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Abstract: Uptake and toxicity of Ni-Co mixtures in Enchytraeus crypticus were determined after 

4, 7, 10 and 14 d exposure. Generally, body concentrations of Ni and Co increased with 

increasing exposure concentrations. Ni body concentration was significantly reduced in the 

presence of Co, while Ni only marginally affected Co uptake. When expressed as free ion 

activities, individual toxicity of Ni and Co increased with time, with LC50s decreasing from 78.3 

and 511 µM at 4 d to 40.4 and 393 µM at 14 d, respectively. When expressed as body 

concentrations, LC50BodyNi remained constant with time whilst LC50BodyCo increased during the 

first 7 d but remained stable afterwards. As identified by the MIXTOX model, interactions 

between Ni and Co were mainly antagonistic when based on free ion activities, however, no 

interaction was observed when based on body concentrations. A process-based model, 

incorporating exposure time to analyse the mechanisms underlying the dynamic mixture toxicity 

confirmed the differences in toxicokinetics of the 2 metals. The author’s findings suggest that 

body concentrations, which incorporate bioaccumulation processes, are time-independent and 

can act as a more constant indicator of metal toxicity. The observed antagonism was mainly 

caused by competition between Co and Ni for binding sites and subsequent inhibition of Ni 

uptake. This competitive interaction occurred at the uptake level (toxicokinetics), but not at the 

target level (toxicodynamics). This article is protected by copyright. All rights reserved 

 

Keywords: Mixture toxicology, Bioaccumulation, Metal speciation, Toxicokinetics, 

Toxicodynamics 
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INTRODUCTION 

 Risk assessment of metals is usually based on toxicity data of single metals. As 

contamination in the environment rarely occurs as single metals but rather concerns (complex) 

mixtures of varying composition, this approach may have little environmental relevance [1]. 

Multiple metals may interact with each other, which leads to more-than-additive (synergism) or 

less-than-additive (antagonism) effects [2]. Hence, a risk assessment that ignores the possibility 

of joint action of metals is likely to underestimate or overestimate the actual risks. To meet 

future regulatory demands and ensuring adequate risk assessment [3], it is necessary to develop 

simple and efficient approaches for modelling metal mixture toxicity. 

 There are 2 most widely used models for predicting the effects of mixtures from the 

individual components: concentration addition (CA) and independent action (IA). The CA model 

assumes that mixture components have a similar mode of action, while IA assumes that the 

components have dissimilar modes of action [2,4]. The CA model usually estimates a higher 

combined effect than the IA model and therefore represents the worst-case scenario for mixture 

response [5]. In a risk assessment context, CA is therefore a more conservative choice when it is 

difficult to identify the mode of action of mixture components. It should be noted that both the 

CA model and the IA model in their standard form do not consider mixture interactions in 

estimating mixture toxicity. However, mixture components may interact at various levels: (1) 

exposure level, (2) uptake level, (3) target level [6,7]. Identifying interactions at relevant levels 

will therefore help to explain differences in interaction patterns that occur between different 

exposure media and between different test organisms. 

 The investigation of joint effects of mixtures on the basis of both external concentrations 

and body concentrations can contribute to a better understanding of the mechanism of 
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interactions at different levels. Body metal concentration has been shown to be a better indicator 

than external exposure concentration for predicting single metal toxicity to organisms [8-10]. 

Compared to external exposure concentrations, body concentration avoids the effect of 

environmental factors on metal accumulation [11]. In the present study, it is envisaged that body 

concentration of each mixture component may also serve as a useful indicator of mixture effects.  

The importance of time in determining uptake and toxicity of single metals in organisms 

has been widely reported [8,12]. Generally, with the increase of time the amount of metal 

accumulated in an organism increases and toxic effects occur when the critical body threshold is 

reached [9,13]. Uptake and elimination rates differ for each metal [14,15]. The different kinetics 

of metals cause a time-dependent composition of the internal metal mixtures in exposed 

organisms, and subsequently the joint toxicities of metal mixtures are also time-related [16]. 

Spehar and Fiandt [17] found that the joint action of metals for fathead minnows was more than 

additive in an acute toxicity test, but less than additive in a chronic test. Baas et al. [18] 

investigated the toxicity of binary metals mixtures to Folsomia candida, observing that the 

interactions between, for instance, Cu and Cd changed over time when based on the CA (or IA) 

model. Therefore, the evaluation of mixture toxicity should take exposure time into account. 

However, at present, most models developed for predicting mixture toxicity of metals are based 

on a fixed exposure time without considering the impact of time on toxic interactions of metals 

[19,20].  

 Ni and/or Co pollution in the environment mainly resulted from the burning of fossil 

fuels, spreading of sewage sludge and manure, and mining activities [21]. Elevated levels of Ni 

and/or Co can cause harmful effects on the environment and human health. As Ni and Co are 

frequently encountered together in the environment, assessment of their joint effects is extremely 
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relevant [22]. The toxic effects of single Ni and Co on soil organisms have been well studied 

[8,23,24], but the binary mixture toxicity of them has rarely been investigated. 

 The present study aims to determine time-dependent mixture toxicity of Ni and Co to 

Enchytraeus crypticus, to quantify the mixture interactions at different exposure times with the 

MIXTOX model, and to describe the dynamics of mixture toxicity with a process-based model. 

Two research questions will be addressed: 1) do the interaction patterns of Ni and Co vary with 

time?; and 2) do the interaction patterns differ from each other when exposure is expressed on 

the basis of free ion activities or body concentrations? 

MATERIALS AND METHODS 

Test organism 

Enchytraeids play an important role in the functioning of terrestrial ecosystems and are 

sensitive to chemical stressors [25]. Enchytraeus crypticus (Enchytraeidae; Oligochaeta; 

Annelida) was used as test organism in the present study. They were cultured in a climate room 

at 16 °C, with 75% relative humidity and in complete darkness. The animals were fed twice a 

week with a mixture of oat meal, dried baker’s yeast, yolk powder, and fish oil. Adults were used, 

which could be distinguished by white spots in the clitellum region and with a length of 

approximately 1 cm. 

Test medium 

A quartz sand-solution system was used to avoid the disturbance of complex soil 

processes and to enable better control of metal exposure and speciation in the toxicity tests. The 

quartz sand was pre-treated following the method of He and Van Gestel [8] to remove all the 

organic matter, carbonates, and reactive Fe and Mn components. All used chemicals were of 

reagent grade (Sigma-Aldrich; > 99%). A basic solution composed of 0.2 mM Ca
2+

, 0.05 mM 
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Mg
2+

, 2.0 mM Na
+
 and 0.078 mM K

+
 was used as the control. Stock solutions of NiCl2 and 

CoCl2 were prepared by adding different amount of NiCl2∙6H2O and CoCl2∙6H2O to the basic 

solution. Test solutions with Ni alone, Co alone, or a mixture of Ni and Co were prepared by 

adding different volumes of stock solution to basic solution. All test solutions were adjusted to 

pH 6.0 (5.95-6.05) by using 0.75 g/L MOPS (3-[N morpholino] propane sulfonic acid) 

(AppliChem; >99%), 0.75 mg/L MES (2-[N-morpholino] ethane sulfonic acid) (Sigma-

Aldrich; >99%) and 0.1 M NaOH when necessary. 

Toxicity test 

The mixture experiment consisted of 3 simultaneous treatment series (i.e. Ni alone, Co 

alone, and mixtures of Ni and Co). The concentrations of added Ni ranged from 0.2 to 12.8 

mg/L, and the concentrations of added Co from 3 to 96 mg/L. The detailed design of 

concentrations of mixture combinations can be seen in Figure S1 (Supplemental Data). Some 

combinations of the 2 metals at their highest concentrations were excluded because in our 

preliminary studies the test animals never survived combined exposure to these high 

concentrations. Toxicity tests with E. crypticus were conducted with 4 exposure times (4, 7, 10 

and 14 d) and 3 replicates for each treatment and exposure time. As metal toxicity varies with 

time, the test concentrations in the mixtures were slightly different at different time intervals. 

Ten adults were exposed in 100 mL glass jars filled with 20.0 g pre-treated quartz sand and 5.4 

mL test solution. The sand and the test solution were equilibrated for 1 d before introducing the 

animals. The experiments were incubated at 20 °C with a cycle of 12h light: 12h dark. The jars 

were weighted twice a week and water evaporation was compensated by adding deionized 

water. Animals were not fed during the experiment. Mortality was checked after different 
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exposure times. Surviving animals were collected, washed with deionized water and frozen at -

18°C for further analysis of body metal concentrations.  

Chemical analysis 

The initial concentrations of Ni and Co in the test solutions were analyzed by flame 

atomic absorption spectrophotometry (AAS; Perkin Elmer AAnalyst 100). The frozen animals 

were freeze dried for at least 24 h, weighed individually on a microbalance, and digested in a 7:1 

mixture of concentrated HNO3 (Mallbaker Ultrex Ultra Pure, 65%) and HClO4 (Mallbaker Ultrex 

Ultra Pure, 70%). Body concentrations of Ni and Co were measured by graphite furnace AAS 

(Perkin Elmer 1100B). DOLT-4 was used as certified reference material for quality control; the 

measured Ni and Co concentrations were always within 15% of the certified values. 

Data analysis 

Free ion activities of Ni and Co in the test solutions were calculated using the 

Windermere Humic Aqueous Model (WHAM VII) [26]. The measured pH values and 

concentrations of Ni, Co, Ca, Mg, Na and K were used as input parameters. The median lethal 

concentrations (LC50) with 95% confidence intervals (95% CI) of single Ni and Co based on 

free ion activities and body metal concentrations were calculated using the trimmed Spearman-

Karber method [27]. 

Model description 

Concentration-addition model (CA). Both Ni and Co are divalent cations in solutions 

with almost the same molecular weight. It is assumed that they may have a similar mode of 

action because of structural electronic similarities. The CA model was therefore used to predict 

the toxicity of Ni and Co mixtures. 
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 (1) 

where ci is the concentration of component i in the mixture, ECXi is the concentration of 

component i causing a certain effect X when applied alone, TUXi is the dimensionless toxic unit 

that quantifies the relative contribution of the individual component i to the toxicity of the 

mixtures; Mixture toxicity (MT) is regarded as the sum of the toxic units of the individual metals. 

In the present study, binary mixtures of Ni and Co were investigated and LC50 for mortality was 

selected as the endpoint, so Equation 1 can be rewritten as: 

  (2) 

When using free metal ion activity as the expression of exposure, cNi and cCo are the free ion 

activities of Ni and Co in the test solutions (µM), and LC50 (µM) is the free ion activity of Ni 

and Co causing 50% mortality of E. crypticus when applied singly (denoted as LC50{Ni
2+

} and 

LC50{Co
2+

}, respectively). When using body metal concentration as the expression of exposure, 

cNi and cCo are the body concentrations of Ni and Co in the organism (µM/kg dry body weight), 

and LC50 (µM/kg) is the dry body concentration of Ni and Co causing 50% mortality of E. 

crypticus when applied singly (denoted as LC50BodyNi and LC50BodyCo, respectively). 

A logistic dose-response model was used to correlate the survival of E. crypticus to the 

calculated MT after different exposure times.  

 (3) 

where S is the number of surviving E. crypticus, Smax the number of survivors in the control, b the 

slope parameter, and MT50 the MT level causing 50% mortality. The parameters were estimated 
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by fitting Equation 3 to the data for each exposure time separately, using the nonlinear regression 

module in SPSS 19.0. 

MIXTOX model. The MIXTOX model is basically a more elaborate version of the 

standard CA model that allows using additional parameters to quantify possible deviations (i.e, 

synergism, antagonism, dose-ratio or dose-level dependent synergism/antagonism) from the 

standard model, following the method of Jonker et al. [28]. Extra parameters are introduced into 

the model using a stepwise approach to describe deviations (see Jonker et al. [28] for details). 

The model was fitted to the data using the method of maximum likelihood while minimizing the 

sum of the squared residuals. The statistical significance of the improvement in fit from the 

extended parameters was obtained through chi-square (χ
2
) tests. The interpretations of the extra 

parameters can be found in Jonker et al. [28]. 

Process-based model. A process-based model was used for better understanding the 

dynamics of the effects of the mixture by taking into account the processes of uptake and 

elimination [18]. The main difference with the CA (or IA model) is that the entire time course of 

the toxic effects of the mixture is incorporated within 1 model. In this model, it was assumed that 

when the internal concentration exceeds a certain threshold, the probability to die starts to 

deviate from that of the control. For both metals in single and mixture exposures, 3 time-

independent parameters were estimated to describe the dynamic effect: a toxicological threshold 

below which no effects occur, no effect concentration (NEC) (mM), and which is a measure for 

the toxic potency of the compounds, the killing rate (mM
-1

 d
-1

) and a kinetic parameter, the 

elimination rate (d
-1

). In addition the model included the control or blank mortality rate (d
-1

) to 

correct for control mortality, and an interaction parameter for the mixtures. 
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RESULTS 

Body concentrations of mixtures of Ni and Co 

Body concentrations of one metal in the presence of the other metal after different 

exposure times are shown in Figures 1 and 2. Generally, increasing exposure concentrations of 

Ni and Co increased their uptake by E. crypticus. At different time points, the body concentration 

of Ni was significantly and negatively correlated with the increase of Co concentrations (p<0.01) 

(Figure 1). For example, at a Ni exposure concentration of 27.3 µM, body Ni concentration 

decreased from 177 to 51.6, 147 to 92.8, 153 to 80.8 and 151 to 55.3 µM/kg after 4, 7, 10 and 14 

d, respectively, when Co concentration increased from 0 to 814 µM. In contrast, the addition of 

Ni did not significantly affect the uptake of Co at the different exposure times (p>0.05) (Figure 

2). These findings suggest a strong interaction effect of Co on Ni during the uptake phase. 

Individual toxicity of Ni and Co after different exposure times 

The dose-response relationships for the effects of Ni and Co on the survival of E. 

crypticus after different exposure times are shown in Figure 3, using 2 expressions of exposure 

(free ion activities and body concentrations). Generally, mortality increased with increasing free 

ion activity and body concentration of each metal tested. When expressed as free ion activities, 

LC50{Ni
2+

} decreased gradually from 78.3 at 4 d to 40.4 µM at 14 d, and the final LC50{Ni
2+

} 

was not reached after 14 d exposure. LC50{Co
2+

} were reduced from 511 at 4 d to 393 µM at 14 

d, the toxicity of Co almost reached steady state after 10 d exposure, with an LC50{Co
2+

} of 401 

µM (Table 1). Interestingly, the slope of the dose-response curve for Ni became much steeper 

after 14 d compared to 4 d. When expressed as body concentrations, LC50BodyNi remained almost 

constant with the increase of time, being 341, 383, 330 and 341 µM/kg after 4, 7, 10 and 14 d, 

respectively, and slope of the dose-response curves showed little difference for different 
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exposure times. LC50BodyCo increased from 2155 after 4 d to 3184 µM/kg after 7 d, and then 

levelled off to values of 3840 and 3591 µM/kg after 10 and 14 d, respectively (Table 1). Ni was 

more toxic than Co to E. crypticus, with LC50s after different exposure times differing a factor 

of 7 to 10 when based on free ion activities and a factor of 6 to 10 when expressed on the basis of 

body concentrations. 

Toxicity of mixtures of Ni and Co after different exposure time 

In the mixture solutions of Ni and Co, the free ion activities of one metal were not 

significantly affected by the presence of the other metal (Supplemental Data, Figure S2). The 

observed toxic effects of Ni-Co mixtures after different exposure times are plotted against MT 

based on both free ion activities (Figure 4) and body metal concentrations (Figure 5). Generally, 

the survival rate of E. crypticus significantly decreased with increasing MT (p<0.01). On the 

basis of free ion activity, the model fit improved significantly from 4 d to 7 d, with R
2
 values 

increasing from 0.69 to 0.84. After 7 d no further improvement of the fits was observed, with R
2
 

of 0.82 at 10 d and 0.81 at 14 d (Table 2). The estimated MT50 (95% CI) were 1.19 (1.09-1.29), 

1.13 (1.07-1.19), 1.18 (1.13-1.22) and 1.16 (1.11-1.20) after 4, 7, 10 and 14 d, respectively 

(Figure 4). With the increase of exposure time, no significant changes in model fit were 

observed when based on body metal concentration, with R
2 

varying between 0.50 and 0.58 at the 

different exposure times (Table 2). The estimated MT50 (95% CI) were 1.02 (0.893-1.15), 0.845 

(0.729-0.929), 0.980 (0.880-1.08), 0.880 (0.744-1.02) after 4, 7, 10 and 14 d, respectively 

(Figure 5). 

The mixture data were further analysed using the MIXTOX model to quantify the 

deviation from concentration addition. The estimated value of the interaction parameters (a and 

b), the goodness of fitting (R
2
), and significance test results (p(χ

2
)) are shown in Table 2. When 
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based on free metal ion activity, the MIXTOX model showed that the interaction between Ni and 

Co after different exposure times was mainly antagonistic, with the value of parameter a being 

positive. The inclusion of parameter a (2.46) at 4 d significantly improved the model fit, with 

p(χ
2
)<0.05. For 7 and 10 d, the best model fit was obtained when including a second parameter 

bDR to describe a dose ratio-dependent deviation. The estimated values of bDR were positive, 

being 1.32 at 7 d and 2.12 at 10 d, indicating that a decreased joint effect was due mostly to Co. 

For 14 d exposure, the extension of the CA model with a second parameter bDL (-5.86) to 

describe dose level-dependent dependence provided the best description of the data. This 

revealed the interaction pattern was antagonism and the magnitude of antagonism was dose-level 

dependent. However, on the basis of body metal concentrations, for the treatments at all 4 

exposure times, the deviation from additivity was not significant (p(χ
2
) >0.05). 

The survival data of E. crypticus exposed to Ni and Co at different time points were fitted 

using the process-based model for both single and mixture exposure. The estimated parameters 

are shown in Table 3. For the single metal exposures, control mortality rate was rather low, 

8.0×10
-4

 and 6.5×10
-3

 d
-1

 for Ni and Co, respectively. The estimated NEC for Ni and Co were 

0.036 and 0.37 mM, respectively, indicating that E. crypticus is approximately 10 times more 

sensitive to Ni than to Co. The killing rate of Ni (10.2 mM
-1

d
-1

) was almost 3 times higher than 

that of Co (3.2 mM
-1

d
-1

). The elimination rates of Ni and Co were similar, with values of 1.66 d
-1

 

for Ni and 1.20 d
-1

 for Co. For the mixtures of Ni and Co, the killing rate of each metal was 

lower than that for the single exposures, being 3.63 mM
-1

d
-1 

for Ni and 1.43 mM
-1

d
-1 

for Co (i.e. 

≈ 3-fold differences). The elimination rate of Ni decreased from 1.66 to 0.70 d
-1 

in the presence 

of Co, while the elimination rate of Co was not affected by the presence of Ni. No significant 

interaction was found in the mixtures. 
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DISCUSSION 

Single toxicity 

When applied singly, Ni was more toxic to E. crypticus than Co, with the individual 

LC50 and NEC of Ni approximately 10 times lower than that of Co. The slope of the dose-

response curve of single Ni after 14 d exposure was much steeper than that after 4 d exposure, 

while the slope of Co was rather constant (Figure 3). In addition, it took a longer time for Ni 

toxicity to reach steady state than for Co toxicity. This indicates that Co is a faster acting toxicant 

than Ni. A number of studies have investigated the single toxicity of Ni and Co to aquatic and 

soil organisms. For instance, Griffitt et al. [29] found that 48h LC50 values of Ni and Co were 

1.48 and 9.72 mg/L, respectively, for Daphnia pulex, and 19.6 and 94.7 mg/L, respectively, for 

Ceriodaphnia dubia. Their study showed that Ni is approximately 5 times more toxic than Co 

after 48h. These results are consistent with our findings. The present study showed that the 

toxicity of Ni and Co increased with exposure time when based on free ion activities. Previous 

studies reported that toxicity of Ni to F. candida and E. crypticus increased over time and almost 

reached steady states after 49 d and 21 d exposure, respectively [8,16]. Bioaccumulation of a 

metal is the net result of uptake, distribution and elimination processes in an organism during 

exposure. The body concentrations of metals increase over time until steady state is reached 

between influx and efflux [30]. Toxic effects are induced when body metal concentration 

exceeds a critical level. Noteworthy, when single toxicity of Ni and Co was based on body 

concentrations, the LC50BodyNi was almost constant with time and the LC50BodyCo also remained 

constant from 7 d exposure onwards. He and Van Gestel [8] reported that the LC50 for the 

toxicity of Ni to E. crypticus expressed as body concentrations was approximately constant and 

independent of exposure time, with a value of 285 µM/kg, which was comparable with the result 



A
c

c
e

p
te

d
 P

re
p

ri
n

t

This article is protected by copyright. All rights reserved 

 

obtained in the present study (330-383 µM/kg). This suggests that body concentration is a better 

indicator of toxicity than free ion activity and that both Ni and Co in E. crypticus comply with 

the concept of Critical Body Residues [9].  

Mixture toxicity 

In general, the CA model well described the mixture toxicity of Ni and Co on the basis of 

free ion activities. The explained variation increased from 69% after 4 d to 84% after 7 d, and 

then remained constant. This suggests that the steady state of Ni and Co accumulation in the 

mixtures was not yet reached after 4 d exposure. Accumulation (uptake and elimination) rates 

vary according to the chemical nature of the compound, and also the size and type of organisms 

tested [31]. The accumulation rate of Co was found to be higher than that of Ni in bivalve 

species [32]. The differences in toxicokinetics of each mixture component may become an 

uncertainty factor when considering mixture interactions at a fixed time point during the uptake 

phase. When using body metal concentration as the metric of exposure, the toxicokinetic process 

is included [33]. So the fit of the CA model did not change with time when mixture toxicity was 

related to body concentrations, even when interactions occurred in the uptake phase. However, 

only approximately 50% of the variation in the data was explained by the CA model when using 

body concentrations. Within an organism, metal exposure can be regulated by storing in inert 

forms and detoxification, suggesting that body concentration cannot fully represent the 

concentration at target sites [13]. Hence, the use of internal concentrations as indicator of toxicity 

still does not incorporate the toxicodynamic processes that quantitatively link the body 

concentration to the effect at the level of the individual organism over time [34]. In addition, 

unlike plants, the body concentration of metals can only be analysed in surviving animals, which 

may not directly reflect the concentration in the dead animals and subsequently reduce the model 
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performance. One evidence is that the tissue concentration showed to be the best predictor of 

toxic effects of As to plants, but was not predictive of the toxicity to earthworms [35]. 

Interaction patterns at different levels 

In the present study, the existence of one metal cannot significantly affect the free ion 

activities of the other metal in the mixture solutions, indicating that no interaction occurred at the 

exposure level. The joint effect of Ni and Co after different exposure times was mainly 

antagonistic on the basis of free ion activities, and the fit of the MIXTOX model to the data was 

significantly improved when considering the deviations from concentration addition. Gikas [22] 

investigated the effects of Ni and Co on the microbial growth rate of activated sludge and found 

that mixture interactions shifted from synergism at relative low concentrations to antagonism at 

relative high concentrations. Whether mixture interactions are synergistic or antagonistic 

depends on whether one metal facilitates the uptake of the other or whether they compete for the 

same transport sites [36]. A possible explanation for the antagonistic interaction is that Ni and Co 

can compete with each other for uptake, thus resulting in less accumulation of either one or both 

metals. According to the concept of the Biotic Ligand Model (BLM), the coexisting cations can 

exert a protective effect by competing with metal ions for the binding sites on the surface of 

organisms and inhibiting the uptake of metals [37]. He et al. [38] provided evidence that Mg 

reduced the uptake of Ni through competition with Ni for the binding sites of E. crypticus. Lock 

et al. [24] reported that Mg also has a significant protective effect on the toxicity of Co to 

Enchytraeus albidus. Ni and Co are both divalent in solution and belong to the VIIIB group of 

the periodic table, having similar physicochemical properties. The competition for membrane 

binding sites and intracellular binding sites can occur for metals with similar ionic radii and 
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coordination geometry [39]. So, it is likely that Ni and Co share some common transport or 

target sites on the surface or inside the organisms.  

There was no deviation from additivity on the basis of body concentrations. Weltje [6] 

reported that the toxic effects of Cd, Cu, Pb and Zn mixtures were mainly antagonistic using total 

soil concentrations and concentration additive behaviour was found when using metal 

concentrations in earthworm tissues. This finding is consistent with the result of the present 

study. The deviation from the CA model can result from toxicokinetic and toxicodynamic 

interactions among components in the mixture. Metals in solutions may interact at various levels 

including during uptake (toxicokinetics) and at target sites within an organism (toxicodynamics) 

[1,6]. Different conclusions on the interaction of metals can be drawn when using different 

expressions of exposure. The activities of Ni and Co in the exposure solution were not affected 

by the presence of each other, ruling out the interactions at the exposure level. The difference of 

the interaction patterns based on free ion activities and body concentrations suggests that the 

competitive interaction between Ni and Co mainly occurred during uptake, which affected 

toxicokinetics and subsequently the quantity available at the binding sites on the surface of the 

organisms. No competition at the target level, which may affect toxicodynamics and the 

concentration of metals on the target sites inside the organism, was observed. 

In the presence of Co, the uptake of Ni was significantly reduced by 20-70%, while Ni 

did not exert appreciable effect on the uptake of Co (Figure 1 and 2), suggesting that Co acted 

as an antagonist and modified the bioaccumulation of Ni. In agreement with our results, Wang et 

al. [40] showed that the uptake of Zn and Co by plant roots was reduced in the presence of each 

other through a site competition mechanism. Franklin et al. [36] found that Cu inhibited the 

binding and cellular uptake of Zn, which resulted in decreased mixture toxicity to freshwater 
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algae (Chlorella sp.). These findings support our hypothesis that the antagonistic interaction 

between Ni and Co is caused by competition and subsequently reduced metal uptake. In the 

mixture solutions, Co concentrations were many-fold higher than Ni concentrations, this may 

explain why the uptake of Ni was reduced in the presence of Co and not vice-versa. Ni and Co 

interact with each other during the uptake process. This competition suggests a similar mode of 

action, providing a basis for assuming concentration-additive effects and supporting the selection 

of the CA model as a conservative choice for estimating the mixture toxicity of Ni and Co. 

CONCLUSIONS 

The present study determined the joint toxicity of Ni and Co to Enchytraeus crypticus 

and used 3 models (CA, MIXTOX and process-based model) to evaluate the toxic effects of Ni-

Co mixtures at different exposure times. Body concentration was found to be a time-independent 

measure of metal toxicity and a certain exposure time is needed to reach steady state. Interaction 

between Ni and Co was mainly antagonistic on the basis of free ion activities, and concentration 

additive on the basis of body concentrations. Toxicity of the Ni and Co mixture was dominantly 

determined by interactions at the uptake level (toxicokinetics), but not at the target level 

(toxicodynamics). The present study provided insight into the mechanism of the interactive 

effect of binary Ni and Co mixtures on the survival of E. crypticus at different interaction levels. 

Further research is needed to obtain more insight into the mechanisms of the interaction between 

metals by applying more advanced metal speciation models (e.g. WHAM-FTOX) and to 

investigate the mixture toxicity of metals in the context of soil ecosystems with more complex 

interactions.  
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Figure 1. Body Ni concentrations in Enchytraeus crypticus under the influence of Co after 

different times of exposure to different Ni concentrations in solutions embedded in an inert sand 

matrix. See Figure S1 for test design. 

Figure 2. Body Co concentrations in Enchytraeus crypticus under the influence of Ni after 

different times of exposure to different Co concentrations in solutions embedded in an inert sand 

matrix. See Figure S1 for test design. 

Figure 3. Effects of Ni and Co on the survival of Enchytraeus crypticus exposed for 4, 7, 10 and 

14 d to solutions embedded in an inert sand matrix. Ni and Co exposure levels are expressed as 

free ion activities (A, B) and body metal concentrations in the surviving enchytraeids (C, D). 

Figure 4. The relationship between the survival of Enchytraeus crypticus after 4 (A), 7 (B), 10 (C) 

and 14 (D) d exposure and binary mixture concentrations of Ni and Co expressed as the sum of 

toxic units (MT) based on metal free ion activities. The data points represent the observed values; 

the solid line shows the fit of a logistic dose-response model. See Figure S1 for test design. 

Figure 5. The relationship between the survival of Enchytraeus crypticus after 44 (A), 7 (B), 10 

(C) and 14 (D) d exposure and binary mixture concentrations of Ni and Co expressed as the 

sum of toxic units (MT) based on body metal concentrations. The data points represent the 

observed values; the solid line shows the fit of a logistic dose-response model. See Figure S1 

for test design. 
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Table 1. Median lethal concentrations (LC50) for the toxicity of single Ni and single Co to 

Enchytraeus crypticus at different exposure times in solutions embedded in an inert quartz sand 

matrix. Exposures were expressed as free ion activities and body metal concentrations in 

surviving animals, respectively. The 95% confidence intervals are given in between brackets. 

Time 

(d) 

LC50{Ni
2+

} 

(µM) 

LC50{Co
2+

} 

(µM) 

LC50BodyNi 

(µM/kg) 

LC50BodyCo 

(µM/kg) 

4 78.3 (68.8-87.9) 511 (489-534) 341 (301-381) 2155 (1718-2592) 

7 65.2 (63.1-67.3) 444 (423-465) 383 (371-394) 3184 (2842-3527) 

10 45.0 (42.9-47.2) 401 (389-413) 330 (305-356) 3840 (3337-4342) 

14 40.4 (38.7-42.1) 393 (370-416) 341 (313-368) 3591 (3162-4091) 
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Table 2. Mixture toxicity of Ni and Co to Enchytraeus crypticus after different times of exposure to test solutions embedded in an 

inert sand matrix. See Figure S1 for test design. The table summarizes the parameter values obtained by fitting the Concentration 

Addition (CA) module of the MIXTOX model [28]. CA is concentration addition; DR is dose ratio-dependent deviation from 

concentration addition; DL is dose level-dependent deviation from the concentration addition. The R
2
 value indicates the goodness of 

fit; a and b are the parameters of the deviation functions; p(χ
2
) is the statistic outcome of the χ

2 
test (p<0.05, significant difference).  

Time 

(d) 

 Free ion activity based   Body concentration based 

 R
2
 a bDR/bDL p (χ

2
) pattern R

2
 pattern 

4 
CA 0.69      0.53  

Deviation 0.86 2.46  2.1×10
-18

 Antagonism   No deviation 

7 
CA 0.84      0.56  

Deviation 0.90 0.16 1.32 0.027 DR   No deviation 

10 
CA 0.82      0.58  

Deviation 0.91 0.18 2.12 1.5×10
-5

 DR   No deviation 

14 
CA 0.81      0.50  

Deviation 0.90 0.14 -5.86 0.033 DL   No deviation 
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Table 3. The estimated parameters for the blank mortality rate, no-effect concentration (NEC), 

killing rate, and elimination rate for the mixture toxicity of Ni and Co to Enchytraeus crypticus 

after different exposure time exposed to test solutions embedded in an inert sand matrix, using 

the mixture toxicity model of Baas et al. [18]. SD is standard deviation. 

 Single Mixture 

 Ni (±SD) Co (±SD) Ni Co 

Blank mortality rate (d
-1

) 8.0×10
-4

 (±8×10
-4

) 6.5×10
-3

 (±2×10
-3

) 0.004 

NEC (mM) 0.036 (±0.003) 0.37 (±0.007) 0.043 0.40 

Killing rate (mM
-1

d
-1

) 10.2 (±2.3) 3.20 (±0.85) 3.63 1.43 

Elimination rate (d
-1

) 1.66 (±0.98) 1.20 (±0.34) 0.70 1.10 
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