1	Prolonged Sulfur Dioxide Degassing at the Soufrière Hills Volcano, Montserrat, and
2	implications for deep magma permeability
3	
4	Thomas Christopher ¹ *, Marie Edmonds ² , Benoit Taisne ³ , Henry Odbert ⁴ , Antonio Costa ⁵ , Victoria
5	Hards ⁶ , Geoff Wadge ⁷
6	
7	1. Montserrat Volcano Observatory, Salem, Montserrat, West Indies.
8 9	2. Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, Cambridgeshire UK,CB2 3EQ
10 11 12	 Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, N2-01B-25 Singapore 639798
13 14	4. School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
15 16	 Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Via Donato Creti, 12, 40128 Bologna, Italy Tel: (+39)0816108446
17	6. British Geological Survey Environmental Science Centre Nicker Hill Keyworth
18	Nottingham NG12 5GG
19 20	7. Environmental Systems Science Centre, University of Reading, Reading, UK
21	*corresponding author; <u>Thomas@mvo.ms</u>
22	
23	Words = 6743 References = 118 Tables = 1 Figures = 9
24	Abbreviated Title: Prolonged SO ₂ degassing at Souf Hills
25	
26	

27 Abstract

The installation of a network of UV spectrometers on the western flank of the Soufrière Hills 28 volcano has produced a robust dataset of sulfur dioxide fluxes over a thirteen year period (2000-29 2013). The emission of SO_2 has been quasi-continuous over the course of the eruption which is 30 in contrast to the highly discontinuous eruption of lava. Analysis of the flux time series indicates 31 32 that a degree of periodicity is present in the SO₂ signal, ranging from hours to years. Previous studies show that pulses in the SO₂ flux of \leq 50 days can be correlated with other volcanic 33 activity such as seismic activity and extrusion. We identify two longer period signals in the SO_2 34 data, one at \sim 5 months and the other at \sim 2 years, which are independent of lava extrusion and 35 ground deformation. We investigate possible causes of these periodic degassing signals, e.g. 36 hydrological, atmospheric, and magmatic controls. We hypothesize that the trends in the 37 degassing time series are sourced from deeper levels in the volcanic plumbing system, related to 38 deformation of the lower reservoir which brings about localized pressure changes. We also 39 discuss the mechanisms by which the sulfur-rich gases might reach the surface. 40

41

42 **INTRODUCTION**

Understanding volcanic sulfur dioxide (SO₂) degassing processes is an important tool for the
monitoring of volcanoes e.g. (Casadevall et al., 1983; Bluth et al., 1994; Fischer et al., 1994;
Young et al., 1998a; Aiuppa et al., 2009; Werner et al., 2013). Sulfur emissions from volcanoes
have been used to forecast the onset of impending eruptions (e.g. Caltabiano et al., 1994) or to
assess the level of activity during an ongoing eruption (e.g. Casadevall et al., 1983; Gerlach and
McGee, 1994; Mc Gee and Sutton, 1994; Hirabayashi et al., 1995; Luckett et al., 2002; Zobin et
al., 2008; Komorowski et al., 2010). In recent years, long time series of SO₂ emissions have been

50	built owing to recent developments in low-cost automated spectrometer networks which operate
51	in the ultra-violet region of the electromagnetic spectrum, allowing SO ₂ fluxes to be measured
52	every few minutes through daylight hours using Differential Optical Absorption Spectroscopy
53	(DOAS; e.g. Edmonds et al., 2003a; Galle et al., 2003; Mc Gonigle et al., 2003). Soufrière Hills
54	Volcano was the first focus of this volcano-monitoring development (Edmonds et al., 2003a;
55	Christopher et al., 2010), and consequently there now exists an unprecedented 18-year long time
56	series of SO ₂ emissions, the last 11 years a result of the spectrometer network. Over the course of
57	the eruption, the time series has lent insight into magma supply and eruption processes
58	(Edmonds et al., 2001; Edmonds et al., 2003b; Young et al., 2003; Edmonds et al., 2010;
59	Christopher et al., 2010; Nicholson et al., 2013), and has been used for volcano monitoring and
60	hazard assessment.

61

The andesite erupted over the course of the 1995-current eruption exhibits a wealth of 62 disequilibrium features on a range of scales, as well as decimeter-sized mafic enclaves (Murphy 63 et al., 1998; Murphy et al., 2000; Humphreys et al., 2009a; Barclay et al., 2010; Plail et al., in 64 press). The andesite is the result of a complex magma genesis, dominated by magma mixing and 65 fractional crystallization during its long residence in an upper-mid crustal magma reservoir 66 (Murphy et al., 1998; Murphy et al., 2000; Zellmer et al., 2003; Humphreys et al., 2009a; 2009b; 67 Humphreys et al., 2012; Christopher et al., in press), in common with other andesite systems 68 (e.g. Fichaut et al., 1989; Sato et al., 1999; Martel et al., 2006; Kent et al., 2010; Ruprecht & 69 Plank, 2013). The resulting hybrid magma contains ~ 45 vol% phenocrysts of plagioclase, 70 orthopyroxene and hornblende (Murphy et al., 1998; 2000), in a rhyolitic melt. 71

72

The volatile budget of such an open system is likely to be complex. The low concentrations of 73 sulphur in the plagioclase-hosted melt inclusions (<100 ppm, Edmonds et al., 2001) is not 74 sufficient to account for the mass of sulfur degassed during the eruption (which would require 75 melt concentrations of >1000 ppm sulfur; Christopher et al., 2010). This observation of "excess 76 sulfur" is in common with most other oxidized intermediate-silicic volcanic systems worldwide 77 (e.g. Andres et al., 1991; Gerlach & McGee, 1994; Wallace, 2001; Wallace, 2005; Shinohara et 78 al., 2008a; Wallace and Edmonds, 2011). Much of the sulfur in the system exists in the vapour 79 phase prior to magma ascent and eruption, and the vapour is probably replenished by intruding 80 mafic magma, either through second boiling during crystallization at the interface between the 81 two magmas, or by changes in solubility caused by the contrasting temperatures and/or oxygen 82 fugacity (Christopher et al., 2010; Edmonds et al., 2010; Edmonds et al, in press). 83

84

This kind of mechanism for volatile transfer has also been proposed to explain the sulfur budget of Pinatubo (e.g. Westrich & Gerlach, 1992; Wallace & Gerlach, 1994; Kress, 1997) and Unzen (e.g. Sato et al., 2005; Ohba et al., 2008; Shinohara et al., 2008b). The strong partitioning of sulfur into a hydrous vapor is consistent with thermodynamical and experimental studies which suggest that for oxidized silicic melts, the solubility of sulfur is low (Scaillet & Pichavant, 2003; Clemente et al., 2004; Moretti & Papale, 2004).

91

92 The flux of SO₂ gas from the volcano is observed to be variable on a range of timescales. The 93 variability has been attributed to shallow magma permeability during "stick-slip" eruptive 94 behavior (Watson et al., 2000), changes in lava extrusion rate (Young et al., 1998a; Luckett et 95 al., 2002) and over months to years timescales, sealing caused by the precipitation of silica in the

conduit and dome between eruptive phases (Edmonds et al., 2003b). Cyclic changes in SO₂ on a
timescale of ~50 days have been linked to cyclicity in lava extrusion and seismicity (Luckett et
al., 2002; Norton et al., 2002; Loughlin et al., 2010; Nicholson et al., 2013).

99

There remains, however, some unanswered questions regarding the emission patterns of volcanic 100 gases from Soufrière Hills, and some features of the dataset that make this eruption unique in our 101 view. The first is that over timescales of months to years, the emission of SO_2 appears to be 102 decoupled from the eruption of lava. In general, as much SO₂ degasses when the volcano is not 103 erupting as when it is erupting. Eruptive pauses last 12 to >24 months, and during these 104 relatively long periods SO₂ fluxes are frequently sustained at levels of >500 t/d for weeks to 105 months. This observation requires some deep-seated permeability or advection of the gas phase 106 107 to be operating, allowing gas to migrate through crystal-rich andesite at depth. Over the dataset as a whole, there are three long period cycles of SO₂ increase and decrease that bear no obvious 108 relation to the eruptive periods (Figure 1). 109

110

The second, related puzzle is that, in the 18th year of quasi-continuous degassing, and in the 111 absence of volcanic activity since February 2011, it would be a useful exercise to evaluate what 112 sort of degassing signature might herald the end of the eruption. Are the continued high fluxes of 113 SO_2 at the surface (>300 t/d) indicative of continued supply of mafic magma at depth, or is it 114 possible that the long-lived, large magma reservoir might be able to supply gas in the absence of 115 new magma, for this kind of extended period? These questions have important implications for 116 monitoring and hazard. In this paper, we present the full time series of SO₂ data, from July 1995 117 118 to July 2013. We evaluate the possible controls on the long timescale periodicity in the

timescale, including gas scrubbing/hydrological control, modulation by a lava dome, and deep

120 magma supply and convection processes. We then discuss the implications of our model for the

121 longevity of the degassing process after the end of the eruption.

122

123 ERUPTION OVERVIEW

124 The Soufrière Hills volcano is an andesitic lava dome complex on the island of Montserrat in the

125 lesser Antilles arc. The current eruption began on the evening of July 18th 1995 with ash venting

126 followed by phreatic explosions over the next weeks and months (Young et al., 1998b;

127 Robertson et al., 2000). Juvenile material arrived at the surface around November 15th 1995

128 (Young et al., 1998b) building the first lava dome of the eruption. The eruption has been

129 characterized by 1-2 years of lava effusion and associated dome growth interrupted by 1-2 year

long or less periods of no extrusion. This pattern of eruption is in contrast to the quasi-

131 continuous emissions of SO_2 throughout the eruption (Figure 2).

132

The effusive episodes are punctuated by pyroclastic flows generated by dome collapse or 133 vulcanian explosions. Episodes of lava extrusion and dome growth at Soufrière Hills are referred 134 to as phases (numbered I to V) while the periods of no magma production are referred to as 135 pauses. During each period of extrusion, deformation and seismic activity correlates strongly 136 with lava extrusion (Figure 3). The volcanic activity of phases I to V is described in detail 137 elsewhere (e.g. Aspinall et al., 1998; Young et al., 1998b; Miller et al., 1998; Calder et al., 2002; 138 Norton et al., 2002; Sparks & Young, 2002; Herd et al., 2005; Loughlin et al., 2010; Rvan et al., 139 2010; Wadge et al., 2010). 140

141	The first three phases of dome building were characterized by extended periods (on the order of
142	20 months) of extrusion and pause (Figures 1, 3). Phases IV and V were much shorter: phase IV
143	was characterized by two separate episodes of low extrusion rates punctuated by explosions, the
144	first in July-August 2008 and the second in December 2008-January 2009 (Komorowski et al.,
145	2010). An approximate volume of $30 \times 10^6 \text{ m}^3$ of andesitic lava was erupted for each episode
146	(Wadge et al., 2010). Phase V was also short lived (early October 2009 till mid February 2010),
147	and was associated with the extrusion of ~ 70 $\times 10^6$ m ³ of lava. As was the case with phase IV,
148	Phase V was characterized by sporadic explosive activity during extrusion (Stinton et al., in
149	press).
150	

151 METHODOLOGY FOR THE MEASUREMENT OF SULFUR DIOXIDE FLUX

From July 1995 till December 2001, intermittent SO₂ flux measurements were made with the 152 153 correlation spectrometer (COSPEC) and have been presented elsewhere (e.g. Gardner et al., 1998, Young et al., 1998b). Traverses with the COSPEC under the plume were done by car, boat 154 and helicopter. A detailed description of the COSPEC technique can be found in Stoiber et al. 155 (1987) and Young et al. (2003). Subsequent to the COSPEC; miniature, low cost ultraviolet 156 (UV) spectrometers were used to obtain SO₂ fluxes. The data are reduced using the Differential 157 Optical Absorption Spectroscopy (DOAS) technique (Platt, 1994). Two automated and 158 telemetered UV spectrometers, coupled with scanning devices, were installed on the western 159 flanks of the Soufrière Hills volcano at Lovers Lane and Brodericks (Figure 2) and they collect 160 spectra continuously during daylight hours, thus providing daily flux measurements with an 161 estimated error of <35% (Galle et al., 2002; Edmonds et al., 2003a). Details of installation of the 162 network, instrument specifications, spectral evaluation, mass flux calculation, associated errors 163

and other information relating to the Soufrière Hills UV scanning network is described in detail
by Edmonds et al. (2003a). The UV network provided a more robust and continuous dataset
compared to the COSPEC and has produced a virtually continuous record of SO₂ fluxes for more
than 10 years. It must be noted that the error varies on a daily basis in the measurements due to
variable conditions and precision is more reliable than accuracy for the flux measurements.

169

170 THE SULFUR DIOXIDE FLUX TIME SERIES

171 Phases I & II / Pauses I & II

Initial degassing measurements were performed at the Soufrière Hills from July 29th 1995 to 172 early September 1995 (Young et al, 1998a; Gardner and White, 2002). The measurements were 173 carried out during the period of early phreatic activity in the eruption, prior to the onset of dome 174 growth. SO₂ fluxes were 300 - 800 t/d and peaked at 1200 t/d on August 6th. The SO₂ emission 175 rate shows a general increase from 1996 to 1997 during the first extrusion phase (Figure 1). The 176 mean daily SO₂ flux during the first extrusion episode was 569 t/d. The highest measured daily 177 output was 4150 t/d on July 13th 1998; this high value followed closely a large dome collapse 178 which occurred on July 3rd 1998 (Norton et al., 2002; Edmonds et al., 2003b). The SO₂ flux 179 showed an overall downward trend during the first pause period with a daily mean of 699 t/d, 180 with a peak value of 4150 t/d occurring on July 13th 1998. From 1997 to mid 1999 (most of 181 phase I and all of pause I), the SO₂ signal is generally defined by large pulsed signal over the 182 183 duration (Figure 1).

184

185	The SO ₂ flux during the Phase II also define pulse like signals over durations of years, the first
186	from late 1999 to mid 2001 which peaked in late August – early September 2000, with a value of
187	2570 t/d (Figure 1). Another SO_2 pulse started in early 2002 and extends into the second pause
188	period. The SO ₂ flux during Phase II had a daily mean of 472 t/d. The SO ₂ flux during Phase II
189	peaked in early September 2000 (2570 t/d) after which the SO_2 flux decreased until around April
190	2001. This was followed by a general increase in SO_2 flux until the end of the extrusive episode
191	in early August 2003 (Figure 1).

192

The mean daily SO_2 flux during the entire second pause was 562 t/d. The general increase in SO_2 193 flux that began during Phase II continued into the second pause period until early September 194 195 2003 when there was a general decreasing trend until June 2004. The mean daily flux from the start of the pause period until June 2004 was 696 t/d, after which the daily fluxes defined a fairly 196 flat trend (~400 t/d), which continued until April 2005. The mean SO₂ flux over this month was 197 198 377 t/d. After April 2005, SO₂ flux began increase once again (up to 534 t/d) leading up to the onset of Phase III of lava extrusion (Figure 1). The peak SO₂ flux of the pause period (12,999 199 t/d) occurred on October 8th 2004, during the time when the mean daily flux for the month was 200 201 otherwise 388 t/d. This is the highest daily mean flux measured during the eruption to date.

202

203 *Phases III & IV / Pauses III, IV and V*

The general trend of increasing SO_2 flux from the second pause, continued into Phase III. The SO₂ flux increased up to October 2005 to a maximum flux of 1522 t/d, after which it broadly decreased up until July 2006 after which another period of low flux values (~ 300 t/d) occurred

and lasted until July 2007. The mean daily flux for the whole of Phase III is 440 t/d. The peak
flux value during Phase III (3980 t/d), occurred on the last day of lava extrusion (April 4th 2007).
It must be however noted that the mean daily flux for the first ten days of April 2007 was ~ 2000
t/d.

211

The SO₂ flux at the start of pause III were elevated over the eruption mean, however the flux decreased again and remained fairly low (274 t/d) until July 2007 when another general increase in the daily flux values began. This increasing trend in SO₂ flux continued until late May 2008; the mean daily flux during this period was 688 t/d. There was another trend of decreasing flux values from mid April 2008 till July 18th 2008, when the SO₂ flux was 412 t/d. This was followed by a significant elevation in the SO₂ flux over the next ten days (1100 t/d) that led up to the vulcanian explosion of July 29th 2008 that heralded the start of Phase IV a (Figures 1, 3).

219

The SO₂ flux remained elevated until early October 2008 when SO₂ flux again decreased with 220 221 time, which continued throughout all of Phase IV a, IV b and their subsequent pauses (Figures 1, 222 3). This decreasing trend was brought to an end by the onset of Phase V when the activity incapacitated the spectrometer network with constant heavy ash fall. The mean daily flux from 223 the onset of Phase IVa to the onset of Phase V is 675 t/d. The mean daily flux for Phase IVa is 224 923 t/d while the mean daily for Phase IV b is 451 t/d, which is consistent with a trend of waning 225 daily flux. Flux measurements resumed in mid March 2010 and since then there has been no new 226 lava production at the volcano (Figures 1, 3). The mean daily flux between March 17th 2010 and 227

August 31^{st} 2010 was ~ 400 t/d and has remained fairly constant (+/- 281 t/d), (Figures 1, 3). Over the entire eruption, the mean daily SO₂ flux has been ~ 500 t/d.

230

231	The SO_2 flux time series clearly show three pulses on time scales of 1.5-3 years (Table 1). The
232	amplitude of the pulses are (200-300 t/d) above the background of 300-400 t/d. The third and
233	most recent pulse had a longer period and higher amplitude than the previous two. Pulses on this
234	timescale appear to have ceased in early 2010, coincidental with the end of Phase V. The mean
235	daily SO ₂ output since then is similar to that of the periods intermediate between pulses.
236	Superimposed on these pulses that lasts 2-3 years are shorter timescale variability in the SO_2
237	signal on the order of days to months which is less systematic and appears better correlated with
238	other volanological phenomena such as lava extrusion and seismicity, volcano-tectonic (VT)
239	earthquakes in particular, which have been occurring since 2007 in short intense bursts lasting
240	less than 1 hour and are referred to as VT strings (Figure 4). VT strings are defined as a short
241	intense swarm of VT earthquakes lasting less than one hour, occurring during a low background
242	level of VT activity with four or more triggered events (Cole et al., 2010).

243

244 TIME SERIES ANALYSIS

Volcanic SO₂ flux time series typically contain error-induced noise that makes it difficult to
recognize and constrain periodicities without a statistical analysis. The time series presented here
also contains significant gaps that render statistical analysis by simple Fourier Transform
methods non-effective. Degassing time series datasets obtained from volcanoes have been
analyzed by wavelet analysis previously and have proven very useful in constraining

250 periodicities in volatile fluxes that relate to episodic volatile delivery (e.g. Oppenheimer et al.,

251 2009; Boichu et al., 2010).

252

$$\int_{-\infty}^{\infty} |\psi(t)|^2 dt = 1$$
 (1)

254

Wavelet analysis decomposes a time series into time–frequency space, thus making it possible to determine both the dominant modes of variability and how those modes vary in time (Torrence & Compo, 1998). Wavelet transforms are mathematical techniques, based on group theory and square integrable representations, which allows unfolding of a signal into both space and scale, by using analyzing functions called wavelets, which are localized in space (Farge, 1992). A wavelet is a wave-like oscillation whose amplitude changes from zero to some maximum then back to zero, or in other words decays over a finite duration.

262

$$\int_{-\infty}^{\infty} \psi(t) dt = 0$$
 (2)

264

This is mathematically achieved by imposing two restrictions on the wavelet function ψ (t). Equation (1) shows that the wavelet function must depart from zero for a limited duration while equation (2) requires a matching negative departure, thus creating a small wave. Generally, wavelets are crafted purposefully to have relevant properties that make them useful for processing a specific signal. The term wavelet function is generally used to refer to either orthogonal or nonorthogonal wavelets.

The nonorthogonal transform is useful for time series analysis, where smooth, continuous
variations in wavelet amplitude are expected and hence this is the type of wavelet function
employed in this study. A nonorthogonal wavelet function can be used with either the discrete or
the continuous wavelet transform (CWT) (Farge 1992). Thus the continuous wavelet transform
offers a continuous and redundant unfolding in terms of both space and scale.

276

277
$$\Psi(t) = \pi^{-1/4} e^{i\omega_0 t} e^{-t^2} / 2$$
 (3)

278

Wavelet transforms have the advantage of being able to analyze a time series with multiple
embedded signals. A Morlet wavelet is a symmetrical (CWT), comprising of an exponential
carrier wave modulated by a Gaussian function, equation (3). The Morlet wavelet has the added
ability to distinguish components of a time series as they change with time at differing scales.
The scale decomposition is obtained by dilating or contracting the chosen analyzing wavelet
before convolving it with the signal (Farge 1992).

285

The limited spatial support of wavelets is important because then the behavior of the signal at infinity does not play any role. Therefore the wavelet analysis or syn-thesis can be performed locally on the signal, as opposed to the Fourier transform, which is inherently nonlocal due to the space-filling nature of the trigonometric functions (Farge 1992; Percival & Walden, 2000).

290

291

292

293

294 *Wavelet results*

295	The wavelet analysis was applied to the entire dataset after running the data through an 11-day
296	median filter. Gaps in the time series were filled using random values from a population with the
297	same standard deviation as the data. For the wavelet analysis of such a random series, white
298	noise does not exhibit any cycles and hence produces gaps in the plot. The plots generated by the
299	wavelet analysis (Figure 5) confirm that there are two cycles in excess of 50 days: one at \sim 4-5
300	months and the other in the range \sim 2-3 years, with both being present throughout the entire SO ₂
301	time series and are independent of magma extrusion (Figures 1 & 6).
302	
303	Nicholson et al. (2013) identified cyclicity on time scales on the order of 2-3 years, 6-8 weeks
304	(50 days) and 10-14 days. Their Fourier Transform methods used for time series analysis differs
305	somewhat from our own. The gaps less than 14 days in the dataset were filled using linear

interpolation, however they employed reconstructive analysis methods to account for the larger
gaps. And a Short term Fourier Transform (STFT) was employed; a sliding window of spectral
snapshots over a specified duration, with each snapshot having varying degrees of overlap with
its neighbors. Window lengths of 256-128 days and overlaps of 50% to 99% were used.

310

311 **DISCUSSION**

In this section we explore the controls on the 4-5 months and the \sim 2-3 year periodicity in the SO₂ time series. We consider shallow controls: changes in the degree of scrubbing of SO₂ from the gases on long cycles controlled by changes in the groundwater level or other hydrological

315	factors; and changes in the shallow permeability of the conduit and lava dome (i.e. "open vent"
316	conditions might promote high gas fluxes, the presence of a lava dome might subdue
317	outgassing). We then consider deeper controls: the sulfur is thought to be linked ultimately to the
318	supply of mafic magma at depth (e.g. Edmonds et al., 2001; 2010).
319	
320	Models of ground deformation suggest there are two linked magma reservoirs, one at \sim 6 and one
321	at ~12 km depth (Elsworth et al., 2008; Foroozan et al., 2010; Paulatto et al., 2010; Foroozan et
322	al., 2011). Dual reservoirs feeding silicic volcanoes have been proposed elsewhere: Tomiya et
323	al. (2010) put forward petrological evidence for a dual reservoir configuration beneath Mt Usu
324	volcano in Japan. The depth at which the mafic magma interacts with the andesite is however not
325	well constrained thus while the SO ₂ flux at the surface may be a proxy for deep magma supply,
326	there is likely to be a time lag for S-rich vapour to escape from the system through a large body
327	of crystal-rich andesite.

328

During eruptive periods magmatic vapour is advected by upward-moving magma and augmented by syn-eruptive degassing, which can be clearly seen in the correlations between lava extrusion rate, seismicity and SO₂ flux recorded previously (e.g. Gardner and White, 1998; Young et al., 1998; Watson et al., 2000; Young et al., 2003; Nicholson et al., 2013). However, SO₂ outgassing during periods of no magma extrusion (pauses) are clearly not advected by moving magma. In this case it must migrate through a crystal-rich andesitic magma body to the surface.

335

336	We therefore investigate the characteristic time scales for a batch of gas to move through a large
337	andesite magma body. We also explore the possibility that the mafic magma body is convecting
338	at depth, and perturbations as a result of this convection might give rise to cyclic degassing. And
339	lastly we explore the timescales of magma convection in a crystal-rich andesite using existing
340	models (Kazahaya et al., 1994; Stevenson & Blake, 1998; Couch et al., 2001).

341

342 Metrological /Aquifer control

343 It has been shown that the abundance of SO_2 in volcanic plumes can be influenced by

344 groundwater aquifer levels, the hydrothermal system and atmospheric humidity, in a process

referred to as scrubbing (e.g. Doukas & Gerlach, 1992; Sutton et al., 1997; Symonds et al., 2001;

Gerlach et al., 2002; Duffell et al., 2003; Werner et al., 2006; Rodriguez et al, 2008; Werner et

al., 2012). Scrubbing involves the chemical interaction of SO₂ in the volcanic plume with water

and oxygen, described in equations 4 and 5. The interaction of SO_2 with H_2O yields the

hydrolysis reaction in equation 4, which results in the reduction of SO_2 and the formation of

hydrosulfuric acid (H_2SO_3), an inherently weak acid. This can be further oxidized to form mild

sulfuric acid (H_2SO_4) although this is slow process.

352

Scrubbing at the Soufrière Hills Volcano has been shown to account for SO_2 loss rates exceeding 10⁻³ s⁻¹ (Oppenheimer et al., 1998), with a mean of 10⁻⁴ s⁻¹ (Rodriguez et al., 2008). The spectrometers typically measure the plume within 5 minutes of the gas being emitted from the vent, and so using these loss rates we estimate that scrubbing might account for a typical underestimate of up to 70% of the SO₂ degassing from the vent (Rodriguez et al., 2008).

358	The loss rate of SO ₂ might vary between the wet and the dry season. The relative humidity is
359	heavily dependent on the rainy season, which coincides with the Atlantic hurricane season and
360	thus varies sub-annually. This variation in humidity through the year might explain the
361	differences in loss rates obtained by the afore-mentioned studies (Oppenheimer et al., 1998;
362	Rodriguez et al., 2008). Increased rainfall would thus act to lower the SO ₂ abundance in the
363	plume by scrubbing either in the subsurface hydrothermal system or in the atmosphere.
364	Oppenheimer et al. (1998) performed their measurements, finding the highest loss rates, during
365	the peak of the rainy season when the relative humidity would be highest for the year while
366	Rodriguez et al. (2008) performed their measurements on ash-free plumes during the dry season.

367

$$368 \quad SO_2 + H_2O = H_2SO_3 \tag{4}$$

$$369 \quad 2 H_2 SO_3 + O_2 = 2 H_2 SO_4 \tag{5}$$

370

SO₂ might also be removed prior to outgassing, in a subsurface hydrothermal system. 371 Geochemical studies the early 1990s revealed the existence of a large hydrothermal/geothermal 372 system in the entire southern portion of the island, beneath the Soufrière Hills volcano (Chiodini 373 et al, 1996). The hot springs in Soufrières (fumaroles) on the flanks of the volcano prior to the 374 onset of the current eruption contained sulfate and chloride species, indicative of dissolution of 375 376 magmatic gases into the water (Chiodini et al., 1996). Cold spring outputs on Montserrat are directly correlated with the groundwater levels. The rainy season coincides with the Atlantic 377 hurricane season and thus the 5 month pulsation might be modulated by the change in rainfall. A 378 379 comparison of the monthly output of two proximal springs over the same duration as the SO₂

dataset from the spectrometer network (Figure 7) shows no correlation between the datasets and
we therefore reject control by the hydrothermal/geothermal system as a primary control on the
SO₂ flux periodicity on 5 month timescales.

383

384 *Dome-modulated gas storage or release*

Dome collapses and explosions at the Soufrière Hills volcano are frequently accompanied by releases of large quantities of SO₂ (e.g. Herd et al., 2005; Carn & Prata, 2010; Komorowski et al., 2010). Lava domes may trap volatiles in the shallow plumbing system by loading the volcanic edifice, causing the closing of fractures around the volcanic conduit which inhibits volatile leakage, the effectiveness of which is dependent on the dome height and foot print (Woods and Huppert, 2003; Taisne & Jaupart, 2008). A wider and higher dome is more efficient at loading the edifice and thus acts to reduce SO₂ outgassing.

392

There is no detailed data regarding the width of the base of the lava dome; however the 1 km 393 394 diameter crater puts constraints on the dome foot print, and there have been a number of occasions when the base of the dome has filled the entire crater, for example during extrusion 395 phase II (late May 2002 till July 2003) and also in Phase III from February 2007 to April 2007 396 the dome had a volume of $\sim 200 \times 10^6 \text{ m}^3$ which is the largest to date (Ryan et al., 2010; Wadge et 397 al., 2010). The large dome persisted through the next pause period and through extrusive Phases 398 IV and V, with a net volume of $38 \times 10^6 \text{ m}^3$ of lava added to the dome during both episodes 399 (Stinton et al., in press). 400

401

402	The dome height was >1000 m a.s.l on April 4 th 2007 (Ryan et al., 2010) and has been
403	consistently greater than this since, particularly during Phase V (Stinton et al., in press). The low
404	SO ₂ flux during late 2006 and early 2007 is consistent with a dome-modulated SO ₂ signal.
405	However, the dome has had a volume of $\sim 200 \text{ x } 10^6 \text{ m}^3$ and a height of $> 1000 \text{ m}$ a.s.l since
406	2007, yet another pulse of SO ₂ occurred from June 2007 till Jan 2010, during a period when of
407	one of the largest emplaced domes of the eruption was present in the crater (Wadge et al., 2010;
408	Figure 8).

409

Thus the size of the lava dome may not be exerting a first order control on SO₂ flux. In mid-410 2003 the SO₂ flux was increasing contemporaneously with an increasing dome volume and 411 height (Figure 8). The highest extrusion rates during the eruption occurred in early 2006 leading 412 up to the May 20th 2006 collapse and also during Phase V. Both these periods coincide with a 413 waning SO2 flux (Figure 9), which is contrary to what you would expect for a first order control 414 415 since increased extrusion rates should enhance degassing at the surface. Conversely the general trend of increasing SO₂ fluxes observed between Phases III and IV occurred during a period of 416 no lava extrusion. Thus as is the case with the dome volume, there is also no correlation between 417 the SO₂ and andesite extrusion rate (Figure 9). We therefore propose that the 1.5-2.5 year pulses 418 in the SO₂ signal are neither modulated by the lava dome or extrusion rate. 419

420

421 SO_2 origin and degassing timescales

422 Petrological work on the eruptive products of Phase I showed that the enclaves and mafic

423 groundmass are indicative of the intrusion of mafic magma, which may trigger and fuel the

424	eruption (e.g. Barclay et al., 1998; Murphy et al., 1998; Murphy et al., 2000; Devine et al., 2003).
425	Melt inclusions hosted by plagioclase contain very little sulfur (Edmonds et al., 2001), certainly
426	not enough to account for the large fluxes of SO_2 outgassing at the surface. Hence the andesite
427	residing in the Soufrière Hills reservoir is thus thought to be in equilibrium with a significant
428	exsolved gas phase (e.g. Anderson, 1975; Gerlach, 1994; Wallace, 2001; 2005; Edmonds et al.,
429	2008; Wallace & Edmonds, 2011; Witham, 2011).
430	
431	The intruding mafic magma almost certainly supplies heat and volatiles to the overlying andesite,
432	by a process similar to either gas sparging (e.g. Bachman & Bergantz., 2006; 2008) where the
433	gases act as a "defrosting" agent, transferring heat to the overlying silicic magma (e.g. Bachman
434	& Bergantz., 2003), the development of volatile-rich melt plumes at the interface (.e.g. Philips &
435	Woods, 2002) or during second boiling which is caused by quench crystallization at the basalt –
436	andesite interface (e.g. Martin et al., 2006; Edmonds et al., in press).
437	
438	There is evidence, from e.g. diffusion profiles in Fe-Ti oxides (Devine et al., 2003) and the
439	preservation of the K ₂ O-rich heterogeneities interpreted to be due to mafic intrusion and
440	diffusive mixing (Humphreys et al., 2010) that the time scale between intrusion, heating of the
441	andesite, quench-driven degassing and eruption of the hybrid magmas is on the order of hours to
442	months. Patterns of ground deformation (Figure 3) reflect the eruption of andesite at the surface

443 (periods of deflation accompanying eruption) and recharge of mafic magma (inflation during

444 eruptive pauses) (e.g. Voight et al., 1999; Elsworth et al., 2008; Foroozan et al., 2011). The SO₂

445 pulses do not exhibit a correlation with ground deformation (Figure 3) indicating that there is no

first order control by the intrusion of magma at depth on the long cycles in the SO₂ flux at thesurface.

448

449 CYCLIC ACTIVITY AT Soufrière Hills AND AT OTHER LAVA-DOME BUILDING ERUPTIONS

450 Cyclic lava extrusion and or degassing displaying periodicities on several different time scales is

451 well documented at a number of different type of volcanoes (e.g. Denlinger & Hoblitt, 1999;

452 Voight et al., 1999; Voight et al., 2000; Barmin et al., 2002; Harris & Neri, 2002; Sparks &

453 Young, 2002; Lazute et al., 2004; Harris et al., 2005; Sweeney et al., 2008; Oppenheimer et al.,

454 2009; Wadge et al., 2010; Melnik & Costa, in press) and pulsations in magma discharge rates

455 appears to be characteristic of dome-building eruptions (Barmin et al., 2002).

456

457 Cyclic patterns in lava effusion and SO₂ emissions were evident from the onset of and has

458 characterized the Soufrière Hills eruption (e.g. Miller et al., 1998; Young et al., 1998; Voight et

459 al., 1998; 1999; Roberston et al., 2000; Lensky et al., 2008; Loughlin et al., 2010). For example,

Voight et al. (1998) identified a 6–14 h inflation cycle caused by magma pressurization at

shallow depths (< 0.6 km below the base of dome) during the first episode of dome building

462 (Phase I), which was related to non-linear dynamics of magma flow with stick-slip flow (e.g.

463 Denlinger & Hoblitt, 1999; Voight et al., 1999). Druit et al. (2002) reported cycles (10 hour

464 mean) in the vulcanian explosions of 1997 at the Soufrière Hills.

465

Sparks & Young (2000) identified a 6 to 7 week magma extrusion cycle in 1997 while Loughlin
et al. (2010) also showed that there was a two to six week pulsed signal in the magma discharge
rate during Phase III. More recently in Phase V, magma delivery to the surface occurred in three

469	major pulses ranging from 30-45 days duration (Stinton et al., in press), with sub-daily cycles on
470	the order or 4-14 hours (Odbert et al., in press). Odbert et al., (in press) further showed that
471	cyclic behavior at the Soufrière Hills volcano can range from sub-daily (hours) to muti-decadal.
472	It is not uncommon to encounter multiple superimposed cycles hence a single explanation will
473	not be satisfactory since multiple processes are likely involved (Costa et al., 2007). It has been
474	shown by many recent studies that pulsed out flux can exist in a system with a constant influx of
475	magma into a magma reservoir (Melnik & Sparks, 1999; Melnik & Sparks, 2002; Barmin et al.,
476	2002, Melnik & Costa, in press).
477	
478	A number of models exist that explain how the none-continuous delivery of lava to the surface
479	throughout the Soufrière Hills eruption. The models employ the nonlinear effects of
480	crystallization and gas loss which leads to rheological stiffening, and pressurization (e.g.
481	Melnik & Sparks, 1999; Voight et al., 1999). Rheological stiffening increases magma
482	overpressure (Melnik & Sparks, 2002), changes in magma pressure and crystallization kinetics
483	causes a strong feedback mechanism and multiple steady solutions for discharge rate (Melnik &
484	Sparks, 2002). Large changes in discharge rate and eruptive behavior can occur as the
485	consequence of small changes in chamber pressure thus promoting none linear extrusion of
486	magma at the surface (Melnik & Sparks, 2002). The system can thus fluctuate between low and
487	high discharge rates at the surface (Melnik & Sparks, 2005).
488	
489	Stick-slip magma flow in the upper conduit might result from degassing-induced changes in
490	crystal content and hence bulk viscosity of the magma (Sparks & Young 2002; Sparks, 2003)
491	When the magma overpressure drops to the dynamic strength of the slip surfaces, the plug sticks

492	and blocks the vent thus initiating another episode of increasing magma pressure and another
493	eruptive cycle (Lensky et al., 2008). Costa et al. (2007) porposed a model for the 6-7 week
494	cycles and attributed it to the elastic deformation of the dyke which connects the upper reservoir
495	to a conduit that leads to the surface, the dyke behaves like a capacitor that deforms and stores
496	magma eventually releasing it when the pressure increases to an optimum value.
497	
498	Pulsed lava effusion is documented for the Mt St Helens (1980-1987) eruption and the
499	Santiaguito (1922-2000) eruption. Barmin et al. (2002) used a mathematical model to describe
500	the pulsatory behavior of Mt St Helens, which incorporates the non-linear response to magma
501	extrusion to chamber pressure, owing to the changes in rheological properties and development
502	of overpressures during degassing and ascent (Melnik and Sparks, 1999; Melnik and Sparks,
503	2002; Slezin, 2003). They showed that for a fixed chamber pressure, three different magma
504	ascent velocities can occur. For a steady magma influx, decreases in conduit diameter, crystal
505	growth rate and crystal number density in the magma can generate periodic behavior.
506	
507	Elsworth et al. (2008) suggests a fairly steady and continuous influx of mafic magma into the
508	lower reservoir with a flux rate in the range of $(1.2-2.0)$ m ³ s ⁻¹ (Foroozan et al., 2011; Melnik &
509	Costa, in press). The short timescales between reheating and extrusion (e.g. Devine et al., 2003;
510	Rutherford & Devine 2003) indicate that basalt influx into the andesite reservoir and the
511	extrusion of andesite are correlated in time and likely occur for similar durations, this is
512	consistent with the model of Melnik & Costa (in press) where influx of fresh magma into the
513	and esite reservoir results in dome extrusion. The short term pulsations in the SO_2 signal, < 50
514	days (Nicholson et al., 2013) that can be correlated with seismic phenomena (e.g. Luckett et al.,

2002; Norton et al., 2002; Loughlin et al., 2010) are likely driven by the shallower and smallerandesite reservoir.

517

The duration of the effusion phases have however decreased since 2007, suggesting variability in one or more parameters relevant for modulating oscillatory periods of the lava effusion. We did mention that the duration of the SO_2 pulses are similar to that of the first three extrusion episodes and the last pulse occurred just after the nature of the extrusion changed. It would thus be also fair to conclude that the durations of the initial three extrusion phases and the durations of the pulses in the SO_2 signal are not coincidental.

524

525 *Reservoir connectivity model*

Barmin et al. (2002) showed that lava extrusion rate can be variable at constant pressure in the 526 andesite reservoir; however we have demonstrated that the SO₂ pulses are not being controlled 527 by the andesite reservoir. Recent geophysical studies (e.g. Foroozan et al., 2010, Melnik & 528 Costa, in press) have shown that the deformation signal which correlates with extrusion at the 529 Soufrière Hills (Figure 3) can be attributed to both reservoirs. Melnik and Costa, (in press) 530 assumed a steady influx into the deep chamber and used numerical modeling to show that both 531 reservoirs are deforming and the level of connectivity between the two reservoirs are via an 532 elastic dyke determines how much of an influence the deformation of the lower reservoir has on 533 the signal at the surface at any time during the deformation cycle in Figure 3. Thus connectivity 534 between the reservoirs at any point in time is dependent on the dyke width. 535

536

537	Variations in the connectivity of the reservoirs can also influence the pressure within each
538	reservoir and the dyke. When the connectivity is weak the overpressure in the deep reservoir
539	reaches high values (~ 70 MPa) and remains fairly constant during the cycle and the influx of
540	fresh magma into the shallow reservoir is also nearly constant, high chamber overpressure
541	influences the horizontal extension of the dyke and a consequent improvement of connectivity
542	between two magma chambers. For a strong connectivity between the chambers their
543	overpressures increases or decreases during the cycle in a synchronous way. Influx into the
544	shallow chamber stays close to the extrusion rate at the surface.
545	
546	Though the solubility of sulphur solubility is not mainly controlled by pressure (e.g. Scaillet et
547	al., 1998; Scaillet & Pichavant, 2005) there is no petrological evidence indicating systematic
548	changes in melt composition, temperature, fO_2 and fS_2 that correlate with the SO ₂ pulses. We
549	therefore propose that the $(1.5-2.5 \text{ year})$ pulses in SO ₂ are related to localized pressure changes
550	in the lower reservoir or dyke. The similarity in duration of the first three extrusion phases with
551	the SO ₂ pulses is consistent with the driving mechanism for both being similar.
552	

553 *Conclusions*

We have used statistical techniques to demonstrate that like with magma production, there are pulsations in the SO₂ signal that vary on times scales of months to years. The pulses are however not correlated with extrusion which makes interpretation a bit tedious. We have however being able to rule out processes such as meteorological and aquifer control for controlling the SO₂ signal. We have also ruled out modulation by the lava dome. We therefore rely on the already established geophysical models of (Foroozan et al., 2010, Melnik & Costa,

560	in press) which established the presence of two reservoirs and how they physically interact with
561	each other given a certain degree of connectivity. We therefore embrace the model of (Melnik &
562	Costa, in press) where pressure changes occur in the lower reservoir and connecting dyke that
563	can influence sulfur solubility in the resident magma.
564	
565	
566	
567	
568	
569	
570	
571	
572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	

584

References

585

AIUPPA A., FEDERICO C., GIUDICE G., GIUFFRIDA G., GUIDA R., GURRIERI S., LIUZZO M., 586 MORETTI R. & PAPALE P. 2009. The 2007 eruption of Stromboli volcano. Insights from real-587 time measurement of the volcanic gas plume CO2/SO2 ratio. Journal of Volcanology and 588 589 Geothermal Research. 182(3-4), 221-230. 590 591 ANDRES R.J., ROSE W.I., KYLE P.R., DESILVA S., FRANCIS P., GARDEWEG M. & MORENO ROA 592 H. 1991. Excessive sulfur dioxide emissions from Chilean volcanoes. Journal of Volcanology and Geothermal Research 46 (3-4), 323-329. 593 594 ASPINALL W. P., MILLER A. D., LYNCH L. L., LATCHMAN J. L., STEWART R. C., WHITE, R. A & 595 POWER J. A.1998. Soufrière Hills Eruption, Montserrat, 1995-1997. Volcanic earthquake 596 locations and fault plane solutions. Geophysical Research Letters 25 (18), 3397-3400. 597 598 599 BACHMANN O.& BERGANTZ G.W. 2003. Rejuvenation of the Fish Canyon magma body: A 600 601 window into the evolution of large-volume silicic magma systems 10.1130/G19764.1 Geology 31 (9), 789-792 602 603 604 BACHMANN O.& BERGANTZ G.W. 2006. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. 605 Journal of Volcanology and Geothermal Research 149(1-2), 85-102. 606 607 BACHMANN O.& BERGANTZ G.W. 2008. Deciphering Magma Chamber Dynamics from Styles of 608 Compositional Zoning in Large Silicic Ash Flow Sheets. Reviews in Mineralogy and 609 Geochemistry 69 (1), 651-674 610 611 BARCLAY J., RUTHERFORD M.J., CARROLL M.R., MURPHY M.D., DEVINE J.D., GARDNER J. & 612 SPARKS, R.S.J. 1998. Experimental phase equilibria constraints on pre-eruptive storage 613 conditions of the Soufriere Hills magma. Geophysical Research Letters 25(18), 3437-3440. 614 615 BARCLAY J., HERD R. A., EDWARDS B. R., CHRISTOPHER T.E., KIDDLE E. J., PLAIL M. & 616 DONOVAN A. 2010. Caught in the act: Implications for the increasing abundance of mafic 617 enclaves during the recent eruptive episodes of the Soufrière Hills Volcano, Montserrat. 618 Geophysical Research Letters 37, L00E09, doi:10.1029/2010GL042509. 619 620 BARMIN A., MELNIK O. & SPARKS R.S.J. (2002). Periodic behavior in lava dome eruptions. 621 Earth and Planetary Science Letters 199(1-2), 173-184. 622 623 BLUTH G.J.S., CASADEVALL T.J., SCHNETZLER C.C., DOIRON S.D., WALTER L.S., KRUEGER A.J. 624 & BADRUDDIN M. (1994). Evaluation of Sulfur-Dioxide Emissions from Explosive Volcanism -625 626 the 1982-1983 Eruptions of Galunggung, Java, Indonesia. Journal of Volcanology and 627 Geothermal Research 63(3-4), 243-256. 628

- BOICHU M., OPPENHEIMER C., TSANEV V. & KYLE P.R. 2010. High temporal resolution SO2
- flux measurements at Erebus volcano, Antarctica. *Journal of Volcanology and Geothermal Research* 190(3-4), 325-336.
- 632
- CALDER E.S., LUCKETT R., SPARKS R.S.J. & VOIGHT B. 2002. Mechanisms of lava dome
 instability and generation of rockfalls and pyroclastic flows at Soufrière Hills Volcano,
- 635 Montserrat. *Geological Society, London, Memoirs* **21** (1), 173-190
- 636
- 637 CALTABIANO T., ROMANO R. & BUDETTA G.1994. SO2 flux measurements at Mount Etna
 638 (Sicily). *Journal of Geophysical Research*. 99(D6), 12809-12819.
- 638 639
- Carn S.A. & Prata F.J. 2010. Satellite-based constraints on explosive SO2 release from Soufriere
 Hills Volcano, Montserrat. *Geophysical Research Letters* 37. doi: 10.1029/2010GL044971
- 642
- 643 CASADEVALL T., ROSE W., GERLACH T., GREENLAND L.P., EWERT J., WUNDERMAN R. &
- SYMONDS R. 1983. Gas Emissions and the Eruptions of Mount St. Helens through 1982. Science
 221(4618), 1383-1385.
- 646
- 647 CHIODINI G., CIONI R., FRULLANI A., GUIDI M., MARINI L., PRATI F. & RACO B. 1996. Fluid
 648 geochemistry of Montserrat Island, West Indies. *Bulletin of Volcanology* 58 (380-392).
- 649
- 650 CHRISTOPHER T., EDMONDS M., HUMPHREYS M.C.S. & HERD R.A. 2010. Volcanic gas 651 emissions from Soufriere Hills Volcano, Montserrat 1995-2009, with implications for mafic
- emissions from Soufriere Hills Volcano, Montserrat 1995-2009, with implications for n magma supply and degassing. *Geophysical Research Letters* **37**. L00E04, doi:
- 653 10.1029/2009GL041325.
- 654
- 655 CHRISTOPHER T., HUMPHREYS M.C.S., BARCLAY J., GENAREAU K., De ANGELIS S.M.H., PLAIL
- 656 M. & DONOVAN A. 2012. Petrological and Geochemical Variation during the Soufrière Hills 657 Eruption (1995-2010). *Geological Society of London Memoir*, eds. G. Wadge, R. Robertson, B.
- Voight, The eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010.
- 659
- 660 COLE P., BASS V., ELIGON C., MURREL C., ODBERT H., SMITH P., STEWART R., STINTON A.,
- 661 SYERS R., ROBERTSON R. & WILLIAMS P. Report to the Scientific Advisory Committee on
- 662 Volcanic Activity at Soufriere Hills Volcano Montserrat. Report on Activity between 28
- February 2010 and 31 October 2010 Open File Report OFR 10-02a
- 664
- 665 COSTA A., MELNIK O., SPARKS R.S.J. & VOIGHT B. 2007. Control of magma flow in dykes on
- cyclic lava dome extrusion. *Geophysical Research Letters* 34(2). doi: 10.1029/2006GL027466
 COUCH S., SPARKS R. & CARROLL M. 2001. Mineral disequilibrium in lavas explained by
- 668 convective self-mixing in open magma chambers. *Nature* **411** (1037-1039).
- 669
- DENLINGER, R.P. & HOBLITT, R.P. 1999. Cyclic eruptive behavior of silicic volcanoes. *Geology* 27(5), 459-462.
- 672

- 673 DEVINE J.D., RUTHERFORD M.J., NORTON G.E. & YOUNG S.R. 2003. Magma Storage Region
- Processes Inferred from Geochemistry of Fe Ti Oxides in Andesitic Magma, Soufrière Hills
 Volcano, Montserrat, W.I. *Journal of Petrology* 44(8), 1375-1400.
- 676
 677 DOUKAS M.P. & GERLACH T. 1992. Sulfur dioxide scrubbing during the 1992 eruptions of
 678 Crater Peak, Mount Spurr volcano, Alaska. *The 1992 eruptions of Crater Peak vent, Mount*679 *Spurr volcano*, Alaska (ed. T. E. C. Keith). US Geol. Surv. Bull. **2139**, 47-57.
- 680
- 681 DRUITT T. H., YOUNG S. R., BAPTIE B., BONADONNA C., CALDER E. S., CLARKE A. B., COLE P.
- 682 D., HARFORD C. L., HERD R. A., LUCKETT R., RYAN G. & VOIGHT, B. 2002. Episodes of cyclic
- 683 Vulcanian explosive activity with fountain collapse at Soufriere Hills Volcano, Montserrat.
- 684 *Geological Society, London, Memoirs* **21**(1). 281-306 685
- 686 EDMONDS M., PYLE D. & OPPENHEIMER C. 2001. A model for degassing at the Soufriere Hills
- 687 Volcano, Montserrat, West Indies, based on geochemical data. *Earth and Planetary Science*
- 688 *Letters* **186**(2), 159-173.
- 689
- 690 EDMONDS M., HERD R.A., GALLE B. & OPPENHEIMER C.M. 2003. Automated, high time-691 resolution measurements of SO₂ flux at Soufriere Hills Volcano, Montserrat. *Bulletin of*
- 692 *Volcanology* **65**(8), 578-586.
- 693
- EDMONDS M., OPPENHEIMER C., PYLE D.M., HERD R.A. & THOMPSON G. 2003. SO2 emissions
 from Soufriere Hills Volcano and their relationship to conduit permeability, hydrothermal
 interaction and degassing regime. *Journal of Volcanology and Geothermal Research* 124(1-2),
 23-43.
- 698
- EDMONDS M., AIUPPA A., HUMPHREYS M., MORETTI R., GIUDICE G., MARTIN R.S., HERD R.A.
 & CHRISTOPHER T. 2010. Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano. *Geochemistry Geophysics Geosystems* 11 (4). doi: 10.1029/2009GC002781
- 701 702
- 703 EDMONDS M., HUMPHREYS M.C.S., HARUI E., HERD R., WADGE G., RAWSON H., LEDDEN R.,
- 704 PLAIL M., BARCLAY J., AIUPPA A., CHRISTOPHER T., GIUDICE G. & GUIDA R. 2014. Pre-eruptive
- vapour and its role in controlling eruption style and longevity at Soufrière Hills Volcano.
- 706 *Geological Society of London Memoir*, eds. G. Wadge, R. Robertson, B. Voight, The eruption of
- 707 Soufrière Hills Volcano, Montserrat from 2000 to 2010.
- 708
- 709 ELSWORTH D., MATTIOLI G., TARON J., VOIGHT B. & HERD R. 2008. Implications of Magma
 710 Transfer Between Multiple Reservoirs on Eruption Cycling. *Science* 322 (246-248)
- 711
- FARGE M. (1992). Wavelet Transforms and Their Applications to Turbulence. *Annual Review of Fluid Mechanics* 24 (395-457).
- 714 FICHAUT M., MARCELOT G. & CLOCCHIATTI R. 1989. Magmatology of Mt. Pelée (Martinique,
- 715 F.W.I.). II: petrology of gabbroic and dioritic cumulates. *Journal of Volcanology and*
- 716 *Geothermal Research* **38**(1-2), 171-187.
- 717

- Fischer T.P., Morrissey M.M., Calvache M.L., Gomez D., Torres R., Stix J. & Williams S.N.
- 1994. Correlations between SO₂ Flux and Long-Period Seismicity at Galeras Volcano. *Nature*368 (135-137).
- 721
- FOROOZAN R., ELSWORTH D., VOIGHT B. & MATTIOLI G.S. 2010. Dual reservoir structure at
 Soufriere Hills Volcano inferred from continuous GPS observations and heterogeneous elastic
 modeling. *Geophysical Research Letters* 37. doi: 10.1029/2010GL042511.
- 724 725
- FOROOZAN R., ELSWORTH D., VOIGHT B. & MATTIOLI G.S. 2011. Magmatic-metering controls
 the stopping and restarting of eruptions. *Geophysical Research Letters* 38. L05306, doi:
 10.1029/2010GL046591.
- 729

730 GALLE B., OPPENHEIMER C., GEYER A., McGONIGLE A.J.S., EDMONDS M. & HORROCKS L.

- 2003. A miniaturised ultraviolet spectrometer for remote sensing of SO₂ fluxes: a new tool for
 volcano surveillance. *Journal of Volcanology and Geothermal Research* 119(1-4), 241-254.
- volcano surveillance. Journal of Volcanology and Geothermal Research 119(1-4), 241-254.
 733
- GARDNER C.A. & WHITE R.A. 2002. Seismicity, gas emission and deformation from 18 July to
 25 September 1995 during the initial phreatic phase of the eruption of Soufrière Hills Volcano,
 Montserrat *Geological Society, London, Memoirs* 21 (1), 567-581
- 737
 738 GERLACH T.M. & McGEE K.A. 1994 Total sulfur dioxide emissions and pre-eruption vapor739 saturated magma at Mount St. Helens, 1980-88. *Geophysical. Research. Letters* 21(25), 2833740 2836.
- 741
- HARRIS A.J.L. & NERI M. 2002. Volumetric observations during paroxysmal eruptions at Mount
 Etna: pressurized drainage of a shallow chamber or pulsed supply? *Journal of Volcanology and Geothermal Research* 116(1-2), 79-95.
- 745
- HARRIS A., DEHN J., PATRICK M., CALVARI S., RIPEPE M. & LODATO L. 2005. Lava effusion
 rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity
 at Stromboli. *Bulletin of Volcanology* 68(2), 107-117.
- HERD R.A., EDMONDS M. & BASS V.A.2005. Catastrophic lava dome failure at Soufrière Hills
 Volcano, Montserrat, 12-13 July 2003. *Journal of Volcanology and Geothermal Research* 148
 (3-4), 234-252.
- 752
- HIRABAYASHI J., OHBA T., NOGAMI K. & YOSHIDA M. 1995. Discharge Rate of SO₂ from Unzen
 Volcano, Kyushu, Japan. *Geophysical Research Letters* 22(13), 1709-1712.
- 756
- HUMPHREYS M.C.S., CHRISTOPHER T. & HARDS V. 2009. Microlite transfer by disaggregation of
 mafic inclusions following magma mixing at SoufriSre Hills volcano, Montserrat. *Contributions to Mineralogy and Petrology* 157(5), 609-624.
- 760
- 761 HUMPHREYS M.C.S., EDMONDS M., CHRISTOPHER T. & HARDS V. 2009. Chlorine variations in
- the magma of Soufriere Hills Volcano, Montserrat: Insights from Cl in hornblende and melt
- r63 inclusions. *Geochimica Et Cosmochimica Acta* **73**(19), 5693-5708.

764 765 HUMPHREYS M.C.S., EDMONDS M., BARCLAY J., PLAIL M., PARKES D. & CHRISTOPHER T. 2012.

A new method to quantify the real supply of mafic components to a hybrid andesite.

Contributions to Mineralogy and Petrology 65 (1) 191-215 766 767 KARLSTROM L., DUFEK J. & MANGA M. 2010. Magma chamber stability in arc and continental 768 crust. Journal of Volcanology and Geothermal Research 190(3-4), 249-270. 769 770 KAZAHAYA K., SHINOHARA H. & SAITO G. (1994). Excessive Degassing of Izu-Oshima 771 Volcano Magma Convection in a Conduit. Bulletin of Volcanology 56(3), 207-216. 772 773 KENT A.J.R., DARR C., KOLESZAR A.M., SALISBURY M.J. & COOPER K.M. 2010. Preferential 774 eruption of andesitic magmas through recharge filtering. 3(9), 631-636. 775 776 KOMOROWSKI J.C., LEGENDRE Y., CHRISTOPHER T., BERNSTEIN M., STEWART R., JOSEPH E., 777 FOURNIER N., CHARDOT L., FINIZOLA A., WADGE G., SYERS R., WILLIAMS C. & BASS V. 2010. 778 779 Insights into processes and deposits of hazardous vulcanian explosions at Soufriere Hills Volcano during 2008 and 2009 (Montserrat, West Indies). Geophysical Research Letters 37. 780 L00E19, doi: 10.1029/2010GL042558. 781 782 783 KRESS V. 1997. Magma mixing as a source for Pinatubo sulphur. 389(6651), 591-593. 784 LAUTZE N.C., HARRIS A.J.L., BAILEY J.E., RIPEPE M., CALVARI S., DEHN J., ROWLAND S.K. & 785 Evans-Jones K. 2004. Pulsed lava effusion at Mount Etna during 2001. Journal of Volcanology 786 and Geothermal Research 137(1-3): 231-246. 787 788 LENSKY N.G., SPARKS R.S.J., NAVON O. & LYAKHOVSKY V. 2008. Cyclic activity at Soufrière 789 Hills Volcano, Montserrat: degassing-induced pressurization and stick-slip extrusion 790 Geological Society, London, Special Publications 307 (1), 169-188 791 792 LINDE A.T., SACKS S., HIDAYAT D., VOIGHT B., CLARKE A., ELSWORTH D., MATTIOLI G., 793 MALIN P., SHALEV E., SPARKS S. & WIDIWIJAYANTI C. 2010. Vulcanian explosion at Soufrière 794 795 Hills Volcano, Montserrat on March 2004 as revealed by strain data. Geophysical Research Letters 37(19), L00E07. 796 797 798 LOUGHLIN S.C., LUCKETT R., RYAN G., CHRISTOPHER T., HARDS V., De ANGELIS S., JONES L. & STRUTT M. 2010. An overview of lava dome evolution, dome collapse and cyclicity at 799 Soufrière Hills Volcano, Montserrat, 2005 - 2007. Geophysical. Research. Letters. 37: L00E16. 800 doi: 10.1029/2010GL042547 801 802 LUCKETT R., BAPTIE B. & NEUBERG J. 2002. The relationship between degassing and rockfall 803 signals at Soufriere Hills Volcano, Montserrat. Geological Society, London, Memoirs 21(1), 595-804 805 602. 806 MARTEL C., RADADI Ali, A., POUSSINEAU S., GOURGAUD A. & PICHAVANT M. 2006. Basalt-807 808 inherited microlites in silicic magmas: Evidence from Mount Pelée (Martinique, French West Indies) Geology 34(11): 905-908. 809

- 810 MARTIN V.M., HOLNESS M.B. & PYLE D.M. 2006. Textural analysis of magmatic enclaves from
- the Kameni Islands, Santorini, Greece. *Journal of Volcanology and Geothermal Research* 154(12), 89-102.
- 813
- 814 McGEE K.A. & SUTTON, A.J. 1994. Eruptive activity at Mount St Helens, Washington, USA,
- 1984-1988: a gas geochemistry perspective. *Bulletin of Volcanology*, **56** (435-446).
- 816
- 817 McGonigle A.J.S., Oppenheimer C., Hayes A.R., Galle B., Edmonds M., Caltabiano T.,
- 818 SALERNO G., BURTON M. & MATHER T.A. 2003. Sulphur dioxide fluxes from Mount Etna,
- Vulcano, and Stromboli measured with an automated scanning ultraviolet spectrometer. *Journal of Geophysical Research: Solid Earth* 108(B9): 2455.
- 821
- MELNIK O. & COSTA A. 2014. Dual chamber-conduit models of non-linear dynamics behaviour
- at Soufrière Hills Volcano, Montserrat. *Geological Society of London Memoir*, eds. G. Wadge,
- R. Robertson, B. Voight, The eruption of Soufrière Hills Volcano, Montserrat from 2000 to2010.
- MELNIK O. & SPARKS R.S.J. 1999. Nonlinear dynamics of lava dome extrusion *Nature* 402 (37 41) doi:10.1038/46950
- 828 MELNIK O. & SPARKS R.S.J. 2002. Dynamics of magma ascent and lava extrusion at Soufrière
- Hills Volcano, Montserrat. *Geological Society, London, Memoirs* **21**(1), 153-171.
- 830
- MELNIK O. & SPARKS R.S.J. 2005. Controls on conduit magma flow dynamics during lava dome building eruptions. *Journal of Geophysical Research: Solid Earth* **110**(B2): B02209.
- 833
- MILLER A.D., STEWART R.C., WHITE R.A., LUCKETT R., BAPTIE B.J., ASPINALL W.P.,
- MILLER A.D., STEWART R.C., WHITE R.A., LUCKETT R., DAPTIE D.J., ASPINALL W.P.,
 LATCHMAN J.L., LYNCH L.L. & VOIGHT B. 1998. Seismicity associated with dome growth and
- collapse at the Soufriere Hills Volcano, Montserrat. *Geophysical. Research. Letters.* **25**(18),
- 837 3401-3404.
- 838
- MORETTI, R. & PAPALE, P. 2004. On the oxidation state and volatile behavior in multicomponent
 gas -melt equilibria. *Chemical Geology* 213(1-3), 265-280.
- 841
- 842 MURPHY M.D., SPARKS R.S.J., BARCLAY J., CARROLL M.R. & BREWER T.S. 2000.
- Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano,
- 844 Montserrat, West Indies. *Journal of Petrology* **41**(1), 21-42.
- 845
- 846 MURPHY M.D., SPARKS R.S.J., BARCLAY J., CARROLL M.R., LEJEUNE A.M., BREWER T.S.,
- MACDONALD R., BLACK S. & YOUNG S. (1998). The role of magma mixing in triggering the
 current eruption at the Soufriere Hills volcano, Montserrat, West Indies. *Geophysical Research*
- 849 Letters 25(18): 3433-3436.
- 850
- 851

852 Nicholson E.J., Mather T.A., Pyle D.M., Odbert H.M. & Christopher T. 2013. Cyclical patterns 853 in volcanic degassing revealed by SO2 flux timeseries analysis: An application to Soufrière Hills Volcano, Montserrat. Earth and Planetary Science Letters 375 (0), 209-221. 854 855 NORTON G.E., WATTS R.B., VOIGHT B., MATTIOLI G.S., HERD R.A., YOUNG S.R., DEVINE G.E., 856 ASPINNALL W.P., BONADONNA C., BAPTIE B.J., EDMONDS M., JOLLY A.D., LOUGHLIN S.C., 857 LUCKETT R. & SPARKS S.J. 2002. Pyroclastic flow and explosive activity at Soufriere Hills 858 859 Volcano, Montserrat, during a period of virtually no magma extrusion (March 1998 to November 1999) Geological Society, London, Memoirs 21(1), 467-481. 860 861 ODBERT H.M., STEWART R.C & WADGE G. 2014. Cyclic phenomena at Soufriere Hills Volcano, 862 Montserrat. Geological Society of London Memoir, eds. G. Wadge, R. Robertson, B. Voight, The 863 eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010. 864 865 OHBA T., HIRABAYASHI J., NOGAMI K., KUSAKABE M. & YOSHIDA M. 2008. Magma degassing 866 process during the eruption of Mt. Unzen, Japan in 1991 to 1995: Modeling with the chemical 867 868 composition of volcanic gas. Journal of Volcanology and Geothermal Research Scientific drilling at Mount Unzen 175(1-2), 120-132. 869 870 OPPENHEIMER C., FRANCIS P. & STIX J. 1998. Depletion rates of sulfur dioxide in tropospheric 871 volcanic plumes. Geophysical Research Letters 25(14), 2671-2674. 872 873 874 OPPENHEIMER C., LOMAKINA A.S., KYLE P.R., KINGSBURY N.G. & BOICHU M. 2009. Pulsatory magma supply to a phonolite lava lake. *Earth and Planetary Science Letters* **284**(3-4), 392-398. 875 876 PAULATTO M., ANNEN C., HENSTOCK T.J., KIDDLE E.J., MINSHULL T.A., SPARKS R.S.J. & 877 VOIGHT B. 2011. Magma chamber properties from integrated seismic tomography and thermal 878 modeling at Montserrat. Geochemistry Geophysics Geosystems 13 (1), 879 doi:10.1029/2011GC003892 880 881 PAULATTO M., MINSHULL T.A., BAPTIE B., DEAN S., HAMMOND J.O.S., HENSTOCK T., KENEDI 882 C.L., KIDDLE E.J., MALIN P., PEIRCE C., RYAN G., SHALEV E., SPARKS R.S.J. & VOIGHT B. 883 2010. Upper crustal structure of an active volcano from refraction/reflection tomography, 884 Montserrat, Lesser Antilles Geophysical Journal International 180 (2): 685-696 885 886 Percival D. & Walden A. 2000. Wavelet Methods for Time Series Analysis (Cambridge Series in 887 Statistical and Probabilistic Mathematics), Cambridge University Press. 888 889 PHILLIPS J.C. & WOODS A.W. 2002. Suppression of large-scale magma mixing by melt-volatile 890 separation. Earth and Planetary Science Letters 204(1-2), 47-60. 891 892 PLAIL M., BARCLAY J., HUMPHREYS M.C.S., EDMONDS M., HERD R.A. & CHRISTOPHER T. 2012. 893 Characterisation of mafic enclaves in the erupted products of Soufrière Hills Volcano, 894 Montserrat 1995-2010. Geological Society of London Memoir, eds. G. Wadge, R. Robertson, B. 895 Voight, The eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010. 896 897

- 898 PLATT U. 1994. Differential optical absorption spectroscopy (DOAS). *Air Monitoring by*
- *Spectroscopic Technique* **127**: 27-84.
- 900
- ROBERTSON R.E.A., ASPINALL W.P., HERD R.A., NORTON G.E., SPARKS R.S.J. & YOUNG S.R.
 2000. The 1995-1998 eruption of the Soufriere Hills volcano, Montserrat, WI. *Philosophical*
- Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering
 Sciences 358(1770), 1619-1637.
- 905
- RODRIGUEZ L.A., WATSON I.M., EDMONDS M., RYAN G., HARDS V., OPPENHEIMER C.M.M. &
 BLUTH G.J.S. 2008. SO2 loss rates in the plume emitted by Soufriere Hills volcano, Montserrat. *Journal of Volcanology and Geothermal Research* 173(1-2), 135-147.
- 909
- Ruprecht, P. and Plank, T. (2013). "Feeding andesitic eruptions with a high-speed connection
 from the mantle." 500(7460): 68-72.
- 912
- RUTHERFORD M.J. & DEVINE J.D. 2003. Magmatic Conditions and Magma Ascent as Indicated
 by Hornblende Phase Equilibria and Reactions in the 1995-2002 Soufrière Hills Magma. *Journal*of Petrology 44(8), 1433-1453.
- 916
- 917 RYAN G.A., LOUGHLIN S.C., JAMES M.R., JONES L.D., CALDER E.S., CHRISTOPHER T., STRUTT
- M.H. & WADGE G. 2010. Growth of the lava dome and extrusion rates at Soufriere Hills
 Volcano, Montserrat, West Indies: 2005-2008. *Geophysical Research Letters* 37. L00E08, doi:
- 920 10.1029/2009GL041477.
- 921
- 922 SATO H., NAKADA S., FUJII T., NAKAMURA M. & SUZUKI-KAMATA K. 1999. Groundmass
- pargasite in the 1991-1995 dacite of Unzen volcano: phase stability experiments and
- volcanological implications. *Journal of Volcanology and Geothermal Research* 89(1-4), 197 212.
- 926
- 927 SATO H., HOLTZ F., BEHRENS H., BOTCHARNIKOV R. & NAKADA S. 2005. Experimental
- Petrology of the 1991-1995 Unzen Dacite, Japan. Part II: Cl/OH Partitioning between
- Hornblende and Melt and its Implications for the Origin of Oscillatory Zoning of Hornblende Phonographic Learning of Potencier, 4f(2), 220, 254
- 930 Phenocrysts. *Journal of Petrology* **46**(2), 339-354.
- 931 Scaillet B. & Pichavant M. 2005. A model of sulphur solubility for hydrous mafic melts:
- application to the determination of magmatic fluid compositions of Italian volcanoes. *Annals of Geophysics*. 48 (4-5) 671-698.
- 934
- Scaillet B., Clemente B., Evans B.W. & Pichavant M. 1998. Redox control of sulfur degassing in
 silicic magmas. *Journal of Geophysical Research*. 103(B10): 23937-23949.
- 937
- 938 SHINOHARA H. 2008. Excess Degassing from Volcanoes and Its Role on Eruptive and Intrusive
- 939 Activity. *Reviews of Geophysics* **46**(4). doi:10.1029/2007RG000244.
- 940
- 941

- 942 SHINOHARA H., OHBA T., KAZAHAYA K. & TAKAHASHI H. 2008. Origin of volcanic gases
- discharging from a cooling lava dome of Unzen volcano, Japan. *Journal of Volcanology and Geothermal Research* 175(1-2), 133-140.
- SPARKS R.S.J. & YOUNG S.R. 2002. The eruption of Soufriere Hills Volcano, Montserrat (1995-1999): overview of scientific results. *Geological Society, London, Memoirs* 21(1), 45-69.
- 948 949
- SPARKS R.S.J. 2003. Dynamics of magma degassing. *Geological Society, London, Special Publications.* 213(1). 5-22
- 952 953
- STEVENSON, D.S. & BLAKE, S. 1998. Modelling the dynamics and thermodynamics of volcanic
 degassing. *Bulletin of Volcanology* 60(4), 307-317.
- 956 957 STINTON A.J., COLE P.D., ODBERT H.M., CHRISTOPHER T.E., AVARD G. & BERNSTEIN M. 2014.
- Evolution of the Soufrière Hills volcano during a short, intense episode of dome growth: 4
- 959 October 2009 11 February 2010. *Geological Society of London Memoir*, eds. G. Wadge, R.
- Robertson, B. Voight, The eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010.
- STOIBER R.E., WILLIAMS S.N. & HUEBERT B. 1987. Annual contribution of sulfur dioxide to the
 atmosphere by volcanoes. *Journal of Volcanology and Geothermal Research* 33(1-3), 1-8.
- SWEENEY D., KYLE P.R. & OPPENHEIMER C. 2008. Sulfur dioxide emissions and degassing
 behavior of Erebus volcano, Antarctica. *Journal of Volcanology and Geothermal Research* **177**(3), 725-733.
- 968
- TAISNE B. & JAUPART C. 2008. Magma degassing and intermittent lava dome growth.
 Geophysical Research Letters 35(20). L20310, doi: 10.1029/2008GL035432.
- 971
- TOMIYA A., TAKAHASHI E., FURUKAWA N. & SUZUKI T. 2010. Depth and Evolution of a Silicic
 Magma Chamber: Melting Experiments on a Low-K Rhyolite from Usu Volcano, Japan. *Journal of Petrology* 51 (6), 1333-1354
- 975
- TORRENCE C. & COMPO G.P. 1998. A Practical Guide to Wavelet Analysis. *Bulletin of the American Meteorological Society* **79**(1), 61-78.
- 978
- VOIGHT B., CONSTANTINE E.K., SISWOWIDJOYO S. & TORLEY, R. 2000. Historical eruptions of
 Merapi Volcano, Central Java, Indonesia, 1768-1998. *Journal of Volcanology and Geothermal Research* 100(1-4), 69-138.
- 981 982
- 983 VOIGHT B., HOBLITT R. P., CLARKE A. B., LOCKHART A. B., MILLER A. D., LYNCH L. &
- 984 MCMAHON J. 1998. Remarkable cyclic ground deformation monitored in real-time on
- 985 Montserrat, and its use in eruption forecasting. *Geophysical Research Letters* **25** (18) 3405-3408
- 986 doi: 10.1029/98GL01160
- 987

VOIGHT B., SPARKS R.S.J., MILLER A.D., STEWART R.C., HOBLITT R.P., CLARKE A., EWART J., 988 989 ASPINALL W.P., BAPTIE B., CALDER E.S., COLE P., DRUITT T.H., HARTFORD C., HERD R.A., JACKSON P., LEJEUNE A.M., LOCKHART A.B., LOUGHLIN S.C., LUCKETT R., LYNCH L., NORTON 990 991 G.E., ROBERTSON R., WATSON I.M., WATTS R. & YOUNG S.R. 1999. Magma flow instability and cyclic activity at Soufriere Hills Volcano, Montserrat, British West Indies, Science 992 993 **283**(5405), 1138-1142. 994 995 WADGE G., HERD R., RYAN G., CALDER E.S. & KOMOROWSKI J.C. 2010. Lava production at Soufriere Hills Volcano, Montserrat: 1995-2009. Geophysical Research Letters 37. L00E03, 996 997 doi:10.1029/2009GL041466. 998 WALLACE P.J. 2001. Volcanic SO₂ emissions and the abundance and distribution of exsolved gas 999 in magma bodies. Journal of Volcanology and Geothermal Research 108(1-4), 85-106. 1000 1001 WALLACE P.J. 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on 1002 1003 melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research 140(1-1004 3), 217-240. 1005 1006 WALLACE P.J. & GERLACH T.M. 1994. Magmatic Vapor Source for Sulfur Dioxide Released 1007 During Volcanic Eruptions: Evidence from Mount Pinatubo. Science 265 (497-499). 1008 WALLACE P.J. & EDMONDS M. 2011. The Sulfur Budget in Magmas: Evidence from Melt 1009 1010 Inclusions, Submarine Glasses, and Volcanic Gas Emissions. Reviews in Mineralogy and Geochemistry 73 (1), 215-246 1011 1012 WATSON I.M., OPPENHEIMER C., VOIGHT B., FRANCIS P., CLARKE A., STIX J., MILLER A., PYLE 1013 D.M., BURTON M.R., YOUNG S.R., NORTON G., LOUGHLIN S., DARROUX B. & STAFF M.V.O. 1014 2000. The relationship between degassing and ground deformation at Soufriere Hills Volcano, 1015 Montserrat. Journal of Volcanology and Geothermal Research 98(1-4), 117-126. 1016 1017 WERNER C., CHRISTENSON B.W., HAGERTY M. & BRITTEN K. 2006. Variability of volcanic gas 1018 1019 emissions during a crater lake heating cycle at Ruapehu Volcano, New Zealand. Journal of Volcanology and Geothermal Research 154(3-4), 291-302. 1020 1021 1022 WERNER C., EVANS W.C., KELLY P.J., McGIMSEY R., PFEFFER M., DOUKAS M. & NEAL C. 2012. Deep magmatic degassing versus scrubbing: Elevated CO₂emissions and C/S in the lead-1023 up to the 2009 eruption of Redoubt Volcano, Alaska. Geochemistry, Geophysics, Geosystems 1024 1025 13(3), doi: 10.1029/2011GC003794. 1026 WERNER C., KELLY P.J., DOUKAS M., LOPEZ T., PFEFFER M., McGIMSEY R. & NEAL C. 2013. 1027 Degassing of CO₂, SO₂, and H₂S associated with the 2009 eruption of Redoubt Volcano, Alaska. 1028 Journal of Volcanology and Geothermal Research 259(0), 270-284. 1029 1030 WESTRICH, H.R. & GERLACH, T.M. (1992). Magmatic gas source for the stratospheric SO2 cloud 1031 from the June 15,1991, eruption of Mount Pinatubo. Geology 20 (10), 867-870 1032 1033

- WITHAM F. 2011. Conduit convection, magma mixing, and melt inclusion trends at persistently
 degassing volcanoes. *Earth and Planetary Science Letters* **301**(1-2), 345-352.
- 1036
 1037 YOUNG S.R., VOIGHT B. & DUFFELL H.J. 2003. Magma extrusion dynamics revealed by high1038 frequency gas monitoring at Soufriere Hills Volcano, Montserrat. *Volcanic Degassing* 213 (2191039 230).
- 1040
- YOUNG S.R., SPARKS R.S.J., ASPINALL W.P., LYNCH L.L., MILLER A.D., ROBERTSON R.E.A. &
 SHEPHERD J.B. 1998. Overview of the eruption of Soufriere Hills Volcano, Montserrat, 18 July
- SHEPHERD J.B. 1998. Overview of the eruption of Soufriere Hills Volcano, N
 1043 1995 to December 1997. *Geophysical Research. Letters* 25(18), 3389-3392.
- 1044
- 1045 YOUNG S.R., FRANCIS P.W., BARCLAY J., CASADEVALL T.J., GARDNER C.A., DARROUX B.,
- 1046 DAVIES M.A., DELMELLE P., NORTON G.E., MACIEJEWSKI A.J.H., OPPENHEIMER C.M.M., STIX
- 1047 J. & WATSON I.M. (1998). Monitoring SO₂ emission at the Soufriere Hills Volcano: Implications
- 1048 for changes in eruptive conditions. *Geophysical. Research. Letters* **25**(19), 3681-3684.
- 1049
- 1050 ZELLMER G.F., SPARKS R.S.J., HAWKESWORTH C.J. & WIEDENBECK, M. 2003. Magma
- Emplacement and Remobilization Timescales Beneath Montserrat: Insights from Sr and Ba
 Zonation in Plagioclase Phenocrysts. *Journal of Petrology* 44(8), 1413-1431.
- 1053 ZOBIN V.M., VARLEY N.R., GONZÁLEZ M., OROZCO J., REYES G.A., NAVARRO C. & BRETÓN M.
- 1054 2008. Monitoring the 2004 and esitic block-lava extrusion at Volcan de Colima, Mexico from
- seismic activity and SO₂ emission. *Journal of Volcanology and Geothermal Research* 177(2),
 367-377.
- 1057

Tables

Pulse/Int	Mean flux t/d	# of values	% Data Obtained	Approximate duration/ yrs
1st Int (June 2004 – April 2005)	427	250	69	0.99
2nd Int (Jul 2006 – Jul 2007)	304	317	92	0.94
1st pulse (June 2002 – May 2004)	561	625	86	2
2nd pulse (April 2005 – Jul 2006)	560	435	76	1.58
3 rd pulse (Jul 2nd 2007 - Jan 2010)*	664	732	87	2.31
2010 restart (mid march) - present	401	1040	82	3.47

Table 1 Break down of the relevant parameters of the pulses and intermediate periods that were

observed in the uv network data. * denotes pulse where data was lost due to ash from Phase V

Figure 1 The Entire SO₂ time series showing continuous and variable SO₂ output throughout the eruption. Red line is 11 day filter though the COSPEC data and green line if 11 day filter through the spectrometer network data.

Figure 2 Google Earth image of southern Montserrat showing the location of the two network spectrometers relative to the volcano. The spectrometers are named based on their location (LL – Lovers lane, BR – Brodericks). The prevailing winds are easterlies which normally puts the plume over Plymouth. In this image the plume is to the north of the network.

Figure 3 Multi-plot diagram used by the MVO showing how the seismic (top), deformation (middle) and SO2 varied throughout the whole eruption

Figure 4 A comparison of mean daily post Phase V SO₂ flux values with VT earthquakes showing a fairly good correlation

Figure 5 wavelet plot of the whole SO_2 dataset showing the \sim 2 year signal in the time series.

Figure 6 Wavelet plot of the SO₂ data from 2004 – 2005 showing the \sim 5 month cycle occurring during the second pause

Figure 7 Comparisons of UV network flux data with production data from two center hills springs from 2001 till present

Figure 8 A comparison of dome volume and SO_2 flux from 2001 till present.

Figure 9 Andesite extrusion rate compared to daily SO_2 flux rates from 2001 till present