BRITISH ANTARCTIC SURVEY

SCIENTIFIC REPORTS
No. 88

A SIMPLE EMPIRICAL METHOD FOR ESTIMATING
THE HEIGHT AND SEMI-THICKNESS OF THE
F2-LAYER AT THE ARGENTINE ISLANDS,
GRAHAM LAND

By
J. R. DUDENEY, B.Sc., Ph.D.

British Antarctic Survey Atmospheric Sciences Division
at S.R.C. Appleton Laboratory, Slough

LONDON: PUBLISHED BY THE BRITISH ANTARCTIC SURVEY: 1974
NATURAL ENVIRONMENT RESEARCH COUNCIL



BRITISH ANTARCTIC SURVEY SCIENTIFIC REPORTS: No. 88

A SIMPLE EMPIRICAL METHOD FOR ESTIMATING
THE HEIGHT AND SEMI-THICKNESS OF THE
F2-LAYER AT THE ARGENTINE ISLANDS,
GRAHAM LAND

By
J. R. DUDENEY, B.Sc., Ph.D.

British Antarctic Survey Atmospheric Sciences Division
at S.R.C. Appleton Laboratory, Slough

(Manuscript received 13th February, 1974)

ABSTRACT

A CRITICAL analysis of the basis for simple relationships between hpF2 and M(3000)F2 is made and
a method is suggested whereby an accurate set of equations, including the effects of the Earth’s magnetic
field, could be derived.

The principles underlying simple empirical methods for estimating h#F2 are discussed and a critical
review of previous work in this field given.

A simple method is described for modifying the M(3000)F2 factor such that the new factor, when used
in the Shimazaki (1955) equation, gives a very good estimate of AmF2. It is demonstrated that the method,
which uses only the M(3000)F2 factor and the ratio of foF2 to foE, is valid for all epochs of the solar cycle
and all seasons. Further, although the analysis is based on data from only one observatory, the techniques
developed have a much wider application.

An empirical method for estimating ymF2 once hmF2 is known is mapped out, but shortcomings in the
precision of this method are pointed out.
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I. INTRODUCTION

THERE is a continuing need for reliable but readily available values of the true height of the maximum
electron concentration of the F2-layer (symbol AmF2) amongst theoreticians and propagation engineers.
This need will grow during the next few years because of the demands of the International Magnetospheric
Study. This report describes a method of deducing accurate values (normally better than 4 5 per cent) of
hmF2 using only those parameters routinely scaled from ionograms. The method is based on ionospheric
observations made at the British Antarctic Survey geophysical observatories at the Argentine Islands
(lat. 65°15'S., long 64°16'W.) and Port Lockroy (lat. 64°49’S., long. 63°30'W.). Geophysically, the two
sites are equivalent and throughout this report data from both will be referred to as Argentine Islands
data without further comment.

1. Vertical incidence sounding

The classical method of obtaining information about the ionosphere is to employ radio waves of a
suitable frequency as a probe. A plasma which varies slowly with height will totally reflect a radio wave of
frequency f, incident normally, when the ion concentration within the plasma (N) satisfies the equation

N= (ﬂ) 7. %)

e2
It is often convenient to use the resonant frequency of the plasma ( fy) at the point of reflection
N = (N 92/ ”me)*' (2)
If the source of radio waves is pulsed, the time of flight of the pulses can be measured.

These principles are embodied in an instrument called an ionosonde. This consists of a transmitter whose
operating frequency is swept automatically from about 0-5 to 30 MHz (typically taking about 1 to S min.)
and whose output feeds a wide-band aerial designed to transmit maximum power vertically upwards. A
sensitive receiver is held in tune with the transmitter and records both the outgoing and returning pulses.
These are displayed on a cathode-ray tube whose time base also shows subsidiary calibration pulses from
which the time of flight can be determined. It is usual to divide the time of flight by 2 and multiply by the
speed of light in vacuo to give the virtual height of reflection A’. As will be seen below, this virtual height
is only loosely related to the true height of reflection, h, because the ionosphere is not a simple mirror in the
optical sense but a thick refracting medium.

The echoes displayed on the c.r.t. are normally photographed by winding a film past the face of the
tube. This gives a continuous record of 4’ as a function of f up to the frequency which penetrates the
ionosphere. The resultant picture is called an 4'(f) profile or ionogram.

2. The relation between virtual height and true height

Suppose a wave of the form E = e exp {i(wt—kx)} is propagated vertically upwards into a horizontally
stratified ionosphere. The group velocity, «, decreases with increasing electron concentration and becomes
a minimum at the point of reflection (zero if the collision frequency is negligible). The total time of flight, ¢,

is simply given by the integral
h
=2 o
Ju
where A is the height of reflection.

From this it follows that virtual height is defined by
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But c/u is the group refractive index p’ so that

h
W =[ wdn. 3)
‘ 0
The relationship between u’ and u, the phase refractive index, is given by
W= pto g @
w

Magneto-ionic theory (Ratcliffe, 1962) gives the phase refractive index in terms of the parameters of the
plasma and the probing frequency. The general dispersion equation involves the plasma frequency, gyro
frequency, dip angle and collision frequency in a complex manner. However, for the simple case, where
the Earth’s magnetic field and the effects of collisions are neglected
2
oo () -1-(5)
w S
Substituting this in Equation (4) leads to the simple relation, up’ = 1. Thus, for this special case, Equation
(5) can be used directly in Equation (3), giving a well-known standard equation.
The general expression for &’ (Equation (3)) can also be written in terms of the plasma frequency to

give ,
W) = [ () et ©

where h(o) is the base height of the ionosphere (at which p’ = 1).

In principle, any given 4'(f) profile can be converted into a true height versus frequency profile by
inverting Equation (6) and integrating the resultant expression numerically using the recorded values of A’
for various suitable values of f. Equation (2) then gives the true height versus electron concentration
profile (N(h) profile).

Before the advent of digital computers, the enormous computational difficulties involved in this numerical
solution severely curtailed its usefulness. Nowadays, with powerful computers available, it is possible to
invert the integral even when using the complete dispersion equation. However, several major practical
problems make it difficult to obtain accurate profiles. These problems may be summarized :

i. The integration requires virtual-height information from zero plasma frequency up to the critical
frequency of the densest layer. In practice, several parts of the #’(f) curve may be missing.
ii. A unique numerical solution only exists if the N(4) profile is monotonic.
iii. The virtual height may become infinite at a critical frequency, causing difficulty in evaluating the area
under the curve.

The solutions of these difficulties fall into two groups:

i. Use of assumed model ionization distributions where data are missing.
ii. Use of ordinary and extraordinary ray traces to estimate the effect of the missing parts of the pattern.

In practice, both techniques have only limited usefulness.

Even with the aid of computers, numerical analysis is still expensive and time consuming. There are
always practical difficulties associated with the use of any computer facility. Furthermore, many precision
measurements of 4" and f must be made from the original ionogram, a particularly laborious task. It is thus
usually beyond the average research worker’s resources to obtain more than a small sample of profiles,
so that their use is limited to special studies of isolated events or for calibration of larger groups of less
accurate data.

These difficulties have maintained interest in the so-called “model”” methods. For these, the N(h) profile
is assumed to be given by a known analytical expression whose constants are obtained by matching the
theoretical 4'( /) profile, found by integrating Equation (6), with the observed profile. The constants of the
model are chosen to represent the heights of maximum electron concentration and the thicknesses of the
main ionospheric layers. Since the peak heights and thicknesses are important in the science of the iono-
sphere, model methods have been developed to give these parameters explicitly in terms of parameters
readily measured from ionograms. The method of estimating ~mF2 to be developed in this report is of this
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general type. However, a further criterion will be that only ionospheric parameters routinely published
by the observatories should be required so that access to original ionograms when using the method will
not be necessary. Also numerical N(h) analysis will be used to calibrate the model.

II. THE PROPERTIES OF A PARABOLIC LAYER

1. Early work: the equivalent parabolic layer

A very simple approach to the problem of estimating AmF2 is to assume that the ionosphere consists
only of an F2-layer whose profile is a simple parabola. If then, the effects of collisions and of the Earth’s
magnetic field are neglected, a simple relationship between 4’ and A can be derived. Booker and Seaton
(1940) and Appleton and Beynon (1940) were among the first workers to discuss methods of estimating
the height of maximum of such a layer. Their argument will be considered in some detail, but the current
nomenclature will be used.

Consider a parabolic layer whose maximum electron concentration is No at height Ap. Suppose the
semi-thickness is yp so that the base height is ho = hp — yp. It follows that

hp—h\2
N =No[1—<—) ]
yp @
If the minimum frequency which just penetrates the layer (critical frequency) is fo, then from Equations (1)
and (7) frequency f is reflected when
hp—h\2
sl s
[ =f P ®
Integrating Equation (6) using Equations (5) and (8)
X yp f lo [f0+f] +ho. 9
(f) = 7 1o % oy ®
Define a function ¢(x) as
$0) =% 10&[} +"] 1, (10)

where x = f]fo.
Substituting Equation (10) in (9) noting that Ap = ho +yp, it follows that

hp = K(f)—yp $(x). )
hp and yp can be calculated from any pair of frequencies just by measuring the corresponding values
of i’. The accuracy of the results depends on the frequency separation and on any deviations of the layer
structure from strictly parabolic shape. Also, ¢(x) is a very rapid function of x when x — 1, so that small
errors in x cause disproportionate errors in the deduced value of yp. These can be reduced by using
Appleton and Beynon’s method of plotting 4’ as a function of #(x) and drawing the best straight line.
Alternatively, a family of 4'(f) patterns can be computed for different values of yp and these matched to
the observed profile. In both cases yp is critically dependent on the accuracy with which the critical
frequency is known.

Note that ¢(x) = 0 at x = 0-834, so that hp = h’ at x = 0-834. Thus, hp can be determined by just
one measurement from the ionogram. In practice, the effect of underlying ionization is to increase the
value of &’ at 0-834f0 above the true value of sp. This is usually negligible at night but can be serious in
daytime.

The inclusion of the Earth’s magnetic field (B) modifies the form of #(x) to ¢'(x) where the latter depends
upon magnetic dip and the ratio of f; to fo (fz = gyro frequency). The peak height can still be found by
putting ¢'(x) = 0, but now the value of x to satisfy this equation (x,, say) varies with dip, I, and f3/fo.
Using the published computed tables of ¢'(x) (Becker, 1960), it can be shown that x, decreases smoothly
from 0-834 both with increasing I (constant f3/fo) and increasing f3/fo (constant I). A decrease in x, means
a decrease in 4’, so the error, 4h, incurred by neglecting the B-field is always positive. The tables also
indicate that 4k can be expressed as a fraction of yp, ayp say, where the factor “a” is a function of x,
alone, increasing as the latter decreases. At a particular location, “a” is uniquely related to fo since I and
/5 are fixed. For the Argentine Islands, where / = 60° and fzis 1* 15 MHz, the form of the variation is
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shown in Fig. 1. Note that for a typical yp of 100 km. 44 is quite small, of the order of 6 to 25 km.
depending on fo. This apparent lack of sensitivity to the B-field can be explained by considering the
variation of p’ with x (see, for example, Ratcliffe (1962, p. 104)). The no-field value of p’ is greater than
the value with the field when x is small but less when x is large, so that a partial compensation occurs in
the integral near ¢'(x) = 0. The same argument applies generally; neglect of the B-field seldom affects
the value of Am greatly but it will cause distortions to the profile shape. It is thus often adequate to neglect
the B-field when computing Ap.

03
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Fi1GURE 1

The error, “a”, in hp, expressed as a fraction of yp, incurred by assniming the no-field approximation Ap = &’ (f = 0-834/5).
These results apply for I = 60° and f; = 1-15 MHz.

2. The relationship between hp and M(3000)F2

The relation between the maximum usable frequency, MUF, which can be reflected to a given distance
and the critical frequency of the reflecting layer, fo, depends on distance, the height and thickness of the
reflecting layer, and to a lesser extent on the presence of underlying ionization. For practical reasons, it
has been agreed internationally to adopt the ratio of MUF/fo for a standard distance of 3,000 km. as a
standard communications parameter. This is called the M(3000) factor and is calculated according to an
agreed semi-empirical relation. A clearer insight into the significance of M(3000) can be obtained from a
study of the relation between M(3000) and hp. The classical work on this subject was carried out by
Appleton and Beynon (1940) and the present investigations will be based on their analysis.

3. The case of the thin layer

a. For aflat Earth. Consider Fig. 2a. Suppose the refractive index of the layer at the point of reflection is p,
then from Snell’s law

2 = sin? i,
Suppose the sounding frequency on the oblique path is fand the critical frequency is fo; it follows that
2
2 =sin2 iy = 1—%.
But tan iy, = D/2ho,

therefore

(&) o[ &)
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FIGURE 2

a. Oblique propagation: thin ionosphere and flat Earth.
b. Thin ionosphere and curved Earth.

If fis taken to be the maximum usable frequency, then x equals f/fo, the MUF factor for a range D.

D2
2 = 2
Thus, X 4h02+1’
D
hence 0 = TV
For the case of propagation to D = 3,000 km., x = M, the M(3000) factor and
__ 1500

b. Curved Earth. Referring to Fig. 2b, D = 2r,0 and
(ho+ry—r, cos 6)2

cos* Iy = (ho+ry—rq cos 0)2+ry2 sin? 6
Since 0 is always small,
fo _ Cos? iy = (ho+r, 6%2) )
/2 (ho+r, 62/2)2+r 262
Substituting for § and taking f as the MUF,
1 (ho+D2[8ry)2

X2 (ho+D2[8r2+D4
Re-arranging for ho,

hO =S L — _D_2
2(xz2—1)*  8r,
Then for D = 3,000 km.
_ 1500

Comparing Equation (13) with (12), note that the effect of curvature is simply to reduce ko by a fixed factor.
Assuming 1> 1/M?2, Equation (13) can be simplified to
1500
ho = —-—-176.
0 i 76 (14)

This equation is remarkably similar to the Shimazaki result for a thick layer (hp = 1490/M —176), which
will be discussed later.
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7 X
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FIGURE 3

a. Flat Earth and thick ionosphere.
b. Curved Earth and thick ionosphere.

4. The case of a thick parabolic layer

a. For a flat Earth. Consider a parabolic layer of semi-thickness yp and base height ho. Suppose the
critical frequency of the layer is fo and the operating frequency on the oblique path is . Referring to
Fig. 3a and applying Martyn’s theorem, the equivalent path P’ of the ray is given by

D = P’ sin iy; 1)
also for a ray traversing a parabolic layer,
, f [ Jfo+fcos zJ 2 ho
P =yp = lo A .
P fo fo—fcos iyl cos i, (16)

In Equation (16) the first term represents the equivalent path within the layer and the second term the
path between ground and ionosphere. Eliminating P’ from Equations (15) and (16) gives

1

D = ypj{ sin i, log, [%J +2ho tan i,. a7

The turning point gD 0 at constant yp and ho gives the relation between f]fo and i, such that f = f,,;r

lo
and f]fo = x, the MUF factor. Differentiating Equation (17) and equating to zero gives
. x'2 \ yp ] [1 +x’ ]

2 - )

2 tan* 1 [(1——x’2) ho 1 hox log, 1 +2, 18

where x' = x cos i,.
Equations (17) and (18) contain the relationship between /p and x but this cannot be expressed analy-

tically. It is possible to solve them for Ap and x at fixed D and yp/ho by numerical methods; however, this
will not be done for the flat Earth case, since this approximation is inadequate for a range of 3,000 km.

b. Curved Earth. In the curved Earth case, Martyn’s theorem no longer applies and a simple expression
linking the equivalent path with the ground range (such as Equation (15)) is no longer possible. Referring
to Fig. 3b, it is now necessary to integrate along the path in the ionosphere to obtain y and hence the

part range D;,.
Let i be the angle the ray makes with the normal at any point along the path at a distance r from the

centre of the Earth. Then, according to Bouguer’s rule
pr sin i = ugry sin iy = (ro-+ho) sin i,
where r; = ro+ho and pg = 1.

. sin 7 ry Sin i
Thus tani = = 1 0

(1—sin2 i)}~ (u2r2—r 2 sin2 iy)*
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From Fig. 3b it is clear that tan i =r %’—‘ Therefore dy = _(;_r tan 7, from which,

’
_ ry sin i, d
X f r(u2rt—r,? sin? i)t 7 (19)

The use of a parabolic N(k) distribution to give p from Equation (5) results in an intractable integral.
However, using the approximation ho/r, < 1, Appleton and Beynon were able to solve Equation (19)
to obtain the ionospheric part range D;. With some further geometrical approximations for D,, their
final result was

_ro(x2—x'9} H _yp (x2—x'?) }
= ho yp log, (i1 S The +x'i/
ey 1 {12 et 6l
/{1 E )|+ 2recotin| 141 2 . (0

where x’ = x cos i,.

As before, equating dD/di, to zero will give the variation of x with i, independent of D. However,
Appleton and Beynon showed that the resultant expression produced values only marginally different
from those obtained from Equation (18) and concluded that this equation was adequate.

Equations (20) and (18) can be solved numerically to give the variation of Ap with x for particular
values of D and yp/ho. A computer program has been written to perform this task. This program has been
used to solve the special case of D = 3,000 km. for a range of values of yp/ho between 0-1 and 1-0. The
results of these calculations are shown in Fig. 4. In this figure, M has been plotted as a function of yp/ho
for a number of values of Ap (in the manner of Appleton and Beynon). Equation (13) was used to obtain
values of M at yp/ho = 0-0. Fig. 4 indicates that hp may have some functional link with M(3000) and
that this function will be substantially independent of yp/ho for yp/ho greater than 0-4. Equations (12)
and (13) suggest that sp could be a function of 1/(M2—1)}, whereas Equation (14) indicates a simpler
form, 1/M.

40 ———
" hp+200
35
250
300

350

N -

500

1

yp / ho
FIGURE 4
The M (3000) factor as a function of yp/ho, parametric in hp. (After Appleton and Beynon, 1940.)



10 BRITISH ANTARCTIC SURVEY SCIENTIFIC REPORTS: No. 88

To test which form is better, the lines of best fit have been determined for a range of yp/ho between
0-0 and 1-0, for the following two cases:

G) hp —a —IM—b, @1
. 1 '
(i) hp =a’ W_"-——l)‘“b , (22)
where the slopes and intercepts are functions of yp/ho. The results of this analysis are shown in Table I.
TABLE 1
hp =& —b hp = W,-“——'_l)i-—b’

yplho a b o a b a

0-1 1601 199 3-8 1327 139 01

02 1513 182 34 1251 123 02

03 1490 180 3-8 1205 114 04

04 1439 167 3-8 1181 109 04

0-5 1428 165 35 1165 105 06

06 1425 165 3-2 1155 103 0-7

0-7 1437 170 3-4 1146 100 09

08 1420 163 40 1146 100 1-1

09 1415 161 3-3 1150 100 09

1-0 1422 163 30 1153 100 10

Median
for yp/ho >0-4 1425 165 34 1153 100 09

This lists the slope, intercept and standard deviation (o and ¢’ respectively) for each case. The uniformly
small values of standard deviation indicate that both functions are good representations of the data.
However, o’ is between 1 and 2 orders of magnitude smaller than o, suggesting Equation (22) is the more
precise formulation.

The results can be simplified to give valuable practical relationships as follows. Fig. 4 suggests that Ap
is almost independent of yp/ho when yp/ho > 0-3. It is worthwhile, therefore, taking median values of the
coefficients above this limit to give a single expression.

Thus
1425
hp == —165, (23)
__1s3
hp = a1y 1% (24)

The usefulness of these equations can be assessed from a plot of the difference, 4,, between the median
hp and that given by the general Equations (21) and (22) as a function of yp/ho. Fig. 5 gives the resulting
variations of 4,, parametric in M, for the two formulations. For both, the following limit statements

apply:

@ 4, <+ 10km. for2 < M<4
and 1-0 > yplho > 0-38,
(ii) 4, <+ 10km. for3 < M <4

and 1-0 > yp/ho > 0-22.
These limits define the range over which Equations (23) and (24) adequately represent the family of
Equations (21) and (22). In practice, for the F2-region, yp/ho and M almost always fall within limits (i)
and (ii) so the median equations should be adequate for this region.
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02 o4 06 oe 0
yp/ ho

~asb

78~

M= 2
SO

4 tkm)
~

w

T

02 o4 10
yp/ bo

FIGURE 5§
a. 4, = hp (Equation 21)—hp (Equation 23) as a function of yp/ho, parametric in M.

b. 4; = hp (Equation 22) —hp (Equation 24) as a function of yp/ho, parametric in M.
The noise in case (a) is consistent with the increased standard deviations in Table I.
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IO’-a

yp/hom 0.7
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4-0
M- factor
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FIGURE 6

a. 4, = hp (Equation 23) —hp (actual), as a function of M, parametric in yp/ho.
b. 4; = hp (Equation 24) —#p (actual), as a function of M, parametric in yp/ho.
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The degree to which the median equations represent the raw data (i.e. Fig. 4) is indicated in Fig. 6,
where the difference between median and actual Ap, 4,, is plotted as a function of M. As would be expected
from the standard deviation results, Equation (24) is significantly better than Equation (23), though the
latter is adequate for most applications.

5. Shimazaki’s derivation

Appleton and Beynon’s work showed that hp and M(3000) are related in a complex manner and the
fact that simple forms of the type derived above (Equations (23) and (24)) existed was not realized for
some years. It was not until 1955 that Shimazaki (1955) made the necessary simplifications in the theory
to produce a simple explicit equation between hpF2 and the M-factor, viz.

_ 1490
hpF2 = =176, (25)

Shimazaki demonstrated that this result was consistent with the direct methods of obtaining Ap discussed
on p. 5. The Shimazaki equation has been adopted by the international scientific community as the
standard relationship. The new method of estimating AmF2 described here is based on a similar approach.
Shimazaki’s derivation will therefore be discussed critically at this stage. But first a short digression into
the background of one of Shimazaki’s approximations is necessary.

Snell’s law becomes invalid for a thick ionospheric layer, and Bouguer’s rule must be employed. An exact
treatment of the curved Earth case then requires integration along the path of the ray using a chosen
N(h) profile (i.e. Equation (19)). The difficulty of this procedure has caused some workers to search for
simplifications such that  at the point of reflection is given by

p, = sin §,G, (26)
where G is a geometrical “fudge factor”.

This approach relies essentially on the assumption that the path by which the ray reaches the reflection
point is irrelevant, so that Bouguer’s rule can be simplified by noting i = 90° at reflection. Thus, referring
to Fig. 7,

ro-+ho

e = ro-+ho—+z,

sin i,

FI1GURE 7
Construction for the Shimazaki (1955) derivation of Ap.
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from which

1
=142 ] :
¢ [ +ro ~+ho 27
Smith (1939) extended this approach by assuming N to be independent of 4, giving u = constant. This
implies that generally
rsin i = (ry-+ho) sin i,
and in particular

from Fig. 7. It then follows by substituting Equations (27) and (28) in Equation (26) that
: 1 +Z,. /("o +h0)
, =sin ¢ 0 T 29
b S O T 2o/(ro o) (29)

Shimazaki commenced his argument by quoting this result in the form
2 1+42z,/(ro+ho)]2
1 ( _j: ) =sin2 @ l:..—"__o..___ ,
+ S 14-2zo/(ro+ho)

where f” is the oblique path frequency and f the corresponding vertical incidence frequency. Shimazaki
used the fact that z, and z,—z, are both much less than r,+ko to simplify this equation. The geometry
of Fig. 7 was then used to eliminate @, giving

D . D ([2(z,—zo)( f'\? f\2 '
ho+z, =—r (1——cos—> r sm-—{{ r 70 (--) 1} {(—) —1 .
0 3] T ot \ 7] YT
At this stage, Shimazaki made the major assumption that the Martyn equivalence theorem applied in
the curved Earth case. This allowed the virtual height of reflection on the vertical path, 4,, to be equated

with ho +z,. Then assuming N varies parabolically with 4 and noting the Booker and Seaton (1940) result
that hp = h, when f = 0-834/0, it followed
= —rl1—cos 2 in D Zv—zo)(f_’)2 : } {(L’)z_ : }}*
hp ro{l coszro’—{—ro smzro{{Z (r0+h0 2 ) vo-696 ) 1{(£)"~0-696 |
The further assumption that z, = yp for f = 0-834f0 gave z,—z, = 0-55yp. Taking r; = 6,370 km.,
D = 3,000 km. and ko = 200 km., the equation reduced to
0-000168yp (f'[fo)2+0- 696}*
hp = —176 41490 .
v + ‘ (F'fo)*—0-696
Shimazaki realized that this equation applied for f = 0-834/0 so that f’ could not in general be the
MUF. He showed, however, that it was related to the MUF such that

S =sfoM(1+)),

4
g _"f'_-o‘j"—l,
and 4f =f'—MUF. Thus the equation for Ap could now be written
hp = 1490F(M, yp, {)—176, (31)

(30)

where

where

0-000168yp (1+40)2M2 +0-696}*
F = .
Shimazaki found that the practical range of values for yp and { is limited. Data from Kokabunji gave

mean values for these parameters of 90 km. and —0-05, respectively, with a range of 5-10 per cent about
these means. With these values, Equation (32) reduces to

. H
Fe {o 0196M2+1} .

1-:297M2—1
For2 < M <4,1>» 0:0196M?2, so that

(32)

1
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This approximation for function F results in an equation very similar in form to the 1/(M 2—1)} result
(Equation (24)). Noting 1-297M2 > 1, F can be further simplified, giving

1

F~_—,

5 (34)
Shimazaki used this form for his final equation (Equation (25)) and demonstrated the validity of the
approximation graphically by plotting M.F as a function of M. Part of the resultant curve is reproduced
in Fig. 8. It is apparent from this figure that the approximation holds to better than + 1 per cent for
2-1 < M < 3-5, and between —1 and +4 per cent for 2 < M < 4.

104 —

103~

M.F

1-01 -

1 1 i —
25 30 3s 40
M- factor

o-99L-
FIGURE 8

M.F (see Equation 32) as a function of M. Reproduction of part of the curve given by Shimazaki (1955) to justify his
approximation for F (Equation 34).

Shimazaki showed that his final equation (Equation (25)) was relatively insensitive to changes in yp and
{. This clearly must be so, because { is only a second-order term, whilst yp only figures in Equation (32)
as part of a second-order term.

It may be assumed that the Appleton-Beynon analysis gives the precise solution for a simple parabolic
layer, so that a comparison with this will highlight the effect of Shimazaki’s approximations. The difference
between Shimazaki’s sp and the actual values (in Fig. 4) are shown in Fig. 9 as a function of M for yp/ho =
0-45. This value of yp/ho is equivalent to Shimazaki’s chosen values of /o and yp. In the figure, the dashed
curve corresponds to the results using Equation (31), whilst the solid curve is for Equation (25).

The figure indicates that the approximation that Martyn’s theorem holds, and the approximation that
the path of the ray is irrelevant, together result in a more or less constant overestimate of between 10 and
15 km. Thus the shape of the function F is roughly correct but the coefficients of Equation (31) are not.

2
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20 -

o | |
20 2's 30 35 40
M- factor
FIGURE 9

Comparison between the Shimazaki and Appleton and Beynon derivations of Ap.
Dashed curve: 43 = hp (Equation 31)—hAp (actual).
Solid curve: 4; = hp (Equation 25) —Ap (actual).
The difference between the two curves indicates the distortion produced by the 1/M approximation.

As a corollary, the result of the simplifications is to reduce the effective yp/ho to about 0-2.

As might be expected from Fig. 8, the 1/M mathematical simplification introduces a distortion dependent
upon M. This distortion is similar in form but of larger amplitude than that shown in Fig. 6a.

Considering the severity of the approximations, the discrepancies are remarkably small. This is the
fortuitous result of cancellation of errors. The simple treatment of the ray path leads to an underestimate
of the path length in the ionosphere, and hence the total range. This implies that for fixed D, the semi-angle
@ of the vertex of the equivalent triangle (Fig. 7) is overestimated. Consequently, from the geometry of
Fig. 7, ho+z, will be underestimated. But, equating 4o -z, with A, by the equivalence theorem in the
curved Earth case (personal communication from J. A. Murphy and P. A. Bradley) leads to an overestimate
of h,.

6. Experimental evidence in favour of Shimazaki’s equation

It has been concluded that for a simple parabolic layer, in the absence of the B-field, the precise equations
for hpF2 as a function of M(3000)F2 are found from Appleton-Beynon analysis, and that the Shimazaki
equation produces a consistent overestimate. The experimental evidence appears to be at variance with
this conclusion. Shimazaki, in his original paper, made comparisons between the values given by his
equation using the measured M(3000)F2 and those found by Booker and Seaton’s method (see p. 5);
these comparisons were made using data taken from observatories widely spaced over the globe. There
does not appear to be any systematic trend in the differences between the two estimates of Ap.

To resolve this inconsistency between theory and experiment, compare basic premises used in the two

cases:
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i. The parabolic approximation. Clearly the experiment and the theory are not compatible here.
M(3000)F2 and the Booker-Seaton /p were both determined from actual jonograms which contained
varying amounts of underlying ionization. Both parameters would be affected by this. As will be
seen later, the errors introduced would normally not be markedly different in the two cases. A special
situation arises when the ratio of foF2 to foFI is small enough for hp (= 0-834f0F2) to be measured
at a frequency severely retarded by the FI-cusp.

ii. The effect of the B-field. It was demonstrated on p. 5 that the Booker—Seaton Ap would be an
overestimate of the true Ap by an amount depending upon the magnetic dip at the location in ques-
tion. The effect of the B-field is not included in the calculations used to construct MUF overlays so
it is possible that the value of M(3000)F2 determined for a particular hp will vary with dip. This
introduces a source of inconsistency into the experimental comparison, but it is possible to test the
effects produced, as will be seen below.

iii. The method of measuring M(3000)F2. This is the critical point and is discussed at length. For the
simple case of flat Earth, flat ionosphere and no magnetic field, the equivalence theorem linking the
vertical and corresponding obliquely propagated ray (see Fig. 3a) leads to the simple equations

f =1, sec iy,
D =2h tan i,.

Smith (1937) proposed a graphical solution of these equations for application to ionograms with
logarithmic frequency scales. A curve is constructed with 4’ as ordinate (on the same scale as the
jonogram height scale) and sec i, as abscissa (plotted on a logarithmic scale in the reverse direction
to the ionogram frequency scale). Obviously, a family of curves can be drawn, each for a different
ground range D. By overlaying the curve (called a transmission curve) on the ionogram and moving
it, maintaining a match between the two height scales, until the 4’f curve and transmission curve
just touch, the maximum usable frequency factor for the range D can be determined. The value is
simply given by the cutting point on the sec i, scale corresponding to the critical frequency on the
ionogram. For the special case considered the solution is exact.

The solution of the general case of curved Earth and curved ionosphere depends on the actual
electron distribution encountered by the ray. As already discussed, Appleton and Beynon solved
the problem completely for the case of a parabolic distribution, and in a subsequent paper (Appleton
and Beynon, 1947) they gave computed values of the MUF factor in the overlay form discussed
above. Because, in their theory, the MUF factor is a function of yp/ho, the values were stated for the
average variation of this parameter with height over Slough. Smith (1937, 1939) also tackled the
general problem; in his approach it was assumed initially that the Earth was curved whilst the iono-
sphere was flat. This allowed the factors to be determined approximately without reference to the
actual ionization distribution. The values thus obtained were then modified by an approximate
correction factor derived by assuming a linear electron distribution.

The values of M as a function of 4’ (required to make an M(3000)F2 slider) deduced by Smith
differ slightly from those obtained by Appleton and Beynon and, of course, neither precisely describes
conditions in the real ionosphere. Notwithstanding this, it was agreed internationally that Smith’s
values should be taken as standard. For the present purpose, the significant point is that Shimazaki
used Smith-type approximations in his derivation. The international factors are thus more consistent
when used in Shimazaki’s equation than the Appleton-Beynon analysis. Conversely, Appleton-
Beynon factors used in Shimazaki’s equation will produce worse results than the international

factors.

The points raised in (ii) and (iii) can be tested using Becker’s (1960) tables giving A’f curves for parabolic
layers in the presence of the B-field. Table II shows the results of such a test in which the values of M(3000)F2
were determined from these A'f curves, first using the international slider and then the Appleton-Beynon
slider. The semi-thickness of the model layer was fixed at 100 km. and Ap was varied between 200 and
400 km. The tests were made for two very different values of dip and in each case the value of /p given by
Shimazaki’s simple equation and the value from the Booker—Seaton method were determined. The table

demonstrates the following points:
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TABLE 1I
COMPARISON OF DIFFERENT METHODS OF EVALUATING hp
] |
True value of hp 200 250 300 350 400 ! ‘
hp from Shimazaki equation using the international factors 216 262 305 347 386 ‘ ‘I
! ‘
| n
hp from Shimazaki equation using the A4/B factors 216 269 316 362 397 | =“;0°
[
hp by Booker and Seaton’s method (4’ at 0-834f0F2) 203 253 303 353 403 |
e e ) - |
|
hp from Shimazaki equation using the international factors 229 276 321 366 397 |
I
hp from Shimazaki using the A/B factors 228 282 333 376 420 Elgoo
hp by Booker and Seaton’s method 213 263 313 363 413 |
|

i. For both dips the international factor gives a better value of /p than does the A/B factor, except at
the lowest and greatest heights. The corollary to this is that the international factors will give less
precise values for ip when used in the 4/B equations than they will in the Shimazaki equation.

1. As the dip increases, calculated Ap increases (for constant true hp), because M(3000)F2 decreases.
This is in the same sense as the magnetic field effect in the Booker—Seaton hp. Note that the values
obtained from the international factors and those obtained from Booker—Seaton remain internally
consistent as dip increases.

It is now clear why the Shimazaki equation gave good agreement with the Booker—Seaton Ap. The errors
in this equation are compensated to some extent by similar errors in the analysis for the M UF factor. Both
methods of estimating /p overestimate by similar amounts because of the effects of the B-field.

Obviously, Becker’s tables could be used to establish accurate relationships between Ap and M(3000)F2
(using the international factors), parametric in magnetic dip. A preliminary analysis suggests that the
1/(M?—1)* formulation is better than the 1/M and that the coefficients a’ and ' both increase with in-
creasing dip.

7. Summary

The basis for a simple relationship between the M(3000)F2 factor and hpF2 has been discussed. It has
been shown that, whilst the approximations used by Shimazaki in his derivation result in an equation
which is fundamentally inaccurate, similar inaccuracies in the accepted method for determining M(3000)F2
tend to compensate. The Appleton-Beynon analysis is inherently more exact but cannot be of practical
use because of the bias in the international factors. However, it is clear that the 1/(M2—1)* formulation
is preferable to the 1/M approach. It has been noted that Shimazaki’s use of 1/M introduces significant
distortions when compared with his more complete equation. A method by which more accurate relation-
ships between the international factor and ApF2 could be derived, including the effect of the geomagnetic
field, has been suggested.

The aim of the work described in this report is the development of a simple empirical equation for
hmF2. As a first step, therefore, the recognized form of Shimazaki’s equation will be used but the insight
gained from the analysis in this section will be utilized to locate where and how the resultant expressions
break down.

IIT. CORRECTION FOR THE EFFECTS OF UNDERLYING
IONIZATION

1. Introduction

It was quickly realized that /ip could not be simply equated with Am except under very special conditions.
These were:

i. That the layer in question was parabolic in form at all heights.
ii. That the group retardation suffered by radio waves (at the sampling frequencies) traversing under-
lying layers or non-parabolic parts of the reflecting layer was negligible.
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For the F2-layer these conditions only occur at night during magnetically quiet conditions. At other times
condition (i) is usually a reasonable approximation, but condition (ii) is certainly not, and the use of Ap
will lead to overestimates of Am, often by more than 50 km.

In this section some basic ideas concerning the effects of underlying ionization are illustrated. This is
followed by a critical review of previous work on model methods of estimating smF2 and ymF2.

2. Basic ideas

The effects of underlying ionization are best understood by considering the group retardation suffered
by a wave (frequency f) due to a simple model layer of critical frequency fo, where f > fo. Three different
cases are considered but the effect of the B-field and energy loss due to collisions are neglected.

i. The electron concentration (N) does not vary with height (slab). In this case the group retardation
expressed as the difference between the true and virtual heights normalized by the layer thickness

(ym) is
an’ [ . 1]“* .
= 1— 1, (35
where x = f]fo.

It is a simple matter to show that the total electron content, INdh, of this layer is ymNo.

ii. N parabolic with height (up to hm)

éﬁl— = x arc tanh 1—1, (36)
ym x
f Ndh = %ymNo.
iii. N linear with height
ak’ =2xz{1_[1_1]‘}_1, (37)
ym X2
f Ndh = %ymNo.
These normalized group retardations are given in Fig. 10 as functions of x for 1 < x < 2. Also shown
30
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FIGURE 10
Normalized group retardation suffered by a wave of frequency f in penetrating a layer of critical frequency fo (f>fo).
a. For a slab. b. For a parabola. c. For a linear layer.

The dashed line shows the corresponding curve for the parabola when the magnetic field is included.
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in the figure is the corresponding curve for a parabolic distribution when the B-field is included (taken from
Becker (1960) for I = 60-0°). The no-field curves have, to a first approximation, the same shape above a
limit value of x of about 1-3; the differences between them above this limit are almost entirely due to the

changes in “. Ndh. Thus, the shape of the underlying profile is immaterial for group retardation on fre-

quencies above this limit and only the underlying total content matters. This is a crucial point because it
means that any convenient model profile can be used to correct Ap provided the total content is approxi-
mately right. Also, minor perturbations in the real profile shape (for example, the appearance of an FI-
cusp) are unimportant provided x is above the limit value. This point has also been made by Lawrence and
others (1964) in a discussion of ionospheric perturbations on V.H.F. signals.

A further advantage is found in practice because the B-field moves the critical point much closer to the
cusp (x of the order of 1-05; the dashed curve in Fig. 10). It is noteworthy, also, that the no-field linear
distribution, which has the great advantage of mathematical simplicity, is a very good approximation of the
full-field parabolic case for x > 1-05.

It is unusual for x < 1-05 to occur in practice, so the comment made on p. 17 concerning the effects of
underlying ionization on Ap and M(3000)F2 is seen to be true. In the extreme case, both will be greatly
affected but to differing degrees because the measuring point for Ap is at a lower frequency ratio than is the
tangency point for M(3000)F2.

3. Review

Booker and Seaton (1940) were among the first workers to realize the need for a simple method of
correcting hpF2 for underlying ionization. They developed a method in which the F2-layer and both the
underlying layers (E, FI) were approximated by parabolic ionization distributions (see the example in
Fig. 11). Estimates of the height and semi-thickness of the E-layer were made using the technique discussed
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Practical example of the “Booker-Seaton” correction technique. Shown in the figure are: a. The ordinary trace in terms of N

recorded at the Argentine Islands on 31 December 1967 at 13.30 L.T. b. Dashed curve: the simple parabola obtained if no

correction for underlying ionization is made; solid curve: the “Booker-Seaton” triple parabola construction; dotted
curve: N(h) profile deduced from ionogram using a sophisticated numerical method.
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on p. 5. Given these, the virtual heights required to determine the corresponding parameters for the
Fl-layer were corrected for group retardation in the E-layer, using Equation (11). This procedure was
then repeated to give, finally, estimates of AmF2 and ymF2 (call them hF2 and ymF2 to differentiate them
from the true values).

For the example shown, the Booker-Seaton correction scheme produces a good estimate of smF2 since
the parabolic profile has about the same underlying total content as the actual profile. However, the layer-
like properties of the Fl-region are seen to be considerably accentuated. The method is not practical
since each determination of Ar1F2 requires considerable analysis of the original ionogram. The Booker—
Seaton approach is historically important because it introduced the idea of the triple-parabola approxima-
tion, much used in subsequent analyses. Ratcliffe (1951) developed the Booker—Seaton analysis into a
graphical technique. This method has the advantage of speed but is relatively inaccurate.

Vickers (1959) attempted to derive a more practical scheme for correcting 2pF2 by making the assump-
tion that only the Fl-layer made a significant contribution to the group retardation near Ap. This is clearly

a reasonable approach because | NdA is much smaller for the E-region than for the FI. Vickers used a

model profile for the underlying layer and derived expressions of the form of Equations (35) to (37),
where x'r = foF1|foF2. The model profile results were calibrated using observational data (N(4) profiles
deduced from Slough ionograms) and Vickers found that the slab (Equation (35)) gave the best results.
His estimate of AmF2 was therefore

hitF2 = hpF2—a [(1 —x',,z)—*—-l] —b, 8)

where a and b are numerical coefficients obtained by linear regression analysis of the sample data (Vickers
obtained a correlation coefficient of 0-88). “a” is a function of the mean value of ymFI in the sample
used. “b” should ideally be zero, but in Vickers’ analysis was negative for low sunspot numbers and
positive at high sunspot numbers.

The Vickers method allows a crude approximation to be made for a particular location once the calibra-
tion has been made. It has the advantage over Booker-Seaton’s correction scheme in that it relies only
upon published data; there are, however, two important criticisms:

i. A correction can only be made when a scaleable FI critical frequency is present on the original
ionogram. An FI-critical is usually produced by an inflexion in the N(h) profile and not a turning
point (see Fig. 11). A small change in the shape of the profile near 200 km. can therefore cause the
“FI-layer” on an ionogram to disappear without greatly changing the group retardation produced
on a higher frequency. The result would be a serious overestimate of height.

ii. The coefficients @ and b are strongly dependent on sunspot number, and extra analysis would be
required to establish the form of this and the resulting empirical equations would be unnecessarily
complex.

Wright and McDuffie (1960) made an empirical analysis of the validity of ApF2 as an estimate of hmF2
using sunspot-maximum N(#) profile data and corresponding values of M(3000)F2 from 16 observatories
covering a wide latitude range. They found that the approximation was valid at night-time at low and
middle latitudes, but not at high latitudes where hrF2 was always less than ApF2. During the daylight
hours ApF2 was an overestimate at all latitudes. However, at low and middle latitudes the relationship
between Am and 1/M was still substantially linear so Wright and McDuffie proposed the new empirical

relation

. 1411
F2 = ———169.
hm i (39

This equation was found to be inadequate at high latitudes during the day.

The practical value of Equation (39) is limited because variations in the amount of total underlying
ionization have been smoothed out.

A graphical method of obtaining ##F2 and ymF2 has been developed by Taieb (1967). He assumed a
parabolic layer approximation but took account of the Earth’s magnetic field. Taieb tried to devise a
scheme which would require only parameters routinely scaled from ionograms, but he found it necessary
to introduce a new parameter: the frequency at which the lowest virtual height is recorded from the F2-
region. Thus, the usefulness of his method is greatly reduced.
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Decker (1972) has developed a method which relies only on the routinely scaled parameters foE, foF2,
M(3000)F2 and h'F. He assumed a model ionosphere composed of two a-Chapman type layers, an E and
an F2; hmE is taken as fixed at 1086 km. and HE (the scale height of the E-layer) as 7-5 km. From this
model, Decker has calculated M(3000)F2 for a range of hiF2, HF2 (scale height of F2-layer) and x';
(=/foE[foF2). A polynomial three-dimensional fit to the resultant matrix of points gives the equation

3 3 4
q
WhF2 = Z Z Z Xy (% ) (HF2*"'(DK) g1
r=0g=0p=1

In this equation, (DK), ., represent 64 coefficients produced by the fitting process. Before A F2 can be

determined HF2 must be known; Decker showed that this could be represented by
3 3

4
\ q
w2353 i (L wr om .
r=0gq=0p=1

These two remarkable equations correct for the relatively small effect of the E-region whilst entirely
ignoring the major contribution of the ionization between the E and F2 layers. Decker pointed out that
the inclusion of this would necessitate a five-dimensional polynomial. Not surprisingly, the computer
available to Decker could not cope with this, but he was able to obtain an approximate result by assuming
hmF1 =210 km., HFI =21 km. and foFl = 1-4f0E.

Decker’s method cannot be considered as practical because it is extremely cumbersome and does not
correct for the major term (the coefficients required in the special three-layer solution are not quoted).

Bradley and Dudeney (1973) made quite a different approach to the problem. They realized the crucial
point that only the total underlying content was important. They found that the simplest way to treat the
problem was to use a model consisting of a parabolic E-layer, a parabolic F2-layer, and a linear increase
in electron concentration fitting the profile between these two and chosen to give the required total content
(see Fig. 12). hmE was fixed at 110 km. and ymE at 20 km. By trial and error, it was found that the best
agreement with N(h) analysis was obtained when the electron concentration at which the linear portion
intersected the F2-parabola equalled 2-89NmE (1-7foE). A particular feature of the model is that ioniza-
tion in the F7 height range is determined by E and F2 ionization parameters. Bradley and Dudeney pointed
out that measured true-height profiles rarely show marked F I-layer discontinuities; many of the cusps and
inflexions seen on ionograms which are scaled as FI-layer characteristics result from only minor fluctuations
in electron concentration (see Fig. 11). They stressed that it is the ionization between the E and F2 regions
which contributes most to the group retardation at ApF2, and that this is present irrespective of the
behaviour of the F/-ledge.

HEIGHT ( km.)

ELECTRON CONCENTRATION
FiGure 12
The simplified N(4) profile used by Bradley and Dudeney (1973).
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Bradley and Dudeney synthesized ionograms, neglecting the B-field, for a wide range of values of the
parameters AmF2, ymF2[hoF2 and x (= foF2/foE). M(3000)F2 was measured on these ionograms using
the standard international procedure (Piggott and Rawer, 1972). This parameter was found to be relatively
insensitive to ymF2/hoF2 and the results were consistent with the following empirical relations which
apply for xz > 1-7.

hF2 = a(M)

355
xg—1-4 (40)
b =(2-5xz—3)"*%—1-6
ymF2 = hmF2—(h'F (F2)—4h’)

a = 1890—

0-613 (41)

xg—1-33
h’F(F2) is the minimum observed virtual height of reflection from the F2-layer; it is equal to A'F in the
absence of an FI-ledge and 4’F2 at all other times. The reason for the limit value x; = 1-7 is obvious and
it is of note that this implies a value of about 1-2 for x; (=foF2/foFI), well above the limit at which the
shape of the underlying profile becomes important in practice (Fig. 10, field case).

Bradley and Dudeney compared the values obtained from Equations (40) and (41) with values deter-
mined by N(h) analysis using ionograms from a number of different locations. This comparison was made
using data from all seasons and from both extremes of the solar cycle. The agreement was generally very
good, and in particular the claim that the presence or absence of the FI-ridge has insignificant effect on the
group retardation was supported by the comparison results.

Bradley and Dudeney have undoubtedly developed a very powerful method of estimating AmF2 and
ymF2 which should find wide application in morphological studies of the F-region. For the present
purposes, however, the limitation that the method cannot be used when xj is less than 1-7 can be impor-
tant, since such values of xj are often found at middle and high latitudes during the daytime in summer.
Also, it is desirable to allow for the effects of the B-field.

0-86
A = [ ] (hF2—104).

4. Summary

To obtain a true value of AmF2 on all occasions would involve making a precise N(#) computation from
the actual ionogram which is a slow and expensive procedure.

To avoid this expense, various authors have attempted to estimate AmF2 by using idealized models
of the ionosphere. This has been done using either a general model applicable over wide areas (i.e. Bradley
and Dudeney) or by a model selected and calibrated to fit the ionosphere at a particular location (e.g.
Vickers). Provided a suitable choice of parameters is made, coupled with careful analysis of sample data,
the latter method is capable of higher accuracy than the former for studies at one station. A ‘“data calibra-
tion” type of approach has therefore been selected in the method described below.

IV. ANALYSIS

1. Introduction

In this section, a method for estimating the true height of the F2-layer is described in which Shimazaki’s
equation is used but a correction for underlying ionization is made. Following the work of Bradley and
Dudeney (1973), it is assumed that the correction term can be expressed as a function of x alone, indepen-
dent of the behaviour of the FI-ledge. The form of the function is determined empirically using true-height
data for the location in question.

The standard form used by many authors in the past for correcting ApF2 for the effects of underlying
ionization is

hmF2 = hpF2—A4h, (42)
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where 4h is a height-correction term expressed as some known function of the total underlying ionization.
The form of this function can be found either by explicit use of a model profile or by using the Vickers
type approach. For simplicity it is usually taken as parametric in x, where x is the ratio of the maximum
plasma frequency of the underlying ionization to foF2. In its general form, the “44” correction method is
quite valid but difficulties arise in practice when the total underlying ionization is assumed to be given by
a function of x alone. The total underlying ionization can change with hmF2, causing the required 4k
to increase with increasing AmF2 except in the unlikely case where the layers are completely separated. A
simple type of variation with x can be obtained only if 44 is normalized by the thickness of the underlying
layer (see the work of Vickers, p. 21). However, another unknown variable is thereby introduced.

In this analysis an entirely different approach is adopted which automatically allows for changes in
hmF2 without requiring a value for the underlying layer thickness. Consider the Shimazaki equation,

_ 1490
hpF2 = == 176,

[
where the subscript “,” denotes an observed value. Differentiating and approximating to small finite

changes gives

14904 M

dh ~ iz (43)
If 4k is the value which satisfies Equation (42), 4M can be taken as the increment to M, required in the
Shimazaki equation to give hitF2, viz.
. 1490
hmF2 Mo A0
It is reasonable to suppose that AM can be expressed approximately by a function ¢,,(x;), thus at constant
xg, 4M is constant and it is clear from Equation (43) that 44 is an inverse function of M. o and hence some
direct function of ~mF2. There are therefore marked practical advantages in using 4M instead of 44 for
estimating AmF2. This will be called the “4M” approach.

This section is devoted to establishing empirically the form of the function $a(xg) to be used in Equation
(44). As part of this analysis the “4M™ method will be tested against the “4h” method experimentally. It
will be shown that by using the “4M” approach a single equation for AmF2 can be obtained which is
applicable at all epochs of the solar cycle, an important practical point.

176. (44)

2. The data sample

The objectives of the data analysis have been defined and it is now necessary to consider the practical
detailsinvolved in some depth. A set of data is required comprising of values of A F2 (obtained by numerical
N(h) analysis) with the corresponding M(3000)F2’s and x,s. This set must be complete enough to describe
the behaviour of the layer both diurnally, seasonally and at different solar epochs. However, the total
number of determinations of /7F2 that can reasonably be made depends upon the time taken over each
determination. This time is controlled by the type of N(k) analysis used. Since the study is manpower
limited, the fastest method available (commensurate with maintainin gadequate accuracy) must be employed
to maximize the data set. It should be noted that a full N(k) profile is not required, only hr1F2. Bearing
these points in mind, the “Ahcgc” method (Piggott and Rawer, 1972) will be used.

In this technique, the true height (A;) at a plasma frequency ( /f3) equal to 0-95 of the critical frequency
JoF2 is determined using the “10-point” method (Schmerling, 1958, 1967). The latter is a simple numerical
method designed specifically for manual use, which includes correction for the effects of the geomagnetic
field, and in which the only assumption made about the profile is that it be monotonic. The quarter
thickness (gc) of the equivalent parabolic layer which matches the N(h) profile above f, is determined
directly from the ionogram by an overlay technique. The true height of the peak (hcF2, for this method)
is given by hcF2 = hy+0-625gc. Each determination of hcF2 takes between 5 and 10 min., depending
on the type of ionogram (those with logarithmic scales are more convenient), whereas a computer-based
system (for finding the N(%) profile and thereby AmF2) will in practice be between 10 and 100 times slower.

To understand the mechanics of Schmerling’s 10-point method, consider again Equation (6)

[
K(f) = #'adf—}; dfy-+h(0);
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for a particular value of f this equation can be inverted (Budden, 1955) to give

h(fy) = Anil' () + - - - Ansh'(f5)+ . . . Anb'(fx)-

Here h'(f5) is the virtual height at a plasma frequency fs, less than or equal to fy, and the coefficients Ays
are all different. Not only do these coefficients vary with f5 but also with fy and different sets are needed for
different geomagnetic locations. Schmerling showed, however, that values of the ratio f/fy could be found
such that all the coefficients were equal; 4 was then simply the sum of the A4’ values divided by the number
in the sample. Furthermore, the sampling ratios ( fs/f) were found to be only slowly varying functions of
both frequency and the magnetic parameters so that one set could be used for a moderate range of values.
Schmerling chose ten sampling frequencies so that

h——Z(k)

The accuracy of the “hcgc” method depends intimately upon the type and quality of the ionogram to
which it is applied. The ionosonde in operation at the Argentine Islands is a Union Radio Mark 1I type
which produces an ionogram with a non-logarithmic frequency scale from which heights may normally
be scaled to 4-5-0 km. and frequencies from +0-02 to +0-05 MHz (as a function of frequency). Restric-
ting the discussion to this type of ionogram,

10
1 ,
10 Z (h{ )'

If the uncertainty in the i value of 4’ is 84’;, the maximum uncertainty can be represented by

Shy — + Z ah3 Sh’,

10
1
= —— ! 45
Shy £ 3 El (8K"). (45)

The most probable error in 4,3, Q,, is given by

o (S[(@) 1.
-

For a perfect ionogram, the quoted frequency uncertainties will introduce no significant height un-
certainty and 8’ will equal 45 km. for all i. It follows from Equation (45) that 8i; = 45 km. also;
further, from Equation (46) Q; = -+ 2 km. In practice, one or more of the 4’; values may have to be
estimated either because the sampling point falls on a cusp, or because the relevant part of the trace is
missing. Provided the number of such cases is small, the resultant measuring uncertainty will only be
marginally increased as individual errors carry one-tenth weight in the average.

Piggott (1954) pointed out a further possible source of error in sampling methods such as Schmerling’s.
The true heights determined in the vicinity of cusps tend to be slightly high and those away from cusps
correspondingly low, such that the total area under the resultant N(h) curve remains approximately correct.
The Schmerling method may therefore slightly underestimate ;.

The accuracy of hcF2 also depends upon the measurement of gc. Using the overlay technique described
by Piggott and Rawer (1972) for non-logarithmic ionograms, the best measuring accuracy obtainable in gc
is 4-5 km. Operationally, the maximum uncertainty is probably of the order of 410 km. and there may be
additional unknown errors if the real profile departs significantly from the parabolic form above 0-95f0F2.
Taking 3qc as 4-10 km. the maximum uncertainty in Ac, 8hc, is given by 8h;+0-6258¢c, i.e. approximately

or

therefore
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11 km. The most probable uncertainty in this parameter is approximately 7 km. Allowing for systematic
effects in the 10-point method and for non-perfect ionograms, the probable uncertainty in Ac is increased
to about 4-10 km., independent of Ac.

As a test of consistency, four ionograms were reduced, both using the methods just discussed, and a
sophisticated numerical method developed by Jackson (1971). He included the effects of the Earth’s
magnetic field and also included an estimation of the depth of the valley above the E-layer. The latter
calculation is performed by varying the chosen depth of the valley until the observed and computed
extraordinary traces match. The Jackson system involves a parabolic extrapolation to the peak of the
layer based on the values of N, 4 and 9N/ determined at the last two points scaled from the ionogram.
From this extrapolation estimates of hmF2, ymF2 and NmF2 are obtained.

The values found from the four ionograms are given in Table III, in which JoF2 is the observed value

TABLE III

COMPARISON OF MANUAL AND COMPUTER METHODS FOR
ESTIMATING hmF2

“hege” “Jackson”
hy he gc foF2 hy hm qm JoF3
319 363 70 7-90 317 358 60 7-89
324 361 60 11-25 324 359 53 11-32
270 301 50 6-00 279 315 51 6-02
| 241 263 35 8:25 244 278 48 8-38

and foF?2 is the value calculated by parabolic extrapolation. In the Jackson case &; was determined by using
the observed value of foF2. It will be noted that in three out of the four cases the hy’s agree to within
+ 3 km., suggesting that both methods are capable of producing quite accurate answers for this parameter.
However, the agreement is less exact for the parameters determined using the two different parabolic
extrapolations.

These discrepancies highlight an important point often overlooked by workers involved in N(h) analysis.
Numerical methods of extrapolation, of which Jackson’s is but one, rely upon two measurements of 4’ at
a sensitive part of the 4'(f) profile (near foF2) where small errors in the measurement of frequency produce
disproportionate errors in true height. Because of this, such methods cannot be expected to give precise
values of /i1 and yr, although the errors can be reduced by repeating the procedure and averaging the
results. On the other hand, in the “/cgc™ method, the shape of the observed A'( f) profile above 0-95/0F2 is
matched by eye with one of a family of standard shapes, giving an inherently more exact result. The Jackson
method is particularly prone to error because foF2 is taken as unknown and 8N/ at one of the two
measuring points is required in the extrapolation to determine it. As a general rule, foF2 can be measured
directly off the ionogram much more correctly than it can be determined by Jackson’s method. A 1 per cent
error in foF2 is equivalent to over 20 per cent error in semi-thickness (Piggott, 1954) and thus the hege
analysis is probably more accurate than Jackson’s for the fourth case in the table.

Using the “hcgc” method, 80 high-quality ionograms recorded at the Argentine Islands between
December 1967 and January 1969 have been reduced. Of this sample, approximately half were from summer
months and the remainder were split between winter and equinox. The period covered by the sample was
representative of median sunspot activity. To test for solar cycle sensitivity, a further six iono grams recorded
in December 1957 (sunspot maximum) and seven ionograms from December 1963 (sunspot minimum)
were included.

3. The parameters and their measuring uncertainty

The primary parameters measured from the ionograms are listed in Table IV. This table gives the
estimated measuring uncertainties in these parameters for this analysis and also those agreed on inter-
nationally (Piggott and Rawer, 1972).
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TABLE IV
MEASURING UNCERTAINTIES IN THE PRIMARY PARAMETERS
foF2 JoE MUF W F(F2) hcF2 qcF2
Parameter (MHz) (MHz) (per cent) (km.) (km.) (km.)
Measuring uncertainty used 0-05 0-05 1 5 10
International uncertainty 0-1 0-05 * 5 t t

* M(3000)F2 ( = % ) is quoted; the uncertainty is 0-05.
1 Not quoted.

From these primary parameters, the working set was obtained from the equations given in Table V.
The equations for the most probable uncertainty are also given in this table.

TABLE V
DEFINITIONS OF WORKING PARAMETERS

Parameter definition

Uncertainty relation

_foR2 {(Sfon 2 (sfoE )4
X ="7F Sxr = dxx m) + foE) }
_ MUF B 3foF2\* (SMUF\?2)\#
] 8M°“iM°[(faF2> (MUF) }
1490 B My
Mr = 176 Mr = 176 ncF?
ycF2 = 2qcF2 SycF2 = +28qcF2
1490 1490
hpF2 = <=~ 176 ShpF2 = £ 3r8Mo
AM = Mz—M, 84M = +{SMr)y'+ (M}

Ah = hpF2—hcF2 84h = +{(3hpF2)*+(3hcF2}t

ho == heF2—ycF2 dho = + {(8th2)’ +(3 ycFZ)’}‘

8y = in{(§i§2>2+(%y}‘

It is unnecessary to compute the uncertainties for each parameter for every ionogram analysed. Indeed
this would be a futile exercise since the uncertainties given in Table IV are only average values. An adequate
appreciation of the importance of the measuring uncertainties may be obtained by looking in detail at a
small sample of data. To this end, five cases have been selected, three from summer (1 to 3) and two from
winter (4 and 5), representative of median sunspot activity. The primary parameters scaled in these cases
are given in Table VI.

__YycR2
~ ho

TABLE VI

PRIMARY PARAMETERS USED FOR
ESTIMATION OF UNCERTAINTIES

Case JoF2 JoE MUF  hcF2 gcF2
1 11-25 2-75 300 361 60
2 7-90 3-45 20-2 363 70
3 6:00 370 15-1 301 50
4 4-40 1-85 14-5 252 35
5 6-85 1:70 26-0 221 20
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The working parameters computed from this set are listed in Table VII. The following general con-

clusions may be drawn:

i. In summer the uncertainty in x; is approximately 4 2 per cent, whereas that in 4M is roughly
independent of 4M and is of the order + 0-06 to 4 0-07; further, the uncertainty in 44 is indepen-
dent of 4h and is approximately 4 12 km. The uncertainty in x is generally insignificant compared
with the others.

ii. In winter, the uncertainties in x; and 4M are both increased because of seasonal changes in foF2,
JoE and hcF2. However, seasonal variations in M(3000)F2 cancel in the calculation of the variability
of 8(4h) so that this parameter remains the same as in summer.

Overall, the uncertainties in 4M and 4h are far more important than those in x; and are both roughly

constant.

WORKING PARAMETERS COMl;rG?FIgDVIIESING THE DATA IN TABLE VI
Summer Winter
Parameter
1 2 3 4 5
XE 4:091+ 0-077 2-290+ 0-057 1-6224 0-026 2-38 + 0-07 4-03 4 0-12
M, 2:6674 0:032 2:5574 0-030 2-5174 0-033 3-2954 0-050 3:7961+ 0-047
My 2:7754+ 0-052 2:7644+ 0-051 3-1244 0-065 3-481+ 0-081 3-7534 0-095
aM 0-1084 0-061 0-2074+ 0-059 0-607+ 0-073 0-186+ 0-095 —0:04 4+ 0-11
hpF2 383 + 7 407 =7 416 + 8 276 + 7 217 + 5
4h 22 +12 44 +12 115 +13 24 +12 -4 £1
ycF2 120 +10 140 +10 100 +10 70 *10 40 +10
ho 241 +14 223 +14 201 +14 182 +14 181 +14
7 0-4984- 0-051 0-628-+ 0-060 0-498+ 0-061 0-385+ 0:063 0:2214 0-058

4, Sensitivity to changes in yp/ho

The value of hp determined from M(3000)F2 depends upon the ratio yp/ho. This term, approximated by
the parameter 7 as defined in Table V, is an uncontrolled variable in the data sample. The analysis on
p. 10 suggests that the effects of variations in this term should be small, but it is necessary to test whether
the error introduced is significant compared with that due to measuring inaccuracies. It is also important
to assess to what extent systematic inconsistencies are introduced between blocks of data due to seasonal
variations in yp/ho.

Although it is necessary to use Shimazaki’s equation for evaluating Ap and 4M, it is not desirable to
use his theory for the required tests. The approximate approach adopted by Shimazaki does not reveal the
dependence on yp and Ao in its simplest form but introduces these parameters separately in a cumbersome
fashion. A third parameter, ¢, is also introduced (p. 14) whose seasonal and diurnal variations would
produce changes of the same order as the expected effects due to yp/ho. It has already been demonstrated
that the main effect of Shimazaki’s approximations is to make the apparent yp/ho smaller when compared
with Appleton-Beynon theory. Otherwise, the variation of Ap with M(3000)F2 is very similar in the two
cases. Thus, the Appleton-Beynon theory can be used to give a reasonable indication of the likely effects
of variability in yp/ho.

Referring to Equation (22), “Appleton-Beynon’ analysis gives

’ 1 * ’
hpF2 =a [Mf——l:l b,
where a’ and b’ are functions of yp/ho. If AM is the required correction for underlying ionization and
My = M,+4M, it follows

¥
heF2 =a'< L ) ¥, 47)

MTZ—‘I
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o= ()

aAM @ Vol —m 48
—[(hc+b’) +] S “5)
Consider the general case where the true 4M is AM;, for a particular xg, when M, = M,, hc = h, and
1 (= yc[ho) is ;. In this case let the coefficients be a’; and b’,. For the corresponding case, when n = 7,
but x; remains the same, let the variables be suffixed by 2. Then the difference between the two computed
AM’s (a measure of the induced error) is given by
’ 2 b ’ 2 t

AM,—AM, = (My—M +[(L) +1] —[(_"2_) +1]. 49

Consider the case of the summer block of data; the median value of » = 0-56 (48 observations) with
upper quartile 0-64 and lower quartile 0-50. To assess the noise inherent in this sample, it is reasonable
to suppose that M; = My, h; = h, and then evaluate Equation (49) for the two quartile values of = for
chosen heights.

By interpolation from Table I, the required values of the coefficients are

n =0-50,a’; =1164, 7 =0-64,a’, = 1151,

b, = 105; b, = 101.

Then, for the typical summer values of hcF2 listed below, Equation (49) gives
hcF2 =300 km. AM;—AM, = 0-004
hcF2 =350 km. AM,—AM, = 0-006
hcF2 =400 km. AM,—A4AM, = 0-007.

Clearly, from these figures, the effect of yp/ho variability in the block is insignificant when compared with
the noise due to errors in measurement (which is of the order of 4 0-06 to 4= 0-07).

To make a valid test between blocks of winter and summer data, it is necessary to use values of M, and
he typical of the two seasons in Equation (49). Suitable values of M, can be chosen and, by selecting a
particular value of 4M (0-3 say), the ic’s are found from Equation (47) using the combined summer and
winter median value of 7 to give the coefficients.

From the data the combined median = 0-53, giving a’ = 1159, b’ = 104. Let M, be 2-50 in summer
and 3-50 in winter, giving the corresponding values of My as 2-80 and 3-80. It follows that scF?2 is 339
and 212 km., respectively. The median value of » for the winter block of data is 0-38. Using this with the
median value for the summer data, the corresponding values of the coefficients are

m =0-38,a’; =1184, 7, =0-56 a’, = 1157,
b, = 110; b, = 103.
Substituting these values in Equation (49) gives 4M,—A4M, = 0-008. This value is also small compared
with the noise level and it can therefore be concluded that any effects due to changes in yp/ho will be
masked by inaccuracies in the measurement of the primary parameters.

which may be inverted to give

from which it follows

5. Choice of correction parameter

It has been pointed out that two possible methods of correcting for underlying ionization exist; the
“4h” method, in which the correction does not vary with AmF2; and the “4M” method, where the height
correction increases with AmF2. It is suggested here that the latter approach will fit the experimental facts
more precisely. To test this suggestion, some relations must first be established.

a. AM invariant. Suppose that for a particular x;, 4M is constant for all hmF2, then the expression
My = My+4AM (50)
gives a straight line of slope unity and intercept 4M. Equation (50) can be re-arranged to give
AM
My = s 1=71]

T
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or

1 _1_[1 _é_A.‘_{J o

M, Ml M,

Expressing My and M, in terms of hcF2 and hpF2 via Shimazaki’s equation
_ AM(hc+ 176)] -1

hp+176 =(hc+176)[l T35

therefore

1490
Thus when 4M is invariant, the variation of 4p as a function of Ac cannot be a straight line of slope unity.

hp = (hc+176)[1—w]"1—176. (51)

b. 4h invariant. If 4h is constant for all hAmF2, the equation
hp = hc+4h (52)

gives a straight line of unity slope and intercept 4h. The corresponding non-linear variation of My with
M, is given by

(33)

MT = Mo[l—%]—l.

1490

To test whether condition (a) or condition (b) pertains, two groups have been sorted from the data;
the first contains all data for which 1-72 < xz < 2-00 and the second all data for which 230 < xXp <
2:70. The mean values of 4k and 4M for the two groups have been calculated and used in Equations (50)
to (53) to give the predicted variations of hp versus hc and M versus M. These predictions have then been
compared with the observed variations (see Fig. 13a-d) and the best straight-line fits to the data points
have also been determined. Notice how closely the predicted variations of hp with hc (4M invariant) agree
with the best-fit lines. For completeness the results of the regression analysis are given:

1:72 < x5 < 2-00 My = (1:0340-11)M, +( 0-334 0-30)
hp =(1-3240-13)hc —(23-7440-4)

2:30 < xp < 2:70 My = (0-99+0-02)M, +( 0-23+ 0-06)
hp "= (1-1540-03)hc —(11-0--11-0),

which should be compared with those expected with:
a. A4M invariant

172 < x; <2:00 My = M,+0-41
2:30 < x5 < 2-70 My = My+0-20.

b. 4h invariant

172 < x<2:00 hp =hc +73
230 <xg <270 hp =hc +41.

It is clear from this analysis that the “4M method is superior to the “4A” method.

6. AM as a function of xg

The values of 4M as a function of x, determined from 80 ionograms representative of median sunspot
activity are shown graphically in Fig. 14. The data are divided into three groups by season. Almost all the
summer ionograms showed well-defined FI-layer characteristics but these were entirely absent in the other
two seasonal groups. The following points are evident from the figure:

i. A smooth variation of 4M with x; can be established empirically from low to high values of Xz,
ii. There are no systematic discrepancies between the summer and equinox data, indicating that the
influence of the presence or absence of an Fl-cusp is negligible.
iii. In summer a number of cases occur for which xy is less than the Bradley and Dudeney limit of 1-7.
1v. The scatter of the summer and equinox data seems consistent with the value expected from measuring
inaccuracies alone.
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FiGUure 13

Comparison of the “4A” and ‘“4M” correction methods.
aand b. 1-72<x,<2-00.
a. Long-dashed line, Equation (52) with 4k = 73 km. Solid line, Equation (51) with 4M = 0-41. Short-dashed line,
best fit to data points.
b. Long-dashed line, Equation (50) with 4M = 0-41. Solid line, Equation (53) with 4h = 73 km. Short-dashed line,
best fit.
cand d. 2:30<x;<2-70.
c. As for (a) but with 42 = 41 km. and AM = 0-20.
d. As for (b) but with 4M = 0-20 and 4k = 41 km.
For case (d), the best fit and the 4M invariant line coincide, so only the former is shown.

v. The winter data form a separate family whose values are depressed, compared with the summer and
equinox ones. Note that the magnitude of this depression is considerably larger than can be accounted
for by seasonal changes in yp/ho.

A suitable equation of best fit to the data would be that of a rectangular hyperbola of the form
A
C, 54
p— 5+ (54)
which is asymptotic to xz; =B at AM =, and asymptotic to AM = C at xg =co. If the true
height of the layer had been exactly determined and all factors influencing the path of the ray to its

3

adM =
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FiGure 14

The variation of 4M as a function of x;, determined from 80 ionograms recorded at the Argentine Islands in the period
1967-69. Solid circles: summer; open circles: equinox; crosses: winter. The vertical dashed line marks xp =17,

reflection point were included, we would expect C = 0 from the analysis. Physically, 4M does not approach
infinity as x; becomes small but becomes indeterminant when M, becomes unmeasurable. It is probable
that AM approaches some finite limit of the order of My, but the error introduced by assuming the infinite
limit is small.

These points are now investigated quantitatively by performing the best-fit analysis suggested above.
Because Equation (54) involves three unknowns, the following procedure is adopted :

i. Choose a value for B.
ii. Find the coefficients of the line of best fit, and correlation coefficient, R, for 4M as a function of X,
where X is given by (x;—B)1.
ili. Repeat step (ii) with a new value of B until the maximum value of the correlation coefficient is
obtained. Use the coefficients applicable to this value.

The sensitivity of R to changes in B will be an inverse function of the noise within the data. In the
present case R changed relatively slowly with B, a variation of -0-005 in the latter about the best values
only altered R by -0-0001. However, this range of uncertainty in B is not of any importance since, whilst
a slight change of B alters 4 and C, it does so in such a way that the predicted values of 4M remain
essentially unchanged.

Table VIII gives the results of this procedure applied to the data in Fig. 14. In this table, R is the
maximum value of the correlation coefficient and S is the standard deviation of the points about the best
line.

Notice, from the table, that for summer and equinox C is very close to zero as expected. Also, S is of the
same order as the estimated uncertainties in the individual data points. This suggests that the noise in the
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TasLe VIII

RESULTS OBTAINED BY BEST FITTING EQUATION (54)
TO THE DATA IN FIG. 14

Data sample A B C R N
Summer only 0-2474+0-01C  1-225  0-005+0-010 0-962 0-053
Summer and equinox 0-2504+0-008 1-225 0-000+0-010 0-964 0-048
Summer, equinox and winter 0-28040-009 1:200 -0-028+0-010 0-957 0-052

data is mainly due to measuring inaccuracies and that there are no significant systematic effects (apart
from the winter disagreement) which have not been accounted for.

The summer, and the summer plus equinox data are described by essentially the same set of coefficients,
in agreement with the qualitative conclusion reached above. Also the addition of the winter data alters
the values significantly. Although the equation obtained from all the data combined is probably adequate
for the present purpose, it is informative to investigate the causes of the winter disagreement, which is
discussed below.

7. The winter disagreement

It has already been noted that systematic seasonal changes in » cannot account for the anomaly because
the modifications thereby introduced are too small. A more likely cause is inadequacy of the 1/M approxi-
mation used by Shimazaki to simplify his equation. For winter, the median value of M is 3-4, whilst for
summer it is 2-6. Fig. 9 indicates that use of the approximation introduces discrepancies of —4 and
-4 km. for these values of M. These are in the correct sense to account for the anomaly.

To show that this explanation provides the answer, the values of 4M have been recalculated using the
Shimazaki expression in its complete form

hpF2 — %‘ﬂ@—m,

0
from which it follows

neF2 — 190 MoF)_ 176

T

therefore
1490 (M F)
M, =222 70 )
T hc+176 °
and finally
1490 (M F)
IM=-"""""%7_M,.
he+176 0

Fig. 15a gives the original values of 4M for x; > 2, whilst in Fig. 15b the results of this re-analysis are
presented. The best-fit curves are also given: on re-analysis the coefficients become 4 = 0-253+0-008,
B = 1:215 and C = —0-0124-0-009. The standard deviation, o, defined as

n

0y = [Z (AMi—((A’1/pffl_—B)+C))z]i

i=1
has been calculated, for the range 2-30 < x; < 6-00, for the cases given in Table IX. The range in x; was

TABLE IX

RE-ANALYSIS USING THE COMPLETE
FORM OF SHIMAZAKI'S EQUATION

\ All data Summer FEquinox Winter
Full analysis ‘ 0-039 0-040 0-037 0-043
Approximate analysis “ 0-047 0-047 0-038 0-059
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FIGURE 15
The anomalous behaviour of winter data.
a. The original data showing anomaly.
b. The same data after the distortion due to the 1/M approximation has been removed.
Solid circles: summer; open circles: equinox; crosses: winter; curves: best fit to Equation (54) for each sample but over
the whole range of x;.

chosen to just include all the winter and equinox data without including extraneous summer data well
away from the winter-equinox data block.

Notice that o, for equinox remains essentially unchanged, whereas it is substantially reduced for the other
two seasons by re-analysis. The equinox result is perfectly understandable because the median value of M. °
for this season is such that the error is zero.
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8. The equations for himF2

The question arises as to whether the inclusion of the more complete equation for ApF2 produces dif-
ferences in the calculated values of AmF2 sufficient to warrant the added complexity. The coefficients given
in Table VIII and those calculated in the previous sub-section give two sets of equations for A F2:

1490

hmF2 = S G000)F2 i
0-280--0-009
4 —_ s LoV (0 .
M = = —(0:028:£0-010) (55)
I JoF2
E ""foE' s
or
o 1490 (MF)
hiF2 = 000 F2 1M 10

0-0196 M(3000)F22+-1 ) ¥

(M.F) = M(3000)F2 (1 2967 M(3000)F2—1

(56)
0-2534-0-008
IM =""="_""_(0- .
M == s —(0:012::0-009)
—foF?
Xg 7o

The values of hmF2 predicted by these two sets are compared (Fig. 16) by plotting the difference: A
(Equation (55))—hm (Equation (56)) as a function of xz parametric in M(3000)F2. The figure indicates

20~

10H
Mo™ 2'S
. 30
: e
- 1 | | J
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q _—/2 3 4 5 xE 6
35
20
-0}
_20—.
FIGURE 16

Comparison of the complete and simplified (1/M) formulations for A F2. The figure gives the difference 4, = hrh (Equation
55)—hm (Equation 56) as a function of x; and parametric in M,
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that the differences between the two sets of equations are barely significant for most values of M(3000)F2
but become more important when M(3000)F2 becomes small. Thus for some applications the simple
formulation (Equation (55)) may be adequate, but for studies such as the solar-cycle variations in hmF2,
where extreme values of M(3000)F2 can be expected, the more complex relationships (Equations (56))
must be used. Where a computer can be employed, the added complexity is not significant; for manual
analysis, on the other hand, the relationships are rather cumbersome. For this reason a chart (Fig. 17)
has been constructed from Equation (56) giving A#1F2 as a function of x; parametric in M(3000)F2. From
this chart AmF2 may be determined with adequate accuracy for a wide range of practical cases.

9. Uncertainty in the predicted value of hiF2

A full treatment of the uncertainties in A#F2 derived from Equation (56) would be cumbersome and
would not produce results significantly at variance with those obtainable more easily from Equation (55).
The latter equation will be used in the following analysis, but the results should apply equally to the

former. Thus

. 1490
2 = —_
hiF. 7 176, (57)
where
My =M+ _1c. (58)
x E_— B
Differentiating Equation (57)
dhm _ 1490
dM, M2’
Therefore
. 1490
ShmF2 ~ :tMT28MT' 59
Now My = f(M,, xg, A, C) with B assumed fixed,
so that
oMy

SMy =

M. oM M.
SM T3 ) T5C,
o, o Ty, ety At 5e o€

It follows by differentiating Equation (58) by parts

SMy — SM,— Adxg T 84

3C.
(xg—B)? xE—B+ ¢

Substituting in Equation (59)

ShiF2 — 1490

ﬂ:———MTz

0A Adx
) S —_— E_|.
[M°+ M (xE—B)2]

The most probable error is given by

ST 1490 04 |2 Adx 274 .
ShmF2 — +—"7— E
hmF2 = -+ 2 “3M0+8C+x5 } +{(XE )2” . (60)

Substitution of the values of the coefficients from Table VIII gives

—_— 1490 0-009 |2, [ 0-285x, |2]*
) 2=+ —""__ |I8M . £ .
hiE. :t(M0+AM)2[{ 0 t0-01 +xE—1-2= +{(xE—1-2)2” (1)

The equation for dxg is given in Table V.
Since the purpose of the analysis is to determine AmF2 from standard parameters, it is clearly worthwhile
to incorporate the internationally recognized uncertainty limits (Table IV) into Equation (61), which

then becomes
T35 1490 0-009 )2 0-28 Sx. 12]¢
shmF2 = —*Y___110.061 } { E”
g (M0+AM)2“O 0 C(xg—1-2) + (cp—1-2)2 (62)

Thus the height error is a function of My, xg, foF2 and foFE (the latter two parameters control dxj at
constant xg). However, it is clear, for all practical values of x; and 8x;, that
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FiGURE 17
A useful graphical solution of Equation (56) which allows estimation of AsF2, without computation, to better than +2-5 km.
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When x is small, the latter term in x, will be compensated by the 4M term which becomes larger, so that
8hmF?2 should vary approximately as a function of M o alone. Sample calculations (Table X) show that this

TaBLE X

ESTIMATION OF UNCERTAINTY IN A%F2 ASSUMING
STANDARD ACCURACY RULES

M Xr SfoF2 JoE ShinF2
2 6-0 3-0 205
2 12-0 6-0 19-9
20
5 50 1-0 22-2
5 10-0 2:0 22-2
2 60 3-0 5-9
2 12-0 6:0 5-7
4-0
5 50 1-0 57
5 10-0 2:0 57
L

is indeed the case. It is thus possible to give the sample representation for 8hF2 shown in Fig. 18, from
which the height uncertainty can be estimated with reasonable assurance.
Alternatively, Equation (62) reduces to the simple form

e 89
ShmF2 ~ + —_ km. 63
i (63)
20~
1S |
]
o 10k
=
73
sl
) | ] | |
20 25 30 3s 40
M(3000 )F2
FIGURE 18

Curve giving average uncertainty in A F2 as a function of M(3000)F2, assuming the international accuracy rules apply.
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10. Comparisons at other epochs of the solar cycle

The equations given above for hiF2 strictly apply for median sunspot activity (10-7 cm. solar flux;
120-170 x 1022 W m.~2 Hz1), since the data were obtained during this epoch. To test whether the same
equations are applicable at other epochs of the solar cycle, sample data have been obtained from the same
location for the months of December 1957 (mean 10-7 cm. solar flux = 282) and December 1963 (mean
flux = 74). Great care was taken in the analysis of the sample ionograms to ensure maximum accuracy.

TasLE XI
PRIMARY PARAMETERS FOR SOLAR CYCLE COMPARISON

Date LT. SfoF2 foE MUF heF2
17.xii.57 07-00 8:65+0-050 3-5040-025 19:0+0-10 445410
17.xii.57 0800 7:75+0-050 3-75+£0-025 17-3+0-10 406410
17.xii.57 11-00 6-404+0-025 4-10+£0-075 14-040-10 316410
17.xii.57 06-00 8-8540-050 3-3040-050 19-140-15 460110
17.xii.57 19-00 6:65+0-050 3-00+0-025 15-540-10 392410
28.xii.57 04-30 11-2040-050 2-8540-050 24-040-20 498 +10

5.xii.63 06-00 6:454-0-025 2-504-0-050 18-6+0-10 306410

5.xii.63 07-00 5-604-0-050 2:60+0-050 16-:0+0-20 311415

5.xii.63 08-00 5-7040-025 2:804+0-075 17-24-0-10 281410

5.xii.63 12-00 5-10+0-025 3-05+0-050 14-540-25 262410

5.xii.63 16-00 5-2040-025 2-80+£0-025 14-04+0-20 2964-10

6.xii.63 19-00 6-30+0-025 2-2040-025 19:540-15 289+10

7.xii.63 08-00 5-754+0-025 2-8040-075 17-6+£0-20 272410

Table XI lists the primary parameters so derived with estimates of measuring uncertainty. Values of A F2
determined from these parameters using Equations (56) and (61) are compared with the corresponding
values of ~AcF2 in Fig. 19. The agreement between the two is remarkably good, providing very convincing
evidence of the superiority of the “4M” method over the “4h” method. It should be recalled here that
Vickers’ empirical analysis using 4h required very different empirical coefficients at different epochs of
the solar cycle. It is of note (see Fig. 20) that the 44 correction terms (defined by Equation (42)) approxi-
mately double in value between solar minimum and solar maximum for constant x.

11. An empirical equation for ymF2

The lowest virtual height recorded from a simple parabolic layer is approximately equal to the lowest
real height (%0). The difference between this virtual height and /p is thus approximately equal to yp. In the
real ionosphere it is possible to use the lowest recorded virtual height from the F2-layer to estimate the
semi-thickness of the equivalent parabolic F2-layer. In general, because of the influence of underlying
layers, #' F(F2) will give an overestimate of ho, so that

ymF2 = hiF2—h' F(F2)+4k, (64)
where 44’ is a height-correction term depending on the underlying ionization.

It is possible to determine the form of 4k’ experimentally by using suitable sample values of hcF2,
ycF2 and A’ F(F2) in Equation (64). In Fig. 21 4#’, calculated in this way, is plotted as a function of x,
using the summer, winter and equinox data for 1967-69. It is clear from this figure that, whilst 44" must
be a strong function of x; (of the type already discussed), it cannot depend on this parameter alone since
the winter—equinox data form a separate family from the summer data. Close inspection of the data reveals
two differences between the seasonal groups:

i. hcF2 is on average 100 km. higher for the summer data than for the other group.
ii. In the summer data the FI-ledge is always present but in equinox and winter always absent.
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Test of Equation (56) at other epochs of the solar cycle. Open circles: sunspot minimum summer data; solid circles: sunspot
maximum summer data.
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The change in magnitude of 44 at constant x;, as a result of changes in solar activity. This figure demonstrates the difficulty

of using the “4h” correction method at different epochs of the solar cycle. Open circles: sunspot minimum summer data;
solid circles: sunspot maximum summer data.




ESTIMATING THE HEIGHT AND SEMI-THICKNESS OF THE F2-LAYER 41

400
L
[ ]
300+
[ ]
o
t 8
: s
- 200
= '.
q °o®
[ ]
PY ®
[ ]
[} ° °
100+ ° ...
o ®
[ ]
X% X [ ]
Xxo ©O
o] o
O, WX 3 °
X
o ﬁ( ¥ % 8 .O
[o]
o
[e} ! { 1 1 1 N
i 2 3 4 S 6
xE
FIGURE 21

The height correction, 44", required to make #’F(F2) a good estimate of hoF2, plotted as a function of x,. Solid circles:
summer data; open circles: equinox data; crosses: winter data.

From the analysis for A#F2 we do not expect the latter point to be important for hmF2, though it may
affect #’'F2. Bradley and Dudeney expressed 44’ in the form
Ah' = (hmF2—A) f(xg), (65)

where 4 is some arbitrary constant (equal to 104 km. in the Bradley and Dudeney case). The data in
Fig. 21 strongly suggest that this type of formulation is physically correct, i.e. that 4h’ is a function of the
thickness of the underlying slab of ionization. The factor hritF2— is an indirect measure of the effective
thickness of the underlying ionization profile.

An estimate of 4 for the data sample may be obtained by selecting pairs of points, one from each family,
for which x is approximately the same. Referring to Equation (65), it follows by eliminating f(xz) that

4y _hy—A
an’'y  hy—A
where 4h',, 4h’; and h,, h, are the values of 4k’ and corresponding values of hcF2 for the pair.
Then
an’ an’
A= |nAl_ [_1 — ] 66
[ *an, hl]/ an', : (66)

This equation has been evaluated for ten cases selected from Fig. 21 and the results are given in Table XII.
The median value of 4 is found to be 164 km., considerably higher than that obtained by Bradley and
Dudeney. This may be significant because the Bradley and Dudeney model has too much ionization just
above the E-layer maximum (see Fig. 12) where a semi-filled valley is known to exist.

It is to be noted that the mean value of A4 is also 164 km. with a standard error of 6 km.

Using this value of 4, it is now possible to calculate f(xz) in Equation (65) as a function of xg. The values
thus generated are shown graphically in Fig. 22. Tt will be seen that there is now no discrepancy between
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TaBLE XII

RESULTS FROM EVALUATING EQUATION (66)
USING DATA FROM FIG. 21

XE heF2 4k A

3-187 372 93
169

3-111 252 38

3-138 367 118
161

3-167 259 56

3:571 400 145
193

3-5711 236 30

3-639 427 121
153

3-641 262 48

3-571 400 145
: 163

3-618 220 35

4-091 361 84
184

4-100 283 47

4-000 364 89
152

4-029 221 29

2-687 328 132
124

2-712 246 79

2-687 328 132
172

2-711 256 71

2-687 328 132
166

2-657 252 70
Median value 164
Mean value 164
Standard error in mean 6

the three seasonal groups of data. Also, f(xz) is clearly of a similar form to that used in the A#F2 analysis,
so that similar techniques can be used to evaluate it. Performing this analysis leads to the final result
YIE2 = hinF2—K F(F2) + [ ‘:}’(—93#’—2';’)3 1(0-054-0 -03)} (hF2—164-6). (67)
. E— L

Following the procedure used on p. 36, the most probable uncertainty in y * F2 is found to be

—m . 2
SymE? — i{ [{1-05+_°L}ah;h+0-03(hﬁz—164){(xE-1 -23)-1+1}] +

(xg—1-23)
, 558 0-93(hri1—164) SxET’*
8h'+ ———__ 40-03 . (68

+[ R E 5 By o b (68)
To obtain some idea of the manner in which this uncertainty varies with A#F2 and with xg, Equation (68)
has been solved using the typical values: 8% = 10 km., 84’ = 5 km. (see Table IV), 8xg/x; = 0-02; for
a range of xg values and for AmF2 between 200 and 400 km. It is found that the variation of SymF2 as a
function of A F?2 at constant x (see Fig. 23) is approximately a straight line whose slope and intercept are
functions of xz. Note from the figure that the uncertainty in y#hF2 is a strong function of xj at constant
hmF2, so much so that for x; < 1-7 the values of ymF2 derived from Equation (67) are meaningless.
Even when x; is greater than this limit, the equation produces no more than a rough guide to the value of
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The data from Fig. 21 after normalization for changes in underlying slab thickness.
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The uncertainty in the computed value of semi-thickness assuming a 10 km. error in Ak and a 2 per cent error in xz. 8y is
given as a function of Ari, parametric in xg.

ym. Clearly, a reduction in the uncertainties in A#F2 and x; would improve the situation but such a
reduction would be difficult to obtain; the values used in the figure are close to the limit values for the type
of ionogram under consideration.
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This lack of precision in the determination of y/F2 must of course apply in the case of the Bradley-
Dudeney equation (Equation (41)) because of its similarity to Equation (67). However, it may be argued
that ymF2 itself has little physical significance at the very low values of x, because the F2-layer nose in all
probability does not follow a parabolic law under such conditions.

V. DISCUSSION

IT is interesting to compare the empirical equation for AmF2 developed here (Equation (56)) with that
given by Bradley and Dudeney (see p. 23). The latter has been tested against true-height data from a
number of widely spaced sites and its performance over the globe is therefore known. Fig. 24 shows the

50
X

Ly )
. 4-0

T
M (3000)F2

As (km.)

=lIo0w-

FIGURE 24

Comparison between Equation (56) and the Bradley-Dudeney equation. 4; = h/#F2 (Equation 40)—hinF2 (Equation 56).
In the case xz == 1-5 the limit value of 1-7 has been used in Equation (40).

height difference 4; obtained by subtracting i F2 given by Equation (56) from the value given by Equation
(40) as a function of M(3000)F2 for given values of xg. The information contained in this figure is best
brought out by considering the following three cases:

i. xg 2> 2-0; M(3000)F2 > 2-6. The values of 4, are not significantly different from zero, bearing in
mind the magnitude of the height uncertainties inherent in both equations (see for example Equation
(63)) when used with routinely scaled data.

il. xg << 2-0; all M(3000)F2. 45 can be large positive or negative and varies greatly with both M(3000)F2
and xg. Clearly, for the true-height sample used in this report, the Bradley—Dudeney equation will
give relatively poor results compared with those from Equation (56).

li. x5 > 2-0; M(3000)F2 < 2-6. For this case 4 is positive and increases for all x5 as M(3000)F2
decreases. Bradley and Dudeney (1973) pointed out that when M(3000)F2 is below a limit value
of between 2-4 and 2-7 (depending on geographical location) their equation consistently over-
estimated A F2 by an amount which increased as M(3000)F2 decreased. Fig. 24 therefore suggests
that Equation (56), which gives lower values than Equation (40), will be less in error.

These points lead to the conclusion that Equation (56) is a better relationship for global use than is
Equation (40); for, not only does it give better performance when M(3000)F2 is low, but also it can be
reliably used for values of x; down to 1-5. However, the use of Equation (56) only removes about one-
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third of the discrepancies found by Bradley and Dudeney for low values of M(3000)F2. The remainder
probably results from one or both of two possible causes:

i. In practice, when hinF2is very large (=500 km.), the profile shape at the frequencies where M(3000)F2
is measured tends to be linear rather than parabolic. For a linear profile, M(3000)F2 is not necessarily
related to AMmF2 (see also Bradley and Dudeney (1973)). This is a fundamental limitation in the
application of any M(3000)F2-based equation.

ii. The empirical coefficients of Equation (54) (p. 31) are dependent on the dip and gyro-frequency of
the magnetic field and therefore vary slowly with position. (This may be seen for example from
Fig. 10 (p. 19) by comparing curve (b) with the dashed curve and bearing in mind that 4M is
essentially equivalent to 4A’/ym.) The magneto-ionic effects for a standard model profile (e.g.
Bradley and Dudeney, 1973, fig. 12) could be established by computation. Alternatively, both
magneto-ionic and physical changes with position could be evaluated using the techniques described
in this report, applied to adequate samples of data from widely spaced observatories. Such an
analysis should result in an empirical equation for AiF2 which is superior to either Equation (40)
or Equation (56). However, it is questionable whether the improvement would warrant the effort
required.

VIi. SUMMARY AND CONCLUSIONS

This report describes a new simple method for reliably estimating 4mF2. The method has considerable
practical application because it relies only on the use of routinely scaled parameters. A novel way of
correcting for group retardation in underlying layers, the “4M” correction factor, has proved to be a
considerable improvement on existing schemes. The analysis has been presented in detail for the case of
the Argentine Islands (lat. 65°15’S., long. 64°16'W.), but the techniques employed have a much wider
application. The simplicity of the calibration procedure and of the final expressions means that the analysis
can be carried out at field stations without the use of powerful computing facilities.

It is probable, though experimental verification is required, that the coefficients of the 4M relation
(Equation (54)) are functions of dip and gyro-frequency and vary only slowly with position. Comparison
with the Bradley and Dudeney (1973) equation, which has been widely tested, show that it should be
possible to use the same coefficients with confidence over quite wide zones.

Some examples of the applications of the scheme to the Argentine Islands data will be discussed in
further reports.
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