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In contrast to the Arctic, total sea ice extent (SIE) across the Southern Ocean has increased 

since the late 1970s, with the annual mean increasing at a rate of 186 × 103 km2 dec-1 (1.5% 

dec-1) (p<0.01) for 1979 – 2013. However, this overall increase masks larger regional 

variations, most notably an increase (decrease) over the Ross (Amundsen-Bellingshausen) 

Sea. Sea ice variability results from changes in atmospheric and oceanic conditions, although 

the former is thought to be more significant, since there is a high correlation between 

anomalies in the ice concentration and the near-surface wind field. The Southern Ocean SIE 

trend is dominated by the increase in the Ross Sea sector, where the SIE is significantly 

correlated with the depth of the Amundsen Sea Low (ASL), which has deepened since 1979. 

The depth of the ASL is influenced by a number of external factors, including tropical sea 

surface temperatures, but the low also has a large locally-driven intrinsic variability, 

suggesting that SIE in this areas is especially variable. Many of the current generation of 

coupled climate models have difficulty in simulating sea ice. However, output from the 

better-performing IPCC CMIP5 models suggests that the recent increase in Antarctic SIE 

may be within the bounds of intrinsic/internal variability. 
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1. Introduction 

 

Sea ice across the two polar regions has experienced remarkably different changes over the 

period since the late 1970s [1,2]. In the Arctic there has been a well documented decrease of 

sea ice extent (SIE), with a succession of record minimum extents being recorded in recent 

years [3]. In contrast, over the Southern Ocean there has been a statistically significant 
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increase in ice extent and area throughout the year for the Antarctic as a whole [4-7], although 

this slight overall increase masks larger opposing regional trends [e.g. 3,8]. While 50-60% of 

the ice loss in the Arctic has been attributed to anthropogenic forcing [9], the mechanism or 

mechanisms responsible for the increase in sea ice around the Antarctic continent is still 

unclear. In this paper we review our current understanding of sea ice changes over the 

Southern Ocean. We first describe the data used to produce the figures in this paper. In 

Section 3 we then examine the annual and seasonal trends in SIE on a regional and Antarctic-

wide basis. Section 4 discusses the various theories that have been put forward to explain the 

observed changes in Antarctic sea ice since the late 1970s, while Section 5 considers the 

simulation of these recent changes in Antarctic sea ice by the CMIP5 models. The final 

section draws conclusions and considers the future work required. 

 

2. Data used 

 

We examine changes in Antarctic mean sea ice concentration (SIC) and SIE (where SIC > 

15%) based on the Bootstrap version 2 algorithm [10]. There has recently been a debate over 

the accuracy of the Bootstrap algorithms [11]; however, the extents derived using Bootstrap 2 

agree well with those from the independently derived NASA Team and ESA algorithms so 

will be used here.    

 Monthly mean SIC fields were obtained from the US National Snow and Ice Data 

Center (www.nsidc.org) and re-gridded onto a 0.25° × 0.25° grid. SIE was computed as the 

total area of all 0.25° × 0.25° grid cells where the SIC exceeded 15%. Regional changes were 

considered for the five sectors shown on Figure 1 (Weddell Sea, Indian Ocean, western 

Pacific Ocean, Ross Sea and Bellingshausen/Amundsen Sea) used in a number of earlier 

studies. Modelling studies suggest the observed SIC/SIE changes are likely to be 

accompanied by ice thickness increases, implying an increase in Antarctic sea ice volume [8]. 

However, there are no observational, Antarctic-wide time series of sea ice thickness so it is 

not possible to consider variability and change in this quantity at present. 

 Atmospheric circulation changes were examined using the monthly mean ECMWF  

Interim reanalysis fields [12], which have a horizontal grid spacing of 0.7° × 0.7°. 

http://www.nsidc.org/
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3. The observed changes 

 

The annual and seasonal trends in SIC are shown in Figure 1, with the SIE trends for the 

Southern Ocean as a whole and the five standard sectors [e.g. 6] summarized in Table 1. For 

the year as a whole the total Antarctic SIE has increased as at a rate of 186 × 103 km2 dec-1 

(1.5% dec-1) (p<0.01) for 1979 – 2013. The pattern of change in annual mean SIE (Figure 1a) 

is dominated by an increase of ice in the Ross Sea Sector (117 × 103 km2 dec-1 (3.9% dec-1) 

(p<0.05)) [13] and a decrease in the Amundsen-Bellingshausen Sea (-54 × 103 km2 dec-1 

(3.4% dec-1) (not significant)). The other three sectors have all experienced an increase in 

annual mean SIE, with the largest of these being in the Indian Ocean (55 × 103 km2 dec-1 

(2.7% dec-1) (p<0.01)). For all the sectors the trends in sea ice area have the same sign as the 

trends in SIE [14]. 

 The total Antarctic SIE has increased in each season (Table 1), with the largest trend 

being in autumn (220 × 103 km2 dec-1 (2.8% dec-1) (p<0.01)) and the smallest in summer (129 

× 103 km2 dec-1 (1.9% dec-1) (not significant)). The couplet of increasing SIE in the Ross Sea 

and decrease in the ABS is present in all seasons, although in winter the trend in the ABS is 

essentially zero. Furthermore, Simpkins et al. [15] demonstrated that these trends are 

dominated by different temporal variability. Figure 1 shows that the largest positive SIC 

anomalies in the Ross Sea advance northwards during the sea ice growth season from close to 

the coast of Victoria Land in autumn to lie along the sea ice edge in spring, before retreating 

southwards again in summer. A recent paper by Holland [8] suggests that this large regional 

autumn SIE trend is primarily a response to decreased ice loss in the preceeding spring. The 

changes in sea ice between the Antarctic Peninsula and the western Ross Sea have resulted in 

marked alterations to the length of the sea ice season. Considering 1979 – 2010, Stammerjohn 

et al. [16] found that the ice started retreating 38.4 ± 12.8 days earlier and advancing 60.8 ± 

16.0 days later in the ABS, whereas in the western Ross Sea, sea ice started retreating 38.4 ± 

9.6 days later and advancing 41.6 ± 9.6 days earlier. 

 The Indian Ocean and Western Pacific Ocean sectors have experienced an increase in 

SIE in all seasons. However, the Weddell Sea sector is anomalous in having experienced an 

increase in SIE in the summer and autumn, and a decrease in the winter and spring. 
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 The inter-annual variability of the total Antarctic SIE is large (standard deviation 0.29 

× 106 km2) (Figure 2) and the extent has varied on the decadal scale over the 35 years of data. 

Over the period 1979 – 1990 the total Antarctic SIE decreased at a rate of -153 × 103 km2 

dec-1 (1.3% dec-1), predominantly due to a rapid decline in the Bellingshausen Sea [e.g. 15] 

although the trend in this short record is not significant. However, the decrease in ice seemed 

consistent at that time with the increasing concentrations of greenhouse gases and the loss of 

ice in the Arctic. However, from about 1990 there has been an overall increase in Antarctic 

SIE with record annual mean extents in 2003, 2008 and 2013. There have also been records 

in the annual daily maximum sea ice extent, with the extent on 24 September 2012 reaching 

19.72 × 106 km2 [17]. According to the NSIDC, the single-day maximum sea ice extent on 20 

September 2014 of 20.14 × 106 km2 was the highest observed during the satellite record. 

 

4. Mechanisms that may be contributing to the observed sea ice changes 

 

The extent of sea ice is influenced by both atmospheric and oceanic factors, including the 

strength of the near-surface winds, air temperature, ocean currents, and temperature and 

salinity of the ocean. We have reliable six-hourly atmospheric analyses since 1979 providing 

a high level of confidence of atmospheric change over that period. However, we don’t have 

comparable time series of oceanographic data for the Southern Ocean. 

 

4.1 The role of the atmosphere 

 

 Advection of sea ice occurs at about 2% of the near-surface wind speed, so changes in 

atmospheric circulation can affect the distribution of sea ice. Holland and Kwok [18] used sea 

ice motion data and reanalysis wind fields to show that wind-driven changes in ice advection 

are the dominant driver of SIC trends around much of West Antarctica (r~0.9). In contrast, 

wind-driven thermodynamic changes play a large role elsewhere, including the 

Bellingshausen Sea, where autumn SIE trends oppose those in near-surface winds [8]. 

 The atmospheric environment of the Antarctic sea ice zone is dominated by the 

circumpolar trough, a low pressure belt over 60-70° S, which is present because of the large 

number of storms that have moved south from mid-latitudes or developed within this 

baroclinic region. There are three climatological low pressure centres within the circumpolar 
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trough, located close to 20° E, 90° E and 150° W, and associated with the wave number 3 

pattern in the atmospheric circulation around the continent [19]. The low pressure centre off 

West Antarctica at ~150° W is known as the Amundsen Sea Low (ASL) [20-22] and its 

variability has a major influence on the climate from the Antarctic Peninsula to the Ross Sea. 

Mean sea level pressure (MSLP) in the area of the ASL is more variable than anywhere else 

in the Southern Hemisphere, which is in part a result of the off-pole nature of the Antarctic 

orography [23]. The region is also where the strongest teleconnections from the tropical 

Pacific to the Antarctic are found [24,25]. During the El Niño (La Niña) phase of the El 

Niño-Southern Oscillation, MSLP values in the region of the ASL are higher (lower) [26], 

which influences the wind field and therefore the sea ice distribution between the Antarctic 

Peninsula and the Ross Sea. Trends in sea surface temperatures (SSTs) across the Atlantic 

Ocean have also recently been linked to MSLP and sea ice changes in this sector [27]. 

 The annual mean SIE in the Ross Sea sector is significantly (p<0.05) anti-correlated 

with the annual mean MSLP in the area of the ASL (Figure 3a), indicating that years of 

greater SIE in this sector are associated with a deeper ASL. The Ross SIE is also positively 

correlated with the MSLP over the South Pacific across the latitude range of 40-50° S 

(Figure 3a). This pattern of correlation indicates that the Ross Sea SIE is positively correlated 

with the strength of the atmospheric polar front jet (PFJ). The PFJ is one of the two jets found 

over the South Pacific, with the other being the sub-tropical jet (STJ) located close to 30° S. 

The strength of the two jets is influenced by tropical SST variability and the phase of ENSO, 

with the PJF (STJ) being stronger during the La Niña (El Niño) phase of the cycle [26]. 

Conditions across the tropical Pacific can therefore influence the atmospheric circulation of 

high southern latitudes and the extent of sea ice.  

 Atmospheric conditions between the Antarctic Peninsula and the Ross Sea, and 

therefore the SIE, are also influenced by the phase of the Southern Annular Mode (SAM), 

which is the primary mode of climate variability at high southern latitudes [28]. The SAM is 

characterized by an oscillation of mass between mid- and high-latitude areas of the Southern 

Hemisphere; the SAM is taken to be in its positive (negative) phase when MSLP is relatively 

low (high) over the Antarctic (mid-latitudes) and high (low) in mid-latitudes (over 

Antarctica). The phase of the SAM has a large intrinsic variability, but is also influenced by 

the concentration of greenhouse gases, volcanic aerosols and the loss of stratospheric ozone 

[29]. Although the SAM is essentially an annular mode, the SAM’s contribution to recent 
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changes in the 500 hPa geopotential height includes a decrease of heights off West Antarctica 

[30], suggesting that periods when the SAM is positive are characterised by more cyclonic 

conditions in the area of the ASL, which will enhance the dipole of SIE decrease (increase) 

over the Bellingshausen (Ross) Sea. The atmosphere-only model experiments of Turner et al. 

[31], with and without stratospheric ozone depletion suggested that the ozone hole would 

result in a deeper ASL and more sea ice in the Ross Sea. This is consistent with the ASL 

being strongly influenced by the strength of the winds over the Southern Ocean [32], and the 

known result of the stratospheric ozone loss moving the SAM into its positive phase and 

strengthening the winds around the Antarctic. However, the role of stratospheric ozone 

depletion in the recent increase of Antarctic SIE was questioned by Sigmond and Fyfe [33] 

who carried out a study using a climate model forced with stratospheric ozone depletion from 

1979 – 2005. They found that the loss of ozone gave a year-round decrease in Antarctic sea 

ice, with the largest decrease in austral summer. In contrast, Marshall et al. [34] suggested 

that the loss of stratospheric ozone above the Antarctic would lead to a decrease of SSTs 

around the continent, which would be conducive to more sea ice. While for the remainder of 

the 21st Century, a modelling study by Smith et al. [35] suggested that projected ozone loss 

will mitigate Antarctic sea ice loss. 

 Further evidence of the influence of the SAM on the SIE between the Peninsula and the 

Ross Sea comes from the work of Liu et al. [36], who examined sea ice trends over 1979 – 

2002 and found that during the positive phase of the SAM there was more (less) sea ice in the 

eastern Ross/Amundsen (Bellingshausen/northern Weddell) sector of the Southern Ocean. In 

addition, Comiso et al. [13] noted that variability in the ice cover over the Ross Sea was 

linked to changes in the SAM and secondarily to the Antarctic Circumpolar Wave. The role 

of the interactions between SAM changes and the ocean are considered in the next section. 

 The ECMWF Interim Reanalysis data indicate that since 1979 the annual mean depth of 

the ASL has decreased by around -0.7 hPa dec-1 and that the strength of the southerly wind 

over the Ross Sea has increased by 0.1 m sec-1 dec-1. However, these trends vary over the 

year with the greatest deepening of the ASL having occurred in May and September. The 

decrease in annual mean depth of the ASL is consistent with the slight shift in ENSO towards 

the La Niña phase of the ENSO cycle, however, this signal may be overwhelmed by the large 

intrinsic variability of the ASL. Nevertheless, the dipole of increasing (decreasing) SIE in the 

Ross Sea (Amundsen-Bellingshausen) sectors is consistent with deepening of the ASL since 
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1979 and appears to be a significant factor in the changes in SIE in this sector. 

 While the increase in total Antarctic SIE is dominated by changes in the Ross Sea 

sector, it is instructive to examine the relationships between SIE in the other parts of the 

Antarctic and the atmospheric circulation. The fields of correlation between the time series of 

annual mean SIE for the Antarctic as a whole and the other four regional sectors, and the 

annual MSLP over high southern latitudes are therefore presented in Figure 3. The field of 

correlation between the annual mean SIE in the Weddell Sea sector and MSLP (Figure 3b) is 

almost exactly the opposite to that for the Ross Sea, with SIE being positively correlated with 

the depth of the ASL. This is consistent with the ‘Antarctic dipole’ [37] that exists between 

the climatological atmospheric conditions that are found in the Weddell Sea and the area 

between the Antarctic Peninsula and the Ross Sea. The dipole can be considered as the 

southern component of the Rossby wave train that is found from the tropical Pacific to the 

area to the west of the Antarctic Peninsula and is also referred to as the Pacific-South 

American pattern. While the inter-annual variability of the annual mean SIE in the Weddell 

Sea is significantly correlated with MSLP in the area of the ASL, with more sea ice 

associated with a weaker ASL, the increase in SIE in this sector is not consistent with a 

weakening of the ASL since 1979. This suggests that other factors are playing a part in the 

sea ice increase in the Weddell Sea, which is small and non-significant for the year as a 

whole (Table 1). 

 Inter-annual variability of sea ice in the other sectors around the Antarctic show 

differing patterns of correlation with the atmospheric circulation. The SIE in the ABS is 

correlated with the MSLP in a similar way to that of the Weddell Sea (Figure 3c), suggesting 

that the atmospheric forcing on the sea ice is different between the Weddell Sea/ABS and the 

Ross Sea. The influence of the atmospheric circulation on the SIE in the West Pacific Ocean 

sector is limited to an area just to the west of 180° W, with more (less) cyclonic activity here 

giving greater (less) sea ice (Figure 3d). The correlation between the SIE in the Indian Ocean 

sector and the MSLP is quite different from the other sectors (Figure 3e). The pattern of 

correlation is very similar to that of the SAM, with SIE correlated (anti-correlated) with 

MSLP over mid-latitudes (the Antarctic). Since the annual mean SIE values in the five 

sectors have very different patterns of correlation with MSLP it’s not surprising that the 

annual mean SIE for the whole Southern Ocean has a rather weak correlation with MSLP 

(Figure 3f). The overall pattern is similar to that of the SAM, but with a maximum anti-
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correlation in the area of the ASL and positive correlation values across the mid-latitude areas 

of the Pacific Ocean. The reasons for the different patterns of correlation between SIE and 

MSLP in the five sectors around the Southern Ocean may well be related to the shape of the 

continent, as well as different forcing from areas outside the Antarctic. However, more 

research is needed in this area.   

 While changes in the near-surface wind field have a significant influence on the extent 

of sea ice, other atmospheric parameters can also affect the sea ice. In particular, the amount 

of snowfall falling on the ice will influence the rate at which the ice melts and additional 

snow can maintain ice cover for longer. Liu and Curry [38] noted that there had been a 

warming of the Southern Ocean over recent decades and an enhancement of the hydrological 

cycle, leading to greater snowfall in the sea ice zone. The ECMWF Interim reanalysis data do 

indeed show an increase in snowfall across the sea ice since 1979, particularly over the 

Weddell and Ross Seas. However, the correlation is fairly low between the areas of greater 

snowfall and increase in sea ice extent. 

 

4.2 The role of the ocean 

 

A key explanation for the comparatively slow warming at high southern latitudes under 

global warming scenarios is anomalous heat uptake into the Southern Ocean. However, 

understanding the detail of the role of ocean change in the recent increase of Antarctic SIE 

presents a number of problems because of the lack of repeat ocean measurements around the 

continent. However, some broadscale changes have been observed. Gille [39] found an 

overall warming of the Southern Ocean during the second half of the Twentieth Century, 

which intuitively would tend to lead to less sea ice. However, as noted above, the enhanced 

hydrological cycle has given greater snowfall across parts of high southern latitudes. 

 The other major oceanographic change in the Antarctic coastal region has been a 

freshening of the ocean in the Ross Sea [40], which has been linked to the freshwater input to 

the area from melting of parts of the West Antarctic Ice sheet, along with greater preciptation.  

Bintanja et al. [41] suggested that freshwater input by Antarctic ice sheet melt has driven the 

observed sea ice trend by establishing a cool, fresh upper layer that shielded the surface ocean 

from the warmer deeper waters. However, Swart and Fyfe [42] carried out model 

experiments to determine the effects on the sea ice of freshwater injection and found that the 
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impact was too small to explain the observed sea ice increase. 

 A mechanism to explain the SIE increase that involves a feedback between changes in 

the atmosphere and ocean was put forward by Zhang [43]. The study involved using a sea ice 

model coupled to an ocean model, with atmospheric forcing coming from the NCEP-NCAR 

reanalysis. The analysis suggested that with an increase of air temperature and downward 

longwave radiation there was an increase in upper-ocean temperature and a decrease in sea 

ice growth. This led to a decrease in salt rejection from the sea ice, in the upper-ocean salinity 

and in the upper-ocean density. These changes tended to suppress convective overturning, 

leading to a decrease in the upward ocean heat transport and the ocean heat flux available to 

melt the sea ice. The increase in overall SIE was explained by the ice melting from ocean 

heat flux decreasing faster than the ice growth in the weakly stratified ocean. However, 

records of surface temperature from the coastal Antarctic stations contradict this theory as 

they show little change over recent decades, and even a small cooling at some stations. 

 A more recent suggestion is that the responses of surface temperatures and sea ice in 

the Southern Ocean exhibit a two-timescale response to ozone-induced increases in the 

polarity of the SAM [34]. The initial short timescale response is a surface cooling and 

increase in SIE, which is then followed by surface warming and SIE reduction as upwelling 

of warm water from below becomes established. However, there is considerable uncertainty 

over the length of transition between the two timescales, ranging from a few years to a few 

decades. Although more research into this mechanism is required, it potentially helps to 

explain at least a part of the observed increase in Southern Hemisphere SIE. 

 

5. The simulation of SIE by climate models 

 

The Coupled Model Intercomparison Project (CMIP) of the World Climate Research 

Programme (WCRP) is an initiative that brings together around 50 state-of-the-art coupled 

atmosphere-ocean-sea ice climate models that are run for past conditions and a range of 

future scenarios. The output of the models has proved a very valuable resource to help 

investigate how sea ice has varied in the past and how it might evolve in the future under 

conditions of increasing greenhouse gas concentrations and the recovery of the ozone hole. 

Three types of coupled model runs are of particular interest here: 
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1. Control runs with fixed pre-industrial concentrations of greenhouse gases, and fixed 

stratospheric ozone, aerosols and solar forcing. 

2. Historical runs from the mid-Nineteenth Century to 2005 with observed 

concentrations of greenhouse gases and development of the ozone hole from about 

1980. 

3. Projections for the coming decades and centuries run with a range of Representative 

Concentration Pathways (RCPs). 

 

Turner et al. [44] examined the Antarctic SIE trends over 1979 - 2005 in historical runs of 18 

of the CMIP 5 models. Many of the models had difficulty in simulating the annual cycle of 

SIE, with extents differing markedly from those observed by satellite at various points in the 

year. Gross errors in some models were linked to large warm or cold biases in ocean 

temperatures. In contrast to the satellite observations, most of the historical runs of the 

CMIP5 models had Southern Ocean sea ice decreasing in extent over 1979 – 2005. The 

multi-model mean SIE had sea ice decreasing in every month of the year (Figure 4) with the 

largest percentage loss of about 12% per decade occurring in February. The annual cycle of 

the SIE trends for most of the models shown in Figure 4, with a maximum loss in late 

summer, is very similar to that of the changes observed in Arctic SIE since 1979. About 5% 

of the CMIP5 historical runs have Antarctic SIE increasing over 1979 – 2005, however, the 

spatial distribution of the increases and decreases in SIC are very different to what has been 

observed by satellites and shown in Figure 1. The trends are very similar to those found in 

CMIP3, where most of the models also had Antarctic SIE decreasing in each month of the 

year over recent decades.  

 As indicated above, many of the CMIP5 models have significant issues that preclude 

them from being used to investigate recent changes in Antarctic SIE. However, the better 

models can help in understanding how the trends over recent decades relate to the intrinsic 

variability of Antarctic sea ice. Polvani and Smith [45] used data from the control and 

historical runs of four of the CMIP5 models that they thought were ‘suitable’ and showed that 

the observed Antarctic SIE trends since 1979 fall well within the distribution of trends arising 

naturally in the coupled atmosphere-ocean-sea ice system. A similar result was found by 

Zunz et al. [46] who examined Antarctic sea ice in 24 models from the CMIP5 historical and 

hindcast experiments. They found that the models responded to the applied forcing by 
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decreasing the extent of Antarctic sea ice. However, some simulations had SIE increasing in a 

similar fashion to that observed in the satellite data. They concluded that the observed 

positive trend in SIE is compatible with internal variability of the atmosphere-ocean-sea ice 

system. However, they did note that the models strongly overestimated the variance of SIE. 

 

6. Conclusions and future work required 

 

Here we have assessed changes in the SIE around the Antarctic continent over the period 

since 1979 and examined the various hypotheses put forward to explain the observed 

increase. Despite the SIE having a large inter-annual variability there was been a statistically 

significant increase (p<0.01) in the total Southern Ocean extent, although this masks large 

regional variations. The greatest increase in SIE has been in the Ross Sea sector, although 

there have been smaller increases in the Weddell Sea and around the coast of East Antarctica, 

and a small decrease in the ABS. 

  The Antarctic-wide, observational record of SIE is only 35 years long, which is very 

short in terms of climate change. However, at present we have no means of extending the 

record back reliably using proxy or other observational forms of data. For parts of the 

Southern Ocean there are indications that the sea ice edge was further north during the early 

to middle years of the Twentieth Century, compared to anything seen in the satellite era. This 

has been inferred from observations from whaling vessels [47], other vessels visiting the 

Antarctic [48] and via signals in ice cores [49]. However, questions have been raised as to 

how the locations of whale catches can be used to estimate ice edge positions that can be 

compared to satellite measurements. In addition, while it has proved possible to determine a 

reliable sea ice edge using ice core data in parts of the Antarctic, such as off East Antarctica, 

these techniques cannot easily be applied in other sectors, where the relationships between 

sea ice edge locations and aerosol transport to ice core sites are different. So for the moment 

the most useful form of data for investigating Antarctic-wide SIE variability on multi-decadal 

to century time scales is the output from control runs of climate models.        

 Various theories have been put forward to explain the recent overall increase in SIE, 

but changes in the atmospheric circulation/near-surface wind field have been identified as 

being particularly important. The increase of ice in the Ross Sea is closely linked to a 

deepening of the ASL, which is located in a region of large atmospheric variability. The 
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depth of the ASL is affected by a number of tropical and high latitude forcing factors, but it is 

currently difficult to quantify the role of each factor. However, the increase in SIE in the Ross 

Sea is consistent with the deepening of the ASL and modelling studies suggest that the 

positive trend in SIE over the last 35 years is not outside the bounds of internal variability of 

the atmosphere-ocean-ice system. 

 A priority for further research is to improve the representation of sea ice in coupled 

models. Many of the CMIP5 models have a poor representation of sea ice, with large 

differences in the the annual cycle of SIE compared to the satellite data. However, some of 

the largest errors are a result of large biases in ocean temperatures, highlighting the fact that 

it’s necessary to have both atmospheric and ocean conditions correct in order to correctly 

simulate sea ice.  

 While this paper has been concerned with examining changes in SIE, it’s not currently 

possible to consider changes in total sea ice volume since there are few measurements of ice 

thickness. A modelling study [50] has suggested that the recent increase of wind speed and 

convergence in the sea ice zone may have increased ridging production, leading to an 

increase in volume of thick ice, although it is not possibly to verify this at present.   

Hopefully, future developments will allow sea ice thickness to be routinely monitored 

allowing the investigation of changes in ice volume.   
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 Year DJF MAM JJA SON 

Whole Antarctic  186** 129 220** 173** 201** 

Ross Sea (160° E – 130° W) 117* 95 106* 123** 143* 

Amundsen-Bellingshausen 

Seas (130° W – 60° W) 

-54 -104** -118** 0 -4 

Weddell Sea (60° W – 20° E) 46 98 139* -38 -23 

Indian Ocean (20° E – 90° E) 55** 40 48* 71* 68 

Western Pacific Ocean (90° E – 

160° E) 

22 13 43 16 9 

 

 

Table 1. Annual and seasonal trends in SH SIE (103 km2 dec-1) for 1979 - 2013. Significance of 

the trends is indicated as follows ** (p<0.01), * (p<0.05). 
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Figure 1. The trend in annual mean sea ice concentration for 1979 - 2013. Sectors referred to in 

the text are indicated as RS (Ross Sea), AS (Amundsen Sea), BS (Bellingshausen Sea), WS 

(Weddell Sea), IO (Indian Ocean), WPO (Western Pacific Ocean). 
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Figure 1. Annual and seasonal trends in mean sea ice concentration for 1979 – 2013 (percent 

per decade). Areas where the trend is significant at p<0.05 are enclosed by a bold line. 
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Figure 2. Total Antarctic annual mean sea ice extent. 

 

 

Figure 3a. Ross Sea sector. 
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Figure 3b. The Weddell Sea sector 

 

Figure 3c. The Amundsen-Bellingshausen Sea. 
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Figure 3d. West Pacific Ocean. 

 

Figure 3e. The Indian Ocean. 
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Figure 3f. Total Antarctic SIE. 

 

Figure 3. Correlation of annual mean SIE for the five sectors around Antarctica and the total 

Southern Ocean SIE with MSLP across high southern latitudes. 
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Figure 4. Monthly trends of SIE from the satellite data (thick blue line) and CMIP5 models 

over 1979–2005 (percent per decade). For models with more than one ensemble member the 

mean of the ensemble members is plotted. The mean of all the models is shown as a black 

line. From Turner et al. [44]. 
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