positive velocity
denotes a flow out of the fjord. The eastern wall of the fjord is on the left of the profile
and the western fjord wall on the right.

Figure 6.8b) show an across-fjord model velocity profile taken near the model ice

front. Although it shares some common features with the observations of Johnson

et al. (2011), it is strikingly different. There is a flow out of the domain on the

eastern side of the domain focused at the pycnocline depth, whilst there is a very

weak flow into the fjord on the western side of the domain. The magnitude of these
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flows is, however, approximately five times smaller than those observed by Johnson

et al. (2011), and there is far less structure in the model profile than seen in the

observed profile.

Figure 6.9: a) Beneath ice shelf potential temperature and salinity profiles collected by
Rignot and Steffen (2008). b) Beneath ice shelf potential temperature and salinity profiles
from the realistic model, taken at the approximate location of the Rignot and Steffen
(2008) drill site.

Sub-ice shelf potential temperature and salinity profiles from the realistic model

are plotted against depth to assess whether the water column features observed by

Rignot and Steffen (2008) are present (Fig. 6.9). The mixed layer present in the

Rignot and Steffen (2008) profiles are not present in the realistic model. The top of

the water column in the model is slightly warmer and fresher than that observed by

Rignot and Steffen (2008).

These differences all indicate that the main driver behind the differences between

the observed and modelled circulations is an absence of sufficient mixing within the

model. The choice of constant viscosity parameters rather than the implementation

of a mixing closure scheme, such as the Pacanowski/Philander scheme (PP) has

prevented mixing from occurring within the ocean. This would explain the lack

of structure within the circulation profile, and also the lack of boundary layer in
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the through ice profile. Had there been sufficient boundary layer mixing occurring

underneath the ice shelf then it is likely that the boundary layer observed by Rignot

and Steffen (2008) would be present in the model profile.

The choice of ocean boundary conditions may also be a cause of the significant

differences. In Kennedy Channel there is a northward flow along it’s Greenland

boundary which enters Petermann Fjord on the western boundary with a velocity of

approximately 0.2 m/s (seen in Fig. 6.8). Conservation of mass dictates that this

needs to be counterbalanced by a transport out of the domain which is comparable

if not larger due the flux of water into the fjord from ice shelf melting.

This flow into the domain is not included within the model, and therefore the

potential for a lot more structure to the circulation is lost. At the same time the

heat transport into the domain is also vastly reduced (approximately an order of 5)

which, along with the lack of mixing across boundary layers, means that there is less

heat reaching the base of the ice shelf within the model than the observations would

indicate. The chosen boundary profiles for salinity and potential temperature are

also highly idealised, a more realistic profile would allow for further structure to be

introduced to the model ocean.

External drivers such as winds and tides, which are not included within the model,

may also play an important role in both the structure of the ocean circulation and

the resultant heat transfer into the cavity. The inclusion of tides may also result

in near-inertial motions through interactions with the sill. These motions would

provide further structure to the cavity, which along with enhanced mixing, may have

resulted in a more realistic ocean circulation.

6.3.2.2 Basal Melting

There are some striking similarities and discrepancies between the modelled melt

rates (Fig. 6.10a) and those calculated by Rignot and Steffen (2008) (Fig. 6.10b).
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Both show pronounced areas of melting within the channel features and close

to the grounding line, with the channelised melting extending to a similar distance

downstream of the grounding line in both cases. There is a consistent pattern of

decrease in melt rate as the ice shelf thins towards the ice front.

a) b) 

Figure 6.10: a) Modelled melt rates for the realistic Petermann domain with linear
sloping bathymetry. b) Petermann Glacier steady state basal melt rates (m/y) calculated
from divergence of ice flux. The black line represents the grounding line (Source: Rignot
and Steffen (2008)).

The modelled melt rates near the grounding line are, however, approximately

half of those calculated by Rignot and Steffen (2008) and the modelled melt rates

near to the ice front are nearly an order of magnitude smaller than Rignot and

Steffen (2008). In the model, the high melt rates do not extend far downstream on

the eastern boundary due to the detachment of the boundary current as previously

discussed. Rignot and Steffen (2008) have significant melt rates extending further

downstream in this location.

Rignot and Steffen (2008) calculations resulted in areas of basal freezing beneath
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Petermann Glacier which are not present in the model domain. Given the ample

supply of heat into the fjord for the levels of melt rate reported by Rignot and

Steffen (2008) as observed by Johnson et al. (2011), it is unlikely that these areas of

freezing are realistic.

a) b) 

Figure 6.11: a) Petermann Glacier observed along shelf area averaged basal melt rate,
and ice shelf thickness (Source: Rignot and Steffen (2008)). b) Petermann Glacier modelled
along shelf area averaged basal melt rate and ice thickness.

The across-shelf averaged melt rates show this difference in melt rates. Rignot

and Steffen (2008) found the melt rates to increase to approximately 25 m/a, 10 km

downstream of the grounding line, whilst the model has a maximum mean melt rate

of 10 m/a at the same location (Fig. 6.11). The secondary increase in mean melt

rate, peaking at 45 km downstream from the grounding line reported by Rignot and

Steffen (2008) was not found in the model, however the area of low melting between

the primary and secondary increases is due to the unlikely areas of freezing seen

upstream of this location in the Rignot and Steffen (2008) estimates.

One potential cause for the discrepancies seen this can be found by considering

the across-shelf averaged ice thickness of the ice shelves. Rignot and Steffen (2008)

found the ice shelf to be around 600 m at the grounding line, thinning to around 200

m at 20 km down stream of the grounding line and around 60 m at the ice front (Fig.

6.11a). In the model domain however, the ice shelf averages approximately 400 m at

the grounding line, 150 m after 20 km and around 60 m at the ice front (Fig. 6.11b).



6.3 Comparison of real world model with idealised model and real world
observations 145

This means that the ice shelf in the model does not sit as deep in the water column,

meaning less of the ice base is in the warmer water, leading to a decrease in thermal

forcing for these areas and hence, lower melt rates. There are two possibilities for the

difference in ice shelf thicknesses. Firstly the calibration used to create the model

domain might not be accurate enough, resulting in too shallow a draft. Secondly the

Rignot and Steffen (2008) draft may be too deep.

There is however a more plausible reason to the weaker melt rates seen in the

model and this is linked to the discussion in the previous section. The circulation

is much weaker, approximately a factor of 5, within the model than that observed

by Johnson et al. (2011). This means that the heat transport into the cavity will

be greatly reduced. A reduced transport of heat will, in turn, lead to reduced

basal melt rates, similar to that seen in the model estimates. The reason for the

weaker circulation is most likely caused by an absence of vertical mixing as discussed

previously.

With the modelled circulation being only approximately 20% of that observed by

Johnson et al. (2011), and the boundary conditions being roughly consistent between

the model and observations, the modelled heat transport into the cavity will also be

only 20% of the observed heat transport. However a comparison of mean melt rates

find the model to have approximately 66% of the melting calculated by Rignot and

Steffen (2008). This indicates that the realistic model is approximately 3.5 times

too efficient modelling melting at the base of ice shelves.

6.3.3 Discussion

There is a level of agreement between melting in the realistic model and melting in

the idealised domain. The channels focus melting and ocean surface layer flow on

their right hand slopes, as seen in idealised cases with small numbers of channels

in Chapter 4. There is also spatial agreement between the realistic model and the
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calculated melt rates of Rignot and Steffen (2008), however there is a discrepancy

between the size of both the maximum melt rates and the mean melt rates.

The circulation pattern is consistent between the idealised and realistic models,

with a strong eastern boundary current forming underneath the ice shelf and the

presence of an anticyclonic circulation north of the ice face. There is not a good level

of consistency between the realistic model and the observations of Johnson et al.

(2011), with the observed circulation being approximately 5 times stronger. The

stronger observed circulation results in a larger heat flux into the cavity, explaining

the higher melt rates calculated by Rignot and Steffen (2008).

There are several possible explanations for the difference in ocean circulation,

including the exclusion of external drivers such as wind and tides, chosen boundary

conditions not providing the flow into the fjord as observed by Johnson et al. (2011),

and the chosen salinity and potential temperature profiles for water entering the

domain may have been too idealised. However the most likely cause of the differences

is the lack of vertical mixing within the model.

Further mixing, using a vertical mixing scheme such as the Pacanowski/Philander

scheme, would improve the ocean structure within the ice shelf cavity, as well as

provide boundary layer mixing to help form the boundary layer observed by Rignot

and Steffen (2008) in their through-ice profile.

6.4 Effect of ice shelf calving

As previously discussed, recent calving events at Petermann Glacier have caused the

ice front to retreat further than previously recorded (Falkner et al.; Johannessen

et al., 2011; Münchow et al., 2014). Whether this is previously unrecorded natural

variability or the beginning of an irreversible retreat and collapse of the ice shelf is

unknown. To investigate how the calving events in 2010 and 2012 may have changed

fjord circulation and basal melting, the model ice shelf was ‘calved’ such that the
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ice front is at the approximate location of Petermann Glacier following these calving

events (denoted by orange lines in Fig. 6.12). The impact of potential further calving

events are investigated by ‘calving’ the ice shelf further (denoted by yellow lines in

Fig. 6.12).

Figure 6.12: Ice shelf topography with approximate locations of 2010 and 2012 calving
denoted by orange lines and the locations of further hypothetical calving events denoted
by yellow lines.

6.4.1 Stratified water column

Figure 6.13 shows the basal melting and sub-ice layer velocities for the full ice shelf,

the 2012 calving event and the calving events which retreat the ice front to the 20

km location. It can be seen that in agreement with the findings in Chapter 5, as the

ice front is retreated, basal melting patterns and amplitudes upstream of the new ice

front are unaffected, leading to an increase in mean basal melt rate, whilst the total

volume of ice melted decreases.
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Figure 6.13: Basal melting (m/a) and sub-ice layer velocities (m/s) for the a) full ice
shelf, b) 2012 calving event and c) collapse back to the 20 km location.

For the initial calving, the area of ice shelf removed has a shallow draft and is

sitting in cooler, fresher water. This means that we are removing areas of little

melt, resulting in only a small decrease in the total volume of ice melted. As further

calving occurs, deeper drafts with higher melt rates are removed, resulting in a larger

decrease in total volume of ice melted.

The reduction in the total volume of ice melted leads to a decrease in freshwater

mixed into the meltwater layer, hence reducing the buoyancy and meltwater layer

speed. This leads to a decrease in the barotropic circulation (Fig. 6.14). For the

initial calving, where the ice is thin and the reduction in ice volume melted is small,

the approximate location and extent of the cyclonic and anticyclonic circulations

remains constant, with a reduction in strength the main difference.
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Figure 6.14: Barotropic stream function (contours) overlying ice draft (colored) for the
a) full ice shelf, b) 2012 calving event and c) collapse back to the 20 km location.

As further calving occurs, removing deeper ice, both the ice front deepens, and

the volume of ice melted decreases at a greater rate. In these cases an anticyclonic

circulation is set up just downstream of the ice front (Fig. 6.14c). This is caused by

the conservation of potential vorticity causing a westward flow after the large step

in ice draft, as explained in Chapter 4.

The reduction in total ice volume can be seen in the potential temperature

anomaly profiles (Fig. 6.15). As the ice shelf is calved, the anomaly becomes smaller

and the plume becomes narrower as it detaches from the ice base and flows along

the pycnocline.

Figure 6.16 shows the relationship between ice shelf length and (a) mean basal

melt rate, (b) mean ice front melt and (c) total volume of ice melted. It can be
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Figure 6.15: Potential temperature anomaly profiles along the centre of the domain for
the a) full ice shelf, b) 2012 calving event and c) collapse back to the 20 km location and
salinity anomaly profiles along the centre of the domain for the d) full ice shelf, e) 2012
calving event and f) collapse back to the 20 km location.

seen that as the ice shelf decreases in length, the mean basal melt rate increases,

until the ice shelf reaches a length of 20 km, after which it begins to decrease. This

is due to the initial calving events removing areas of low melt rate, however at 20

km the areas with large melt rates are removed, leading to a decrease in melt rate.

The mean melt rate of the first 20 km of ice shelf remains constant, indicating that

calving events do not have an impact on melt rates upstream of the calving location.

This relationship is in agreement with the results in Chapter 5.

The mean melt rate on the ice front is found to increase as the ice shelf retreats.

This is due to the ice front becoming deeper with each calving event, meaning ice

front begins to sit in the warmer water beneath the pycnocline, leading to an increase
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Figure 6.16: Relationship between ice shelf length and a) mean basal melt rate (solid
line - whole ice shelf, dashed line - first 20 km), b) mean ice front melt and c) total volume
of ice melted.

in melt rates. The initial calving events have a smaller effect as the ice front is still

shallow enough to sit wholly within the cooler surface water.

The total ice volume melted takes into account melting on both the ice front and

ice base. The total volume is monotonically decreasing as the ice is calved, with

a smaller decrease for initial calving events, as mentioned above. The relationship

shows that, although the melt rates are greater on the ice front than on the base,

the volume of ice melted on the ice front is not enough to counteract the loss of ice

melted from the ice base.
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6.4.2 Unstratified water column

The increase seen above in mean basal melt rate as the ice shelf retreated was at-

tributed to the removal of ice shelf sitting in cooler water, hence increasing the mean

thermal forcing (T −Tb). However it could also be attributed to an increase in mean

basal gradient with the removal of the flatter section of the ice shelf. To investi-

gate whether it was correct to attribute the change in mean melt rate to thermal

forcing, the calving simulations were run again, however this time with unstratified

restoring conditions. That is the model is now restored on all ocean boundaries to a

water column with a constant potential temperature of 0.3 ◦C. Note that the spun-

up ocean is not unstratified, it is the restoring conditions which are unstratified. It

takes approximately 2 weeks for water from the boundary to reach the interior of the

domain, meaning that the one year spin up time is sufficient to test this hypothesis.

Figure 6.17 shows the melt rates and sub-ice layer velocities for the unstratified

restoring. It can be seen that patterns of both melt and sub-ice layer flow are similar

to the stratified restoring cases (Fig. 6.13), however the melt rates are larger, and

sub-ice layer flow faster, for the unstratified restoring cases. The mean melt rates for

the ice shelf are larger than for the stratified water column (11.98 m/a vs. 5.39 m/a),

due to the larger thermal forcing felt by the ice shelf and the corresponding increase

in mixed layer speed due to the increase in melt water. Close to the grounding line

there is the same pattern of melt rates, since, for all cases, the deeper ice is sat

within warmer water. The unstratified water column removes the insulating effect

of the stratified layer, resulting in larger melt rates near the ice front. Therefore

initial calving events do not result in the increase in mean melt rate previously

seen. Further calving continues to remove areas with high melt rates, resulting in a

relatively constant mean melt rate.

The barotropic stream functions for the unstratified restring cases (Fig. 6.18)
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Figure 6.17: Basal melting (m/a)and sub-ice layer velocities (m/s) for the a) full ice shelf,
b) 2012 calving event and c) collapse back to the 20 km location, with an unstratified water
column.

show stronger cyclonic circulation within the ice shelf cavity and the fjord, along

with a stronger anticyclonic circulation in the open ocean section of the fjord than

seen in the stratified restoring cases (Fig. 6.14). This increased strength of circulation

is caused by a larger level of basal melting, releasing a larger volume of freshwater

into the meltwater layer, increasing the buoyancy flux, leading to faster flow.

The initial calving reduces the strength of the circulation slightly, however the

lateral extent of the circulation remains constant. This implies a slight decrease in

overall ice volume melted, similar to the stratified case. Further calving (Fig. 6.18c)

results in the formation of an anticyclonic circulation within the fjord, similar to

Figure 6.14c, due to the steep increase in water column thickness as water flows out
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Figure 6.18: Barotropic stream function (contours) overlying ice draft (colored) for the
a) full ice shelf, b) 2012 calving event and c) collapse back to the 20 km location, with an
unstratified water column.

from under the ice.

The difference in overturning circulation can be seen by comparing the potential

temperature and salinity anomalies (Fig. 6.19) with those for the stratified water

column restoring (Fig. 6.15). It can be seen that without the presence of a restored

pycnocline, the meltwater layer follows the ice base to the ice front, after which it

reaches the surface rather then flowing along the pycnocline. The anomaly is larger

for the initial unstratified cases compared to their respective unstratified cases, due

to the increase in total melted volume. For the later cases where the ice draft is deep,

meaning the basal melt rates are similar for both the stratified and unstratified cases,

the strength of the anomalies is comparable.
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Figure 6.19: Potential temperature anomaly profiles along the centre of the domain for
the a) full ice shelf, b) 2012 calving event and c) collapse back to the 20 km location and
salinity anomaly profiles along the centre of the domain for the d) full ice shelf, e) 2012
calving event and f) collapse back to the 20 km location.

Figure 6.20 shows the relationship between ice shelf length and (a) mean basal

melt rate, (b) mean ice front melt and (c) total volume of ice melted, for the stratified

(red) and unstratified water columns.

The whole ice shelf mean melt rate is less sensitive to calving events under unstrat-

ified conditions when compared to stratified conditions. This is due to the removal

of the cooler insulating layer present under stratified conditions. The sensitivity of

the mean melt rate of the first 20 km, not affected by the insulating layer, is in close

agreement for both conditions. The levels of melt are greater or the unstratified

conditions due to the reasons already given.

The sensitivity of mean ice front melt rate to calving is consistent between both
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Figure 6.20: Relationship between ice shelf length and a) mean basal melt rate (solid
line - whole ice shelf, dashed line - first 20 km), b) mean ice front melt and c) total volume
of ice melted, for a stratified water column (red) and an unstratified water column (blue).

conditions. However under both conditions the total volume of ice melted decreases

with calving (Fig. 6.20c), indicating that the increase in ice front melting is insuffi-

cient to counterbalance the loss of basal ice melt volume due to calving.

As the sensitivity of mean basal melt rate changes between the two conditions,

whilst the ice base gradient remains constant across comparable simulations,it can

therefore be concluded that the increase in mean basal melt rate with calving, seen

under stratified conditions, is due to the influence of the cooler insulating layer that

intrudes under the shallower ice front of the ice shelf.
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6.4.3 Ice front undercutting

As we have seen above, as the ice shelf retreats, levels of ice front melting in-

crease, with larger levels of ice front melting occurring in the unstratified water

case. O’Leary and Christoffersen (2013) have shown that for tidewater glaciers, un-

dercutting caused by ice front melt can lead to calving, up to ten times the length

of the undercut upstream of the ice front. It is possible that a similar mechanism

could happen for ice shelves. In Section 5.4 it was shown that as the idealised ice

shelf retreated, an increase in ice front undercutting was found, leading to potential

further calving events.
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Figure 6.21: Ice front melt induced undercutting for all calving simulation for a) stratified
water column and b) unstratified water column.

Figure 6.21 shows the across-shelf mean ice-front melt rates, with the difference

between the surface and base melt rates representing the total undercutting. It can

be seen that there is undercutting occurring in both the stratified and unstratified
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water columns, with the degree of undercutting increasing as the ice shelf retreats,

similar to that seen in Section 5.4.

The melt rates near the surface for the unstratified cases are larger than for the

stratified cases, whilst the melt rates near the ice front base are similar in both

situations. This results in a larger undercutting when the water column is stratified.

This suggests that although the mean ice front melt rates are lower for the stratified

water column cases, they have the potential to have larger undercutting induced

calving events than for the warmer unstratified cases.

6.4.4 Discussion

Initial calving events remove areas of thinner ice with a low basal melt. This leads

to an increase in mean basal melt rate. This initial increase in mean basal melt rate

is caused by the cooler intruding surface layer which insulates the thinner ice near

the ice front. When calving continues and the ice shelf draft becomes deeper than

the pycnocline depth, the mean thermal forcing of the ice shelf is increased, leading

to an increase in mean melt rates. The basal mean melt rate of the first 20 km of

the ice shelf remains constant, indicating that calving events do not have an impact

on ice-ocean interactions upstream of the calving location in this model.

However, although the mean basal melt rate is increasing, the area of ice shelf

over which this melting occurs is decreasing at a faster rate, resulting in a decrease

in total volume of ice melted by basal melting. At the same time the mean ice front

melt rate is increasing, but not by enough to counterbalance the decrease in basal

melting, meaning the total volume of ice lost via ocean-induced melting decreases as

the ice shelf retreats.

The model suggests that the calving events of 2010 and 2012 have had little

effect on the pattern of basal melt rates, or on the total volume of ice melted by the

ocean. As the undercutting is minimal for these cases, it also suggests there would
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be minimal level of further undercutting-induced calving events.

As our model is stable, i.e. it’s draft and extent do not evolve in time in response

to basal melting, and does not include a coupled ice sheet model, it is not possible

to infer the impact of calving on the flow across the grounding line. However, if we

assume that it remains constant, or possibly increases slightly due to a decrease in

back stress, and that the level of surface melting stay constant, the reduction seen in

total ice volume melted would suggest that it is possible for the ice shelf to thicken

and potentially re-advance. It should be noted however that in calving the ice shelf,

more of the fjord becomes open water, which could allow for further changes in the

water column profile due to enhanced wind mixing. It could also allow a larger ice

mélange in front of the ice shelf, which could potentially increase back stress on the

ice shelf.

The potential for further calving caused by ice front undercutting increases with

ice shelf retreat, with the undercutting more pronounced for the stratified water

column. This suggests that calving of ice shelves floating in a water column with a

large stratification are at greater risk of further calving, compared to those floating

in a warmer, less stratified, water column.





Chapter 7

Conclusions

Ice shelves play an important role in the mass balance of an ice sheet, by providing

a link between the ocean and ice. Melting at the base of an ice shelf can play a

vital role in its mass balance and stability. Topographic channel features have been

found on the base of ice shelves, and have been found to alter melting, however

the mechanism behind this alteration is unknown. Here MITgcm has been used to

investigate the impact of topographic channels on ice-ocean interactions beneath an

idealised and realistic ice shelf.

I find that the inclusion of channels alters the flow of the sub-ice layer beneath

the ice shelf, changing the focus and intensity of the melt. In agreement with the

findings of Gladish et al. (2012), the overall mean melt rate decreases as the number of

channels increases. Further to this I find that, for a small number of larger channels,

this sensitivity of mean melt rate to channel number is high, but for a greater number

of smaller channels this sensitivity drops. This change in sensitivity is linked to a

change in flow regime beneath the ice shelf.

When there are no basal channels present, a geostrophically balanced flow is

set up beneath the ice shelf. There is an intensified eastern boundary current with

the highest melt rates occurring beneath this flow. The initial introduction of large

channels modifies the formation of the boundary current, inducing a circulation
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within each channel. This circulation consists of a southward flow on the western

slope of the channel and a northward flow on the eastern slope. There is little flow in

the channel crests. There is some transfer over the keels between the channels in an

eastward direction, which leads to slightly faster flows in the more easterly channels.

Due to the velocity dependence of melting the highest melt rates occur beneath

the strongest flow. This means that for a small number of large channels, the melt

rate has been redistributed from against the eastern boundary to along the eastern

slope of each channel. The high sensitivity found for these cases is caused by the

addition of ”no flow” regions. These are regions of the ice shelf where there is little

or no flow and are situated beneath crests and keels where the isopycnals are flat. As

further channels are added, so are more ”no flow” regions, whilst the geostrophic flow

on the channel slopes remains the same. This leads to a decrease in mean sub-ice

layer flow and therefore basal melting.

As further channels are added and the channels narrow, there becomes a point

where the sheared geostrophic circulation within the channel is no longer viable. At

this point it is replaced by an overturning circulation with a northward flow in the

channel crests and no flow over the channel keels. This in turn alters the location

of melting to within channel crests. This is much less sensitive to the channel width

due to the increase in ”no flow” area being smaller, reducing the mean basal melt

rate sensitivity to number of channels.

Although the presence of basal channels increases the mechanical instability of an

ice shelf (Rignot and Steffen, 2008; Vaughan et al., 2012), the addition of channels is

found to decrease an ice-shelf’s susceptibility to basal melting. This occurs for two

reasons, firstly, the melting is more evenly distributed over the ice shelf and, secondly,

the mean melt rate decreases. This stabilising effect is a possible explanation as

to why basal channels are observed in warm-water ice shelves in Greenland and

Antarctica. If the channels stabilise ice shelves, ice shelves with channels are more
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likely to persist, and a ‘survivor bias’ makes them more likely to be observed.

These findings suggest that there is a fine balance between the increase in me-

chanical instability and the decrease in susceptibility to basal melting. Without the

presence of these channels then the high melt rates beneath the boundary current

would have melted through the ice shelf causing it to collapse. Should conditions

change such that basal melting were to increase, then the combination of increased

melting and mechanical instability may cause the ice shelf to collapse.

To assess the susceptibility of Petermann Glacier to potential future changes in

Petermann Fjord a suite of idealised simulations was completed. These focused on

changing the stratified surface layer, a warming of the subsurface waters and large

calving events.

The stratified layer was found to provide a protruding insulative layer beneath

the shallower regions of the ice shelf. The meltwater layer follows the base of the ice

shelf until it reaches the pycnocline, at which point it detaches from, and flows away

from, the ice shelf. As melt rates are dependent on the velocity of the flow beneath

the ice shelf, when the meltwater layer detaches, this flow is removed from the ice

base and basal melting significantly reduces.

The impact of changing the depth of this stratified layer, be it permanent or

seasonal, is to change the depth at which the meltwater layer detaches from the

ice shelf, altering the area of the ice shelf in contact with this layer. Were the

stratification layer to deepen, a larger proportion of the ice shelf near to its terminus

will be insulated from the meltwater layer, and hence basal melting. This could lead

to a thickening of the ice shelf near the ice front, reducing the mechanical instability

with the potential for ice shelf growth. Conversely if the stratification layer were to

shallow, basal melting will occur closer to the ice front, causing it to thin and further

decrease it’s mechanical stability.

Should the warming signal observed by Johnson et al. (2011) continue and reach
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the levels of warming observed at Jakobshavn Isbræ (Holland et al., 2008a), then

the model predicts that the levels of basal melting will increase in a near linear

fashion. This is contrary to the findings of Johnson et al. (2011) who concluded

there is currently excess heat supplied to the cavity for the estimated levels of basal

melting. Significantly, melt rates near to the grounding line would increase, leading

to a thinning of the ice shelf in this area. This could lead to am increase in ice shelf

instability and increase the possibility of large calving events, such as those seen

in 2010 and 2012, and even ice shelf collapse and the acceleration of the grounded

ice section of Petermann Glacier. This would be similar to the observations at

Jakobshavn Isbræ (Holland et al., 2008a; Weidick et al., 2004).

This has a potentially significant impact on the northern section of Greenland Ice

Sheet. Should the warming signal both continue to propagate around the northern

coastline of Greenland and intensify, then the remaining ice shelves in this region

may collapse. This would in turn cause an acceleration of this regions outlet glaciers,

causing an increase in the mass loss of the ice sheet.

The impact of large calving events on Petermann Glacier was modelled, and it

was found that as the ice shelf retreated, the mean basal melt rate increased. This

was caused by the removal of areas of the ice shelf which have a shallower draft

and were hence insulated from the meltwater layer. However the ice shelf decreased

at a larger rate than the mean basal melt rate increased, leading to a reduction in

ice volume lost by basal melting. Under the assumption that the flux across the

grounding line were to remain constant (it is more likely it will increase due to the

reduction in buttressing), then there would be an increase in ice shelf mass balance

leading to a potential re-advancement towards the initial ice front position. The

model simulations however only consider ice shelf retreat without a warming signal.

Were the two to occur simultaneously, akin to the conditions at Jakobshavn Isbræ,

it is possible that the increased basal melting might balance or surpass the flux of
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ice across the grounding line, causing further collapse and glacier acceleration.

One consequence of ice shelf retreat is a deepening of the draft at the ice front.

This results in the ice front coming into contact with the deeper warmer waters,

leading to large melt rates on the ice front and melting induced undercutting. The

volume of ice melted from the ice front is smaller than the decrease in volume melted

by basal melting, leading to an overall reduction in ice volume melted as the ice shelf

retreats. Melting-induced undercutting causes a flexing of the ice front as it tries to

readjust to hydrostatic equilibrium. This flexing causes an increase in surface stress

near the ice front, promoting ice fractures and hence further calving.

O’Leary and Christoffersen (2013) found that the degree of further calving is

dependent on the size of the undercutting of the ice front. However to be solely

responsible for further ice shelf retreat, the melt induced undercutting would have to

cause calving up to 20 times it’s own magnitude upstream from the ice front. This

estimate is much greater than any estimate modelled by O’Leary and Christoffersen

(2013), and implies that a combination of ice shelf retreat and increased subsurface

warming would be required to prevent ice shelf re-advancement.

The study shows that although channels have a stabilising effect on ice shelves,

they do not protect them from future changes in ocean warming, changes in water

column stratification or large calving events.

When considering the impact of changes to oceanic forcing on Greenland Ice

Sheet as a whole, it is necessary to consider both ice shelves and tidewater glaciers.

A warming ocean would have a detrimental effect on both types of outlet glacier. Ice

shelves would undergo greater basal melting with the potential for ice shelf thinning

and retreat. Whilst tidewater glacier will undergo greater melting on the base of

their vertical ice fronts, causing greater melt-induced undercutting and hence further

calving. Both cases would result in glacier acceleration, increasing the export of ice

away from the ice sheet and hence resulting in a negative mass balance.
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The impact of changes to the stratification depth are a little more complicated.

Should the stratification depth increase in the fjords around Greenland, ice shelves

would become more stable due to a decrease in basal melting. However the differential

between melting at the surface and bottom at the terminus of a tidewater glacier

would increase. This in turn would lead to an increase in undercutting and, following

the work of O’Leary and Christoffersen (2013), an increase in calving upstream of

the terminus.

Conversely a decrease in stratification depth would cause ice shelves to thin and

potentially retreat, whilst the differential in melt rates on the vertical face of a

tidewater glacier would decrease, resulting in a reduction in calving. As calving can

occur upstream of the terminus up to a factor of four times the undercutting depth, a

decrease in calving can be substantially greater than an increase in ice front melting.

Therefore the impact of stratification depth on the mass balance of Greenland Ice

Sheet would take careful consideration and each marine terminating outlet glacier

would need to be considered individually.

Modelling of a realistic Petermann Glacier domain in MITgcm provided a level of

agreement with the idealised model in terms of channelised flow, basal melt location

and ocean circulation. This agreement helps substantiate the findings of the idealised

model and allows for their findings to be interpreted onto real world situations.

However large discrepancies became apparent when comparing the realistic model

to the observations of Johnson et al. (2011) and Rignot and Steffen (2008). The

structure of the modelled circulation within the fjord was vastly different to that

observed by Johnson et al. (2011) and the modelled circulation was a approximately

five times slower than the observations.

This was most likely caused by the lack of mixing present in the ocean, due to

constant ocean parameters being chosen rather than a vertical mixing closure scheme.

Other potential causes include unrealistic boundary conditions and the exclusion of
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external drivers such as tides and wind.

This reduction in circulation resulted in a smaller transport of heat into the

cavity, leading to the smaller melt rates modelled when compared to those of Rignot

and Steffen (2008). A comparison in the reduction of heat transport and mean melt

rate suggests that the model is approximately 3.5 times too efficient at basal melting.

Further studies to improve the realistic model, so that comparisons with obser-

vations are more meaningful and predictions made with the model are more robust,

require the consideration of several factors.

Firstly a vertical mixing scheme, such as the Pacanowski/Philander scheme, needs

to be implemented to ensure there is sufficient vertical mixing within the water

column to capture all of the relevant processes.

The boundary conditions, both in terms of flow into the domain and prescribed

salinity/potential temperature profiles need careful consideration. These have the

potential to alter both the structure and magnitude of the circulation within the

domain to become more aligned with observations. External drivers such as tides

and winds would also enhance the realistic model by providing further sources of

missing mixing.

To fully test the impact of the physical processes described here requires a coupled

model with an evolving ice sheet. Nevertheless the principle conclusions contained

within this thesis are believed to be robust.
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