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Summary1

Soil bulk density (BD) is measured in soil monitoring. Because it is spatially variable, an appro-2

priate sampling protocol is required. It is shown how information on short-range variability can3

be used to quantify uncertainty of estimates of mean BD and soil organic carbon on a volumetric4

basis (SOCv) at a sampling site with different sampling intensities. We report results from two5

contrasting study areas, with mineral soil and with peat. More sites should be investigated to6

develop robust protocols for national-scale monitoring, but these results illustrate the method-7

ology. A 20×20-m monitoring site was considered and sampling protocols were evaluated under8

geostatistical models of our two study areas. On sites with local soil variability comparable to9

our mineral soil, sampling at 16 points (4× 4 square grid of interval 5 m) would achieve a root10

mean square error (RMSE) of the sample mean value of both BD and SOCv less than 5% of the11

mean (top-soil and sub-soil). Pedotransfer functions (PTFs) gave predictions of mean soil BD12

at a sample site, comparable to our study area on mineral soil, with similar precision to a single13

direct measurement of BD.14

On peat soils comparable to our second study area, the mean BD for the monitoring site15

at depth 0–50 cm would be estimated with RMSE less than 5% of the mean with a sample of 1616

cores, but at greater depths this criterion cannot be achieved with 25 cores or fewer.17
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Introduction18

Bulk density (BD) is a fundamental property of the soil. For purposes of this paper BD is19

the mass per unit volume of oven-dried soil material, after exclusion of stones of diameter >20

2 mm. Bulk density is an indicator of soil quality because good management, that enhances21

soil structure, porosity and organic content, will tend to reduce BD; conversely BD is increased22

if soil is compacted and loses its structure (Schipper & Sparling, 2000; Black et al., 2008).23

Furthermore, the BD of the soil must be known if analytical data that have been determined on24

a mass basis, as is standard practice for variables such as soil organic carbon (we refer to the soil25

organic content per unit mass as SOCm), are to be converted to a volume basis (we refer to the26

soil organic content per unit volume as SOCv) and so to estimates of total stock per unit area.27

The BD of soil is commonly used as a predictor variable in pedotransfer functions to predict28

hard-to-measure properties of the soil such as parameters of the water retention curve or of the29

unsaturated hydraulic conductivity function (Schapp et al., 2001). For all these reasons it is30

generally accepted that BD should be measured as part of soil inventory or monitoring (Black et31

al., 2008). This paper addresses the question of how a single monitoring site should be sampled32

to arrive at a value of BD.33

Bulk density is more laborious to measure than many soil properties because a soil speci-34

men of known volume must be extracted by a procedure that causes minimal disturbance. It is35

therefore necessary to sample BD efficiently. If we are to chose an appropriate sampling strat-36

egy to estimate the BD of soil at a monitoring site then we must consider how variable BD is37

within a site, and we must know how much error is tolerable in the final estimate. Error in the38

estimated BD at a monitoring site will propagate, inflating the error of the determinations of39

soil composition on a volume basis. The tolerable error in BD therefore depends on the tolerable40

error in these volumetric data.41

Soil scientists need to know what constitutes an appropriate strategy for determining soil42

BD at a monitoring site. In particular, how many determinations should be made at a site,43

considering both the acceptable error in BD and in volumetric compositional data which are44
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computed with the BD value? One strategy (Black et al., 2008) is to make a single determination45

of BD at one point in a monitoring site, and to use this value as representative when determining46

volumetric concentrations from gravimetric data obtained by analysing aggregate material from47

different locations within the monitoring site. This approach should be evaluated. Since BD48

is laborious to determine in the field, and is not available for some historical soil inventories in49

the UK (SNIFFER, 2007), one might also ask whether a prediction made with a pedotransfer50

function (PTF) is an acceptable substitute for a direct measurement.51

In this paper we demonstrate how geostatistical models of the spatial variability of soil52

properties at short-range (within the sampling site) can be used to compute the variances of53

sample means for both soil BD and soil organic carbon content on a volume basis (SOCv), the54

latter depending in part on the sample error of BD, under different sampling strategies. This55

allows one to compute how the sample variances depend on the number of cores which are56

collected and on which of these cores BD or SOCm or both are determined. Note that, while57

this research is focussed on the determination of BD and volumetric composition of the soil, the58

same general approach could be used to determine sampling requirements for other properties59

of the soil.60

In this paper we report research in which we examined the spatial variability of soil BD61

over short distances at two study areas, one with predominantly organic soils and the other with62

mineral soils. These sites were selected as, respectively, typical examples of upland organic soils63

from the west of Great Britain, and inorganic soils in arable use in the East Midlands of England.64

However, the results that we present should not be treated as a basis for generalization about65

the sampling requirements on all mineral or organic soils. Further work, using the methodology66

developed and reported here, and geostatistical models of short-range soil variability obtained67

using similar methods to this study across a wider range of study areas, is needed to develop68

robust sampling protocols. Given this information, and subject to the noted caveats, it was then69

possible to show the implications of the observed short-range variation of BD for sampling in70

the study areas. In particular:71
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(i) How does the error in the BD estimate for a sample site respond to increased sample effort?72

This question was addressed for both mineral and organic soils73

(ii) How does the error in SOCv, determined directly by measuring SOCm and BD on each of74

a set of cores, respond to increased sample effort? This question was addressed for mineral75

soils.76

(iii) How much error must be accepted for determinations of SOCv at a site if a determination77

of SOCm from an aggregate sample is combined with a single measurement of BD at an78

independent location at the site? This question was addressed for mineral soils.79

(iv) How much error must be accepted for determinations of BD and of SOCv at a site if BD80

is not determined directly but rather is predicted by a PTF? This question was addressed81

for mineral soils.82

Materials and methods83

In this project we consider a monitoring site to be a square area of length 20 m. This coincides84

with practice in the National Soil Inventory (NSI) of England and Wales, the Geochemical85

Baseline of the United Kingdom (SNIFFER, 2007) and recommendations for a UK-wide soil86

monitoring scheme made by Black et al. (2008). We describe first how two study areas were87

sampled to provide information on variability of soil properties at scales up to 20 m. We then88

describe the estimation of parameters for a PTF to predict BD of mineral soils from archival89

data. We then describe spatial analyses of the resulting data to address the questions enumerated90

in the introduction.91

Field sampling92

Organic soil site This site was at the Nant-y-Brwyn catchment in Snowdonia, Wales (Latitude=93

52.99510,◦ N, Longitude= 3.80285◦ W, mean altitude 440 m). These organic soils are Histosols94

according to the WRB classification (IUSS Working Group WRB, 2006) and were mapped95

within the Crowdy 1 Soil Association by the Soil Survey of England and Wales (1984a). This96
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association is dominated by the Crowdy series (amorphous raw peat), with some stagnohumic97

gleys and stagnopodzols (National Soil Resources Institute, 2013). Land cover at this site is98

referred to as ‘Bog’ in the classification used for the Land Cover Map of Great Britain, (Fuller99

et al., 2002).100

Available resources allowed for the collection and analysis of 75 soil cores. The objective101

of sampling was to estimate the variance parameters of a linear mixed model (LMM) of the data102

(Stein, 2000; Lark et al., 2006a). We therefore decided to use purposive sampling on transects,103

with clusters of sample points within which the variability of soil properties at lag distances up104

to 20 m could be observed. Ten such clusters were arranged on four transects. The transects105

were selected along routes where the soil could be sampled to at least 1 m depth, and where it106

was not affected by grips, drainage channels traditionally dug in the peat. The transects and107

sample clusters were laid out in the field by tape measure. The locations of the first and last108

point in each cluster were obtained with a differential GPS and the coordinates of the points109

within the clusters were then inferred. Figure 1 shows the distribution of the sample points.110

At each sample location the soil was sampled with a Russian auger with a flight of length111

50 cm and an estimated sample volume of 622 cm2. Samples were collected up to depth 2 m.112

The samples were cut into 10-cm sections (volume 124.4 cm2), and each section was placed in a113

pre-weighed bag. On return to the laboratory the bags were weighed then opened and placed in114

an oven to dry at 105◦C for 72 hours. After drying the core sections were then reweighed. From115

these measurements the dry BD was computed for each 10-cm section. Organic carbon content116

was determined on material from each section by loss on ignition according to Countryside117

Survey protocols (Emmett et al., 2008) but with total time in ignition extended to 20 hours to118

ensure complete combustion of any wood. Data on organic carbon content were not used in the119

work reported here, except to report the organic status of the soils.120

Mineral soil site This site was a field at the University of Nottingham’s farm at Bunny in121

Nottinghamshire, England (Latitude= 52.8547◦ N, Longitude= 1.1274◦ W, mean altitude 39 m).122

The soil of the field is a Luvisol in the WRB classification (IUSS Working Group WRB, 2006)123
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and is mapped in the Dunnington Heath Association by the Soil Survey of England and Wales124

(1984b). This association is dominated by the Dunnington Heath Series, argillic brown earths125

of loamy or clayey texture with clay-enriched sub-soil (National Soil Resources Institute, 2013).126

The soil of this field is cultivated to depth 10 cm and is occasionally sub-soiled to depth 25 cm.127

In recent years prior to sampling the field from which soil samples were collected had been under128

a winter wheat–oil seed rape rotation.129

The field was sampled at 90 sample points on three transects. As at Nant-y-Brwyn the130

samples were distributed in clusters along the transects, here there were three clusters. The131

distribution of sample points is shown in Figure 2. The sample sites were surveyed prior to132

sampling with a measuring tape and marked with canes, then locations were obtained with a133

differential GPS. A soil core, diameter 55 mm, was collected to depth 1 m with a sonic drill rig.134

Sonic drilling uses intense vibrations directed down the drill string so that intact soil can be135

extracted above a cutting shoe. This enables extremely rapid soil penetration with relatively136

light drilling equipment (Environmental Sampling Limited, Godstone, Surrey). After extraction137

the cores were transported upright in their liners and kept in a cold store.138

The 90 cores from the principal sampling points were then cut into seven 5-cm sections139

for depth intervals (i) 2.5–7.5 cm, (ii) 7.5–12.5 cm, (iii) 12.5–17.5 cm, (iv) 17.5–22.5 cm, (v) 32.5–140

37.5 cm, (vi) 47.5–52.5 cm and (vii) 72.5–77.5 cm. For purposes of this paper we worked with141

the soil in the 2.5–7.5 cm and 32.5–37.5 cm depth intervals, and for convenience we refer to these142

as the top-soil and sub-soil hereafter.143

The material was oven dried, sieved to pass 2 mm and the resulting dry fine-fraction144

material was weighed. In addition, the coarse material retained by the sieves was weighed and145

its volume was measured by displacement. The BD of the fine-fraction was then computed as146

the oven-dry mass of the fine-fraction divided by the volume of the fine-earth fraction in the147

field. This latter volume was calculated by subtracting the volume of the material that did not148

pass the sieve from the volume of the section. The resulting BD is that of the fine fraction (Hall149

et al., 1977). A 10-g subsample of fine-fraction material was taken from each of the top-soil150
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(2.5–7.5-cm depth) and sub-soil (32.5–37.5-cm depth) sections and the organic carbon content151

was determined by loss on ignition. Although there is evidence that LOI can over-estimate the152

quantity of organic matter in a soil sample because of loss of structural water from clay minerals153

the magnitude of this effect is generally considered to be small (Soon & Abbound, 1991).154

Development of a pedotransfer function155

In research allied to that reported in this paper, work was done to develop a PTF to predict BD156

of mineral soils in England and Wales. Here we explain the development of PTFs for top-soil157

and sub-soil BD that could be compared in terms of precision with direct measurements of BD158

or SOCv at a monitoring site. We considered a range of different functional forms for the PTFs,159

based on those reported in the literature, and estimated their parameters, and compared their160

goodness of fit using an available data set on soils of England and Wales.161

The data used to fit PTFs were the soilpits data set, part of the LandIS information162

system held by the National Soil Resources Institute. These measurements include observations163

from more than one horizon of a single soil pit with determinations of BD (fine-fraction), SOCm164

and particle size distribution. We sorted the observations into shallow (horizon mid-depth less165

than 25 cm depth), of which there were 562 observations, and deep (mid-depth greater than166

25 cm), of which there were 440. Prediction data sets, 365 shallow observations and 284 deep,167

were selected by simple random sampling, to be used to fit PTFs for the two depth intervals.168

All the observations were overlaid on the British Geological Survey’s Parent Material Map169

of the British Isles (British Geological Survey, 2006) at 1:50 000 scale, and the Centre for Ecology170

and Hydrology’s Land Cover Map 2000 (Fuller et al., 2007) for 1-km pixels of Great Britain.171

Parent Material Classes at the parent material origin level of the classification, and Land Use172

classes at the level of dominant broad habitats in each 1 km square were extracted for each soil173

profile observation.174

For purposes of this paper we consider only PTFs with soil organic carbon as a predictor175

of BD. This is because we did not have sufficient resources to undertake particle size analysis of176

soil from all 90 sample sites. We fitted PTFs as LMM using the nlme library (Pinheiro et al.,177
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2012) for the R platform (R Development Core Team, 2012). This was necessary because the178

soilpits data set was not assembled by probability sampling. We compared different models179

using the log likelihood ratio statistic (Verbeke & Molenberghs, 2000). We considered models in180

which the only predictor was some function of SOCm, and models in which land use or parent181

material (PM) as described above were categorical predictors, either additive or interactive with182

SOCm.183

The best-fitting model to predict BD of the shallow soil samples corresponded to one184

proposed by Alexander (1980)185

Dbf = β0 + β1C
1/2, (1)

where Dbf denotes bulk density of the fine fraction, C is SOCm and the coefficients β0 and β1186

were estimated from the soilpits data as described above. Other studies have shown that this187

is an effective PTF; de Vos et al. (2005) found it to be the best-fitting model in a study of a188

large data set from Belgium. There was no benefit from including PM or land use as predictors.189

However, for the deep samples the best-fitting PTF included land use as a predictor, interacting190

with C1/2, that is there are different intercepts and slopes for the regression of Dbf on C1/2.191

The BD of the fine fraction for each section collected at Bunny farm was predicted from192

SOCm using the PTF for the shallow soils to predict for the top-soil sections, and the PTF for193

the deep soils to predict for the sub-soil sections. The value of SOCv of each section was also194

predicted from the PTF prediction of BD and the measured SOCm. This allowed us to compute,195

for each section, an error in the PTF-based prediction of BD and SOCv: εPTF,BD and εPTF,SOCv196

respectively.197

Data analysis198

Summary statistics were computed for the data and, where necessary, these were transformed.199

Summary statistics are also presented for the SOCm data after transformation to square-roots.200

The data on BD were then analysed with a LMM201

z = Xβ + η + ε, (2)
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where z is an n× 1 vector of n observations, X is a design matrix which contains fixed effects,202

predictor variables for the dependent variable, β is a vector of fixed effects coefficients, η is203

a random variable which has a second-order stationary spatial covariance function and ε is an204

independently and identically distributed random variable. More detail on the LMM is provided205

by Lark et al., (2006a). In this study the only fixed effect that we considered was a constant206

mean. We used the likfit procedure from the geoR library (Ribeiro & Diggle, 2001) for the R207

platform (R Development Core Team, 2012) to fit the model by residual maximum likelihood.208

Spherical and exponential covariance functions were considered. The key parameters to estimate209

were the variances of the correlated and uncorrelated fixed effects, η and ε, which are c1 and c0210

respectively, and the distance parameter of the covariance function.211

We then used the gstat library (Pebesma, 2004) for the R platform to estimate auto- and212

cross-variograms for BD (transformed where necessary) and square root of the concentration213

of SOCm (mineral soil data) and fitted a linear model of coregionalization (LMCR, Journel214

& Huijbregts, 1978) using the procedure of Lark & Papritz (2003). The reader is referred to215

the cited literature for more detail in the LMCR. In short, the model comprises one or more216

authorised variogram functions (such as the exponential or spherical) with distance parameters217

used to model jointly the variograms and cross-variogram(s) of two or more variables with218

variances and covariances to ensure a positive definite covariance matrix (also known as the219

coregionalization matrix) for each included variogram. We estimated variograms and fitted an220

LMCR using the square root of SOCm because, as is shown in the literature (de Vos et al.,221

2005), this makes the assumption of a linear coregionalization of these variables most plausible.222

For the mineral soils, the product of the BD (g cm−3) and SOCm (g 100 g−1) for each223

section was multiplied by ten to give a value of SOCv (mg C cm−3). Summary statistics of this224

variable were calculated, and a LMM was fitted, as for the BD data.225

Summary statistics were computed of the errors of predictions with PTFs of BD for each226

section, εPTF,BD, (top-soil and sub-soil) from Bunny farm and the errors of predictions of SOCv227

based on these PTF-predictions, εPTF,SOCv.228
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Inference229

Precision of estimates of BD and SOCv by direct sampling. Our objective here is to quantify230

the uncertainty of values of BD and SOCv formed by sampling a 20×20-m monitoring site with231

different levels of effort. We consider systematic sampling, with cores collected on a regular232

grid. The location of the centre of the grid is fixed at the selected coordinates of the sample233

site, so there is no scope to think of the location of the grid as randomized within the sample234

site. The value of BD or SOCv recorded for the sample site is the arithmetic mean of the values235

for the individual cores, whether these are determined individually or aggregated. We consider236

sampling with a single core fixed at the centre of the monitoring site (n=1), two cores 10 m237

apart and each 5 m from the centre of the monitoring site (n=2) and n=4, 9, 16 or 25 cores on238

regular square grids with nodes at the centres of regular square tiles. The sample arrays are239

illustrated in Figure 3.240

The uncertainty of the estimate of a mean value of a property across a monitoring site241

is quantified by a root mean square error. This is the square root of S2
p, the expected squared242

prediction error of the sample mean as a prediction of the spatial mean of the target variable243

across the 20×20-m monitoring site. This quantity is evaluated over the statistical model of244

the random effects in Equation (2), the fitting of which is described earlier. For untransformed245

variables we used the expression from Webster & Oliver (1990)246

S2
p =

2

n

n∑
i=1

γ̄ (xi,B)− 1

n2

n∑
i=1

n∑
j=1

γ (xi,xj)− γ̄ (B,B) , (3)

where xi is a vector that denotes the location of the ith out of n cores, B denotes the 20×20-m247

monitoring site,248

γ̄ (xi,B) =

∫
xk∈B

γ (xi,xk) dxk,

and249

γ̄ (B,B) =

∫
xk∈B

∫
xl∈B

γ (xk,xl) dxl dxk,

where the integrals are over the two-dimensional space of B.250

If the variable was transformed, then S2
p was computed numerically. The estimated vari-251
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ance parameters of the transformed variable were used to simulate a set of values of that variable252

at points corresponding to (i) the sample sites and (ii) a set of 3000 additional points selected253

from across the region by simple random sampling. Simulation was done by the LU method254

(Goovaerts, 1997). The simulated values were back-transformed to the original units of mea-255

surement and then those corresponding to the sample sites were used to obtain a sample mean256

for the spatial mean across the sample region, and those at the 3000 additional points were used257

to form a very precise estimate of that spatial mean. The difference between the two means was258

recorded. This was repeated 5000 times, and the mean square difference between the two means259

over all iterations was treated as an estimate of S2
p.260

We used these methods to compute mean square errors for site mean values of BD, SOCv261

and SOCm (S2
p,BD, S2

p,SOCv and S2
p,SOCm respectively) for different sampling grids.262

Precision of estimates of BD and SOCv by PTFs. One way to estimate the mean BD at a263

monitoring site is to predict it with a PTF from the mean SOCm. The predicted BD could then264

be used to estimate the mean SOCv. There are three sources of error in this prediction. The265

first is bias in the PTF, the second is imprecision in the PTF and the third is estimation error266

in the value of SOCm used as the predictor variable. If we treat these as three independent error267

sources then we could write a mean squared error for predicted BD as268

S2
PTF,BD = {ε̄PTF,BD}2 + V̂ar {εPTF,BD}+ S2

p,SOCm

{
∂

∂C
f(C)

}2

, (4)

where the overbar in the first term denotes the mean, V̂ar denotes the sample variance of the269

term in braces and f(C) represents the PTF for BD with C the predictor variable, SOCm.270

The first term is the effect of bias in the PTF and the second term is the effect of imprecision.271

The third term is the effect of sampling error in the value of SOCm, and is calculated from a272

first-order Taylor series approximation to the PTF (Heuvelink, 1998), this was evaluated at the273

mean value of SOCm. Clearly the value of S2
PTF,BD depends on the sampling configuration used274

to estimate the mean value of SOCm. A similar calculation can be made for the mean square275
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error of determinations of SOCv based on the PTF-prediction of BD. This is276

S2
PTF,SOCv = {ε̄PTF,SOCv}2 + V̂ar {εPTF,SOCv}+ S2

p,SOCm

{
∂

∂C
10Cf(C)

}2

. (5)

The value 10 appears in the last term because the SOCv values are scaled to mg C cm−3.277

Precision of estimates of SOCv by indirect sampling. Finally, we considered a strategy to es-278

timate SOCv for a monitoring site by making a single measurement of BD, and determining279

SOCm from an aggregate sample of some number of cores collected on the sample grids shown280

in Figure 3. This strategy might be favoured for practical reasons. There are advantages in de-281

termining a property like SOCm on an aggregate sample (Lark, 2011). However, the collection282

of a soil sample to determine BD is more laborious than the collection of cores for gravimetric283

determination of soil composition, since in the former case it is important to know the volume284

of the original sample, and to determine the dry mass of the fine fraction of the sample in its285

entirety. This approach is proposed by Black et al. (2008) in a national soil monitoring strategy286

for the UK.287

We used a numerical method to estimate the mean square error of such an indirect deter-288

mination of soil SOCv, S2
I,SOCv. This made use of the LMCR for soil BD (possibly transformed)289

and the square-root of SOCm. The LMCR can be used to specify a covariance matrix for BD and290

square-root SOCm at a set of locations and this matrix, after LU decomposition, (Goovaerts,291

1997) can be used to simulate joint values of BD and square-root SOCm at those locations. This292

method was used to generate a joint realization of BD and square-root SOCm at (i) one of the293

sets of grid sample points illustrated in Figure 3, (ii) a notional location for a BD measurement294

at a location close to the centre of the monitoring site and (iii) 3000 locations across the monitor-295

ing site selected by simple random sampling. From the simulated values of SOCm at the sample296

points we obtained an estimate of the spatial mean of SOCm, and this was combined with the297

simulated value of BD at the single point near the centre of the site to provide an estimate of298

SOCv. Both the simulated SOCm and BD values at the 3000 random locations were then used299

to provide a precise estimate of the spatial mean of SOCv for this particular realization. The300

error of the estimate based on the aggregate sample for SOCm and the single observation of BD301
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could be computed. The mean square error was then calculated over 10 000 realizations of the302

LMCR. As for the determinations of S2
p described above, this provides us with a value for the303

expected square error of the estimate of the spatial mean over the statistical model that we have304

estimated for the joint distribution of the two variables.305

Results306

Organic Soils from Nant-y-Brwyn307

The data on BD for the organic soils were very variable, and for this reason we aggregated the308

values into depth intervals of 50 cm. Summary statistics for the BD data are given in Table309

1, along with summary statistics for the data after transformation to natural logarithms. Note310

that the untransformed data for the 0–50 cm depth interval have a small coefficient of skewness,311

with an absolute value less than 0.5. In addition to the coefficient of skewness we computed the312

octile skew (Brys et al., 2003) which is a robust measure of skewness which is less susceptible to313

outliers than is the conventional skewness coefficient. Webster & Oliver (2009) suggest as a rule314

of thumb that transformation to logarithms should be considered if the conventional skewness315

coefficient exceeds 1, and a corresponding threshold for the octile skew is 0.2 (Lark et al., 2006b).316

On this criterion the data for the 0–50-cm depth interval should be analysed in the original units,317

and the data at other depths should be transformed. Table 1 also presents variance parameters318

from the LMM fitted to the data on BD for these soils, transformed where necessary.319

The data on organic matter content of these soil samples, determined by loss on ignition,320

showed that most of the sections had more than 50% organic carbon content by mass and so321

would be classified as peat (Hodgson, 1976). This was the case for 94% of samples at depth322

0–50 cm, 80% at depth 50–100 cm, 94% at 100–150 cm and 96% at depth 150–200 cm.323

Figure 4 shows the root mean square errors for estimation of BD of organic soils on the324

different sample grids illustrated in Figure 3. The solid line represents 5% of the mean and the325

broken line 10%. The graphs show the challenge of estimating BD in these circumstances is326

greatest at depth. For the top 50 cm a RMSE error less than 10% of the mean was achieved327

with four sample points, and 5% with 16 or more points, but at greater depth even 25 sample328
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points do not suffice to reduce the mean squared error to 10% of the mean BD. At all depths329

the additional improvement from sampling 25 rather than 16 points is small.330

Mineral soils at Bunny Farm331

Summary statistics for BD, SOCm and SOCv are shown in Table 2, along with statistics for332

some of these variables after transformation. Note that all three variables appear more or less333

symmetrically distributed with small coefficients of skewness and octile skew, apart from BD334

at the 32.5–37.5 depth interval. These values are negatively skewed. We found a Box-Cox335

transformation for this variable:336

y =
zζ − 1

ζ
, ζ 6= 0,

= loge (z) , ζ = 0, (6)

We estimated the transformation parameter, λ by maximum likelihood, using the boxcox337

procedure from the mass package (Venables & Ripley, 2002) for the R platform (R Development338

Core Team, 2012). The estimate of λ was 4.26. The summary statistics for this transformed339

variable are shown in Table 2. We also computed summary statistics for the square-root of340

SOCm which was used in an LMCR with BD. Note that the SOCm data still seem reasonably341

symmetrically distributed on the square root scale. Variance parameters from the LMM fitted342

to the data on BD (after Box-Cox transformation for the sub-soil interval) and for the SOCm343

and SOCv data are also shown in the table. Table 3 presents parameters of the LMCR fitted344

to the data on BD (transformed for the sub-soil) and square root of SOCm. Figure 5 shows345

the root mean square errors for estimation of mean BD of mineral soil at a monitoring site by346

direct sampling on grids of different intensity (solid discs) or by prediction with the PTF from347

the mean value of SOCm estimated from sample grids of different intensity (open circles). Note348

that, with direct sampling of BD, the mean is reduced to less than 5% of the sample mean with349

a sample size of 4 (top-soil) or 9 (sub-soil). In contrast, the RMSE for PTF-based predictions350

of BD is always larger than 10% of the mean, and is not sensitive to reductions in the error351

variance of the mean of SOCm used as the predictor.352
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Figure 6 shows the root mean square errors for estimation of the mean SOCv of mineral353

soil at a monitoring site by direct sampling on grids of different intensity (solid discs), by PTF354

prediction of BD from the mean SOCm, then combined to estimate SOCv (open circles) or355

by combining an estimate of SOCm from an aggregated sample from the grid with a single356

measurement of BD (solid square). The direct measurement of SOCv allows the mean to be357

estimated with RMSE less than 5% of the sample mean with 9 (top-soil) or 16 (sub-soil) soil358

samples on a grid. Prediction via a PTF for BD does not give RMSE less than 10% of the359

mean for any of the sample sizes considered here. Note also that estimating mean SOCv from a360

single measurement of BD and independent observations of SOCm gives RMSE very similar to361

estimates based on the PTF, and only just less than 10% of the mean in the case of the top-soil.362

Discussion363

On the basis of these results we may make the following observations about the soils of the two364

study areas reported here. It is clear that the determination of BD in the peat soil requires365

considerably more sampling effort at depths below 50 cm than for the surface material. This366

reflects the very skewed distribution of BD for peat at the greater depths (as a result of which367

we used a transformation to logarithms). The RMSE of mean BD for a monitoring site can be368

reduced to less than 5% of the sample mean with a sample of 16 cores for depth 0–50 cm, but369

at greater depths the improvement in RMSE with more than 16 cores is small, and the RMSE370

remains larger than 10% of the mean.371

In the mineral soil rather less sample effort was required in the top-soil than the sub-soil372

for measurement of BD, but nine cores ensured an RMSE less than 5% of the mean at both373

depths. It is clear that prediction of BD with a PTF based on SOCm gives poorer estimates374

than direct sampling. In no case is the RMSE less than 10% of the sample mean, although375

the RMSE from a PTF prediction is similar to that for a single determination of BD in the376

monitoring site. This suggests that, if BD is to be measured in the field, then it is appropriate377

to make more than one determination at any depth, otherwise a PTF prediction may be just as378

good.379
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To determine SOCv at a sample site in the mineral soil study area by direct measurement380

requires slightly more sample effort than to determine BD, since there are two sources of uncer-381

tainty (BD and SOCm) to contend with. However, a sample of 16 cores ensures an RMSE less382

than 5% of the mean at both depths, and 9 cores would suffice for the top-soil. It is notable that383

indirect estimation of SOCv from a single BD determination and independent measurements of384

SOCm has an RMSE comparable to that from PTF prediction. Our analyses show that this385

approach, which is proposed for the UK national soil monitoring scheme (Black et al. 2008),386

is sub-optimal. The results in Figure 6 show that a substantial improvement in RMSE would387

be achieved by making just two BD determinations with SOCm determined on a representative388

aliquot of the same material. At the least, if a single sample is to be taken to determine BD,389

then the SOCm of the same material should be determined.390

Once again, these specific results are for two contrasting study areas, one on organic soil391

and one on mineral soil. To form robust conclusions for practice at national scale it would be392

necessary to conduct similar sampling and analysis on additional sites, at least to include mineral393

soils with a wider range of textural classes and SOCm concentrations. This paper sets out the394

methods by which such a study should be conducted. That said, it is encouraging that the395

sampling effort indicated for the mineral soil example appears feasible (it is less intensive than396

the protocol used for the National Soil Inventory of England and Wales, with 25 cores per sample397

site). However, there may be concerns that the variability of peat soils at depth might make398

it difficult to achieve good data from monitoring sites without prohibitively intensive sampling.399

The results reported for the study area over mineral soil also indicate that PTF predictions of400

BD may compare unfavourably with direct observations of BD.401

Conclusions402

This study allows us to draw specific conclusions about sampling requirements for determination403

of BD and SOCv only for monitoring sites on soils comparable to those at our two sites. In404

particular, sampling a 20×20-m monitoring site over mineral soil at 16 points (4× 4 square grid405

of interval 5 m) gives a mean value of BD and SOCv in the top-soil and sub-soil with an RMSE406
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of less than 5% of the mean. A smaller sample of four points (2× 2 square grid of interval 10 m)407

gives an RMSE less than 10% of the mean. On peat soils the mean BD for the monitoring site408

at depth 0–50 cm can be estimated with RMSE less than 10% of the mean with a sample of409

four cores, and less than 5% of the mean with a sample of 16 cores, but at greater depths these410

criteria cannot be achieved, even with 25 cores. How far these conclusions can be generalized411

over other mineral or organic soils remains to be seen and would require comparable studies412

across a wider range of study areas.413

Some results from these two study areas would be of particular interest if they are found414

to hold generally. In particular, under the geostatistical model for the study area with mineral415

soil the use of PTFs to obtain the BD at a sample site gave results with comparable precision to416

a single measurement of BD, and the RMSE is larger than 10% of the mean. If this is generally417

the case then it would suggest that, while they may be useful for inferring BD from legacy soil418

data, PTFs are not appropriate as a substitute for direct observation of BD in newly-planned419

inventory and monitoring. Similarly the determination of SOCv using a single measurement of420

BD and independent cores to determine mean SOCm gaves results with precision similar to those421

obtained with PTF prediction. If four or more cores are to be collected then the benefits of422

determining BD as well as SOCm may be substantial. This suggests that the proposed approach423

(Black et al., 2008) of using a single measurement of BD at each sample site to rescale gravimetric424

measurements to volumetric ones may not be satisfactory.425
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Table 3 Parameters of the linear models of coregionalization for (transformed) BD

and square root of SOCm.

Variable Covariance c0 c1 Distance
function parameter

/m

top-soil

BD Exponential 9.08×10−3 2.51×10−3 2.43√
SOCm 1.93×10−3 2.33×10−3

BD×
√

SOCm −1.15×10−3 1.67×10−3

sub-soil

Transformeda BD Exponential 82.0 ×10−3 69.0 ×10−3 8.93√
SOCm 634.0 ×10−6 10.4 ×10−3

Transformed BD×
√

SOCm 1.29×10−3 −11.3 ×10−3

aBox Cox transform with λ = 4.26.
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Table 4 Summary statistics for errors of predictions of BD by PTF, and errors of

predictions of SOCv based on predicted BD, for mineral soils at Bunny Farm.

Variable Depth Min Mean Median Max Standard Skewness Octile
/cm deviation coefficient skew

BD
g cm−3 2.5 – 7.5 −0.195 0.052 0.064 0.345 0.107 0.24 −0.17

32.5 –37.5 −0.223 −0.029 −0.050 0.547 0.143 1.20 0.13

SOCv

mg C cm−3 2.5 – 7.5 −9.44 −1.290 −1.510 4.82 2.75 −0.32 0.11
32.5 –37.5 −6.45 0.271 0.491 2.95 1.54 −1.28 −0.15
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Figure Captions.

1. Locations of sample points at the Nant-y-Brwyn site. Coordinates are in metres relative to

the datum of the British National Grid.

2. Locations of sample points at the Bunny Farm site. Coordinates are in metres relative to

the datum of the British National Grid.

3. Notional sample grids with 1, 2, 4, 9, 16 or 25 sample points to characterize a 20 m×20-m

monitoring site.

4. Root mean square error of determinations of mean BD for different depths at a monitoring

site (organic soil, statistics from the Nant-y-Brwyn data) by sampling on the grids in

Figure 3. The broken and solid lines correspond to 10% and 5% of the sample mean of

the Nant-Y-Brwyn data.

5. Root mean square error (RMSE) of determinations of mean BD for different depths at a

monitoring site (mineral soil, statistics from the Bunny Farm data) by sampling on the

grids in Figure 3. Solid discs are the RMSE of the mean of measurements of BD at each

sample points. Open circles are SPTF,BD, Equation (4) i.e. RMSE of the prediction of

mean BD by using the mean value of SOCm from the sample points as the predictor in

a PTF. The broken and solid lines correspond to 10% and 5% of the sample mean of the

Bunny Farm data.

6. Root mean square error (RMSE) of determinations of mean SOCv for different depths at

a monitoring site (mineral soil, statistics from the Bunny Farm data) by sampling on the

grids in Figure 3. Solid discs are the RMSE of the mean of measurements of SOCv at each

sample point. Open circles are SPTF,SOCv, Equation (5) i.e. RMSE of the prediction of

mean SOCv by using the mean value of SOCm from the sample points as the predictor in

a PTF to obtain BD, which is then used to compute SOCv. Solid squares are SI,SOCv i.e.

RMSE of the prediction of mean SOCv from a single determination of BD near the centre
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of the monitoring site and the mean SOCm from cores at the sample points. The broken

and solid lines correspond to 10% and 5% of the sample mean of the Bunny Farm data.
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