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Highlights 22 

• The RAPID moorings array is measuring the AMOC at 26.5ºN continuously since 23 

2004 24 

• The AMOC has a strength of 17.2 Sv and heat transport of 1.22 PW over the 8.5 25 

years from April 2004 to October 2012 26 

• Improved estimation of the shallowest and deepest transports  27 

• Changes to the calculation have reduced the estimate of the AMOC by 0.6 Sv 28 
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• The transport estimates are accurate to 1.5 Sv (0.9 Sv) for 10 day (annual) values  29 

 30 

Abstract 31 

The Atlantic Meridional Overturning Circulation (AMOC) plays a key role in the global 32 

climate system through its redistribution of heat. Changes in the AMOC have been 33 

associated with large fluctuations in the earth's climate in the past and projections of 34 

AMOC decline in the future due to climate change motivate the continuous monitoring of 35 

the circulation. Since 2004, the RAPID monitoring array has been providing continuous 36 

estimates of the AMOC and associated heat transport at 26ºN in the North Atlantic. We 37 

describe how these measurements are made including the sampling strategy, the 38 

accuracies of parameters measured and the calculation of the AMOC. The strength of the 39 

AMOC and meridional heat transport are estimated as 17.2 Sv and 1.22 PW respectively 40 

from April 2004 to October 2012. The accuracy of ten day (annual) transports is 1.5 Sv 41 

(0.9 Sv). Improvements to the estimation of the transport above the shallowest 42 

instruments and deepest transports (including Antarctic Bottom Water), and the use of the 43 

new equation of state for seawater have reduced the estimated strength of the AMOC by 44 

0.6 Sv relative to previous publications. As new basinwide AMOC monitoring projects 45 

begin in the South Atlantic and sub-polar North Atlantic, we present this thorough review 46 

of the methods and measurements of the original AMOC monitoring array.  47 
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1 A	
  review	
  of	
  measuring	
  the	
  AMOC	
  48 

The world's oceans are a major part of the heat engine of the global climate system, 49 

moving heat, together with the atmosphere, from equatorial regions to the high latitudes.  50 

The South Atlantic is the exception in this picture of heat redistribution, transporting heat 51 

northwards  (Bennett (1978)) across the equator as part of the Atlantic Meridional 52 

Overturning Circulation (AMOC). The heat released by the ocean over the North Atlantic 53 

contributes to the relatively mild climate of north western Europe  (Seager et al. (2002)) 54 

with the AMOC being responsible for the approximately 3ºC warmer temperatures on the 55 

northwestern European seaboard compared to similar maritime climates on the western 56 

seaboard of North America  (Rhines et al. (2008)). 57 

Observation of the AMOC is quite challenging, requiring measurements that span 58 

a complete basin, so historically the observational record has been quite limited.  There 59 

have been several reviews of AMOC observations focusing on aspects such as the history 60 

of observations  (Warren (1981), Mills (2009)), the representations  (Richardson (2008)) 61 

and the quantification  (Longworth and Bryden (2007)) of the AMOC. Early estimates on 62 

the size of the deep circulation were based solely on property distributions.   Sverdrup et 63 

al. (1942) estimated a 7 Sv (1 Sv = 106 m3/s) flow of deep water out of the North Atlantic 64 

and across the equator that could be traced southward through the South Atlantic and 65 

around the Southern Ocean.   Swallow and Worthington (1957) made short term float 66 

trajectory observations in the deep western boundary current off South Carolina that 67 

supported the value of 7 Sv for the deep circulation. This value was maintained by  68 

Worthington (1976) in his influential summary of North Atlantic circulation. 69 
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Modern estimates for the size of the overturning circulation began with analyses 70 

of coast-to-coast hydrographic sections in the early 1980's (Bryden and Hall (1980),  Hall 71 

and Bryden (1982),  Roemmich and Wunsch (1985)).  They found an overturning 72 

circulation of about 18 Sv, contradicting the previous value of 7 Sv, and a northward heat 73 

transport of 1.2 PW (1 PW = 1015 Watts). Analysis of historical and modern hydrographic 74 

sections generally finds an Atlantic overturning circulation of the order of 18 Sv and its 75 

associated northward heat transport robustly positive. 76 

The idea that the overturning circulation has varied through the earth's history, 77 

with the precept that the ice ages had smaller overturning circulation  (Broeker (1991)), 78 

combined with evidence in paleo proxies developed from ice cores that there had been 79 

decadal-to-centennial fluctuations in temperature of order 10°C  (Dansgaard et al. 80 

(1993)), made a compelling case that the overturning circulation should be monitored; 81 

firstly, to quantify its variability on sub-annual to interannual time scales and, secondly, 82 

to assess whether there might be long-term trends in the circulation and possibly identify 83 

tipping points where the circulation suddenly changed or stopped. 84 

The paucity of observations contrasted sharply with the potential societal impacts 85 

of an AMOC slowdown when, using all five trans-Atlantic hydrographic sections 86 

available at 24ºN,  Bryden et al. (2005) suggested that the AMOC had slowed by 30% 87 

since the late 1950's. During the ensuing controversy, it was frequently highlighted that 88 

very little was known about the variability of AMOC on shorter timescales and that the 89 

apparent slowdown could well have been encompassed within shorter timescale 90 

variations in the circulation.   91 



 5 

 By the turn of the millennium there was both scientific desire and societal need to 92 

monitor the overturning circulation.  Observing System Simulation Experiments (OSSEs) 93 

by  Hirschi et al. (2003) and  Baehr et al. (2004) demonstrated that an array of sparse 94 

moorings could monitor the AMOC in an OGCM using geostrophic dynamics.  A joint 95 

UK/US proposal to build and deploy a test monitoring system for the AMOC for 4 years 96 

was endorsed after peer review by both the UK Natural Environment Research Council 97 

(NERC) and US National Science Foundation (NSF)  (Srokosz (2004)).  98 

 Marotzke et al. (1999) had proposed monitoring the circulation at 29°N. This was 99 

motivated by the common definition of the AMOC in ocean general circulation models 100 

(OGCM) as the maximum value of the overturning transport streamfunction in latitude-101 

depth space, which generally occurs near 29ºN. However, the large resources necessary 102 

to define and measure the Gulf Stream flow across 29°N were not economical: 26.5ºN, 103 

where the Gulf Stream is confined to the Florida Straits and has been monitored 104 

continuously since 1982  (Baringer and Larsen (2001)), was a much more pragmatic 105 

location. 106 

The project to monitor the Atlantic meridional overturning circulation at 26.5°N 107 

has been known as the RAPID/MOCHA/WBTS program consisting of the NERC funded 108 

RAPID family of programmes, the NSF funded Meridional Overturning Circulation 109 

Heat-flux Array project, and the National Oceanic and Atmospheric Administration 110 

(NOAA) funded Western Boundary Time Series project. Here we will refer to it simply 111 

as RAPID.  The trans-basin array began in March 2004 and has continued up to the 112 

present.   113 
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At a fundamental level, RAPID monitoring is based on geostrophic dynamics.  114 

For averaging time scales longer than a few days, the zonal momentum balance holds 115 

between the zonal pressure gradient and the Coriolis force associated with the northward 116 

current: 117 

!"
!" = !"#, 

Equation 1.1 118 

where v is northward velocity, ! is density of sea water and ! is the Coriolis parameter.  119 

Geostrophic balance in the zonal momentum balance works to high accuracy right up to 120 

the eastern and western boundaries even for strong boundary currents, as shown by  Beal 121 

and Bryden (1999) for the Agulhas Current, and over the full depth range.  In a scaling 122 

analysis framework, there is no other term in the zonal momentum balance within two 123 

orders of magnitude of the zonal pressure gradient and Coriolis force.  124 

The second remarkable feature of the geostrophic balance is that it provides 125 

accurate zonal integrals of the northward mass transport.  At constant latitude, the 126 

Coriolis parameter is a constant, so the geostrophic balance can be zonally integrated 127 

between any two points and the difference in pressure, Δp, divided by ! equals the 128 

zonally integrated northward velocity: 129 

Δ!
!" = !  !" 

Equation 1.2 130 

So for an ocean basin with vertical walls and a flat bottom, if the pressure can be 131 

measured at the eastern boundary and the western boundary then the pressure difference 132 
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divided by the constant ! equals the zonally integrated northward flow and no further 133 

measurements are necessary. 134 

On time scales of a few days or more the acceleration in the vertical momentum 135 

equation can be neglected and the vertical profile of pressure, relative to a reference level, 136 

can be calculated by vertically integrating the hydrostatic equation, 137 

1
! !" = !  !" = − !"# = !!, 

Equation 1.3 138 

where ! is gravitational acceleration, ! is specific volume anomaly and ! is dynamic 139 

height.  From hydrographic stations at the boundaries, the pressure difference across the 140 

basin, and hence the vertical structure of the horizontally integrated northward flow 141 

relative to a reference level, can be calculated.  Combining Equations 1.2 and 1.3 allows 142 

us to estimate the transport between two hydrographic stations at the east and west of a 143 

zonal section, relative to a reference level transport, as:  144 

!!"# ! = (! − !!)  !" =
1
! Φ!(!)−Φ!(!) , 

Equation 1.4 145 

where !!"# is the internal geostrophic transport relative to an unknown reference level 146 

velocity, !!,  and Φ is the dynamic height anomaly on the eastern and western 147 

boundaries. Dynamic height as a function of depth is equal to the sum of dynamic height 148 

anomaly and the standard geometric separation. As dynamic height anomaly is the 149 

quantity calculated here, this is what will be referred to in the text—equally dynamic 150 

height could be used in Equation 1.4. 151 



 8 

For RAPID, the key measurements are at the eastern and western boundaries of 152 

the Atlantic Ocean at 26°N and on either side of the mid-Atlantic ridge (Figure 1.1).  153 

Because the boundary is not vertical but sloping, several moorings at different locations 154 

on the slope are combined to form a single profile (Further details in Section 2). The 155 

resulting time series of density profiles at the eastern and western boundaries are 156 

vertically integrated to produce dynamic height anomaly profiles from which the internal 157 

geostrophic transport is calculated.  158 

This internal geostrophic transport is then combined with the Gulf Stream 159 

transport through the Florida Straits monitored by a submarine cable, flow over the 160 

Bahamas escarpment west of 76.75ºW measured by current meters  (Johns et al. (2008)), 161 

and the wind-driven surface layer Ekman transport and adjusted so that the net transport 162 

across the whole section is zero to define the vertical structure of the overall meridional 163 

flow across the 26°N section from Florida to Africa. The transport streamfunction is then 164 

described by the integral of the transport per unit depth:  165 

Ψ !, ! = ! !, ! !", 

Equation 1.5 166 

where Ψ is the overall transport streamfunction. The maximum of this streamfunction is 167 

defined as the strength of the AMOC at this latitude. 168 
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 169 

Figure 1.1: Locations of  dynamic height (red crosses) and current meter (green crosses) moorings across the 170 

26ºN section. Zoomed figures of western and eastern moorings are included. The cable measurements of the 171 

Gulf Stream in the Florida Straits is indicated with a red line.  172 

As described, vertical profiles of geostrophic transports derived from dynamic height 173 

anomaly profiles are relative to an unknown reference level: the shape of the vertical 174 

profile is defined by the pair of hydrographic stations but the profile is subject to an 175 

offset, or reference level velocity, that is uniform in depth.  RAPID uses mass 176 

conservation for the North Atlantic north of 26°N to define the reference level velocity.  177 

The Atlantic north of 26°N is effectively a closed volume: at its northern boundary a 178 

small, order 1 Sv flow goes through the Bering Strait  (Woodgate et al. (2005)) and a net 179 

evaporation-precipitation-river inflow of less than 1 Sv enters across the land boundaries 180 

and air-sea interface  (Baumgartner and Reichel (1975)). This volume conservation is a 181 

fundamental balance in the ocean. If 1 Sv was to flow into the Atlantic without flowing 182 

out again, the sea surface height (SSH) would be rising at a rate of centimetres per year. 183 

In fact, bottom pressure fluctuations at 26ºN have a root mean square (rms) variability of 184 

around 1.5 cm indicative of the Atlantic basin filling and draining on the order of 5-10 185 

days  (Bryden et al. (2009)). For constant sea level, the net flow across 26°N must be 186 
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zero with a tolerance of order 1 Sv.   Kanzow et al. (2007) validated this assumption by 187 

showing that for bottom pressure measurements with averaging time scales longer than 188 

10 days the mass balance between the upper level northward flow and deeper level 189 

southward flow holds. For these reasons, the reference level velocity for the mid-ocean 190 

geostrophic velocity profile is chosen so that the net northward flow of upper waters 191 

exactly balances the southward flow of deeper waters in the mid-ocean at each point in 192 

time.  193 

The importance of the AMOC lies in the fact that it transports 90% of the ocean’s 194 

meridional heat transport (MHT) at the latitude of 26.5ºN  (Johns et al. (2011)). Estimates 195 

of MHT using hydrographic sections stretch back to the early 1980’s  (Bryden and Hall 196 

(1980)). Using the RAPID observations,  Johns et al. (2011) produced time varying 197 

estimates of the MHT at 26.5ºN. The MHT is a more difficult quantity to estimate than 198 

the AMOC, since it involves the product of velocity and temperature, and thus in 199 

principle requires fully resolved velocity and temperature fields across the whole section. 200 

The approach to quantifying the MHT uses the construction suggested by Bryden and 201 

Imawaki (2001) by considering the overturning (‘baroclinic’ component in  Bryden and 202 

Imawaki (2001)) and horizontal heat transport. As discussed in the previous paragraph, 203 

the net mass transport through the section (‘barotropic’ component in  Bryden and 204 

Imawaki (2001)) is zero. Here the zero mass transport constraint is essential; only when 205 

the mass fluxes of these components balance and they are summed together do these 206 

temperature transports yield a meaningful heat transport value (Montgomery (1974)). 207 

The measurements of the AMOC and the MHT from the RAPID array have had a 208 

large impact on understanding of the variability of the overturning circulation. The first 209 
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year's measurements  (Cunningham et al. (2007)) showed a variable AMOC that 210 

encompassed, over a time period of a few weeks, the full variability seen in the  Bryden 211 

et al. (2005) measurements.  Kanzow et al. (2010) emphasized the large (7 Sv) seasonal 212 

cycle in the AMOC at 26ºN.  McCarthy et al. (2012) showed large variability (a 30% 213 

drop) was possible on interannual timescales.  Bryden et al. (2014) linked this downturn 214 

to the ocean influencing the atmosphere on shorter timescales than were previously 215 

thought possible. Recently,  Smeed et al. (2014) have shown a multi-year decline in the 216 

AMOC, this estimate of a decline is far more robust than the  Bryden et al. (2005) 217 

measurements due to the understanding of the variability of the AMOC that has been 218 

built up over the ten years of the RAPID project.  219 

This paper is a detailed review of the trans-basin geostrophic measurements, 220 

calculations and errors that are the novel element of the RAPID array. We detail the 221 

utilisation of these measurements in the calculation of the AMOC and MHT. We also 222 

include several updates to the calculation of the AMOC described in Rayner et al. (2011) 223 

including:  224 

• a detailed estimation of error estimates due to calibration and sampling  225 

• improved gridding procedure using a new seasonal climatology 226 

• improved surface extrapolation above the shallowest instrument 227 

• revised Antarctic Bottom Water strength and vertical structure 228 

• use of the new equation of state, TEOS-10. 229 

And updates to the calculation of the MHT described in Johns et al. (2011) including:  230 
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• The use of a gridded climatology derived from RAPID moored and Argo 231 

temperature and salinity profiles to estimate the Ekman, eddy and mid-ocean 232 

heat transport.  233 

The RAPID measurements have been used extensively for validation of model estimates 234 

of the AMOC (e.g.  Xu et al. (2012), Blaker et al. (2014)) and the MHT (e.g.  Haines et 235 

al. (2013), Msadek et al. (2013)) therefore a detailed understanding of how the RAPID 236 

calculations are made is vital to understanding where discrepancies lie between models 237 

and observations. This relates to understanding how models fail to emulate observations 238 

but also where models can improve the observational analysis, for example  Haines et al. 239 

(2013), highlighted areas that were undersampled or misinterpreted in the observational 240 

record. Finally, while RAPID was the first fully trans-basin AMOC continuous 241 

monitoring project, projects in the South Atlantic (South Atlantic MOC Basin-wide 242 

Array—SAMBA)  (Meinen et al. (2013)) and the sub-polar North Atlantic (Overturning 243 

in the Sub-polar North Atlantic Programme—OSNAP) are now underway and hence a 244 

review of the development of the original AMOC measurements and monitoring strategy 245 

at 26ºN is timely.  246 

This paper is arranged as follows. Section 2 focuses on the basin-wide internal 247 

geostrophic flow from dynamic height moorings. This includes several elements: (2.1) 248 

the design of the array; a description of the (2.2) locations, (2.3) calibration, (2.4) 249 

merging and gridding of the measurements; a discussion of improvements to the 250 

calculation of (2.5) the shallowest transports and (2.6) the deepest transports; and finally 251 

(2.7) a description of the changes due to the new equation of state for seawater. 252 

Accuracies and errors are discussed in terms of their impact on the estimation of the 253 
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AMOC. Errors of O(0.01 Sv) and smaller are described as not significant: this will be 254 

shown to be of O(1%) of the accuracy of the AMOC calculation. In Section 3, we 255 

combine the internal geostrophic flow with other components of the circulation at 26ºN 256 

including the Gulf Stream and Ekman transport. In Sections 4 and 5, the final calculations 257 

of the AMOC and of the MHT are presented.  258 

2 The	
  basin-­‐wide	
  geostrophic	
  flow	
  from	
  dynamic	
  height	
  259 

moorings	
  260 

2.1 Design of the array 261 

Measuring the basinwide geostrophic transports with the RAPID array relies on 262 

measuring vertical profiles of temperature and salinity1 at the eastern and western 263 

boundaries at 26ºN and where the bathymetry alters the pressure gradients on either side 264 

of the mid-Atlantic Ridge. The mid-Atlantic Ridge protrudes up to about 3800 dbar. 265 

Below this depth, we use moorings on either side of the ridge to estimate pressure 266 

gradients in the deep eastern and western basins. In practice, at 26ºN, the array of 267 

dynamic height moorings was designed to measure the geostrophic flow from 76.75ºW to 268 

the African coast. West of 76.75ºW to Abaco Island elements of the Antilles and deep 269 

western boundary currents are measured with current meters to capture this vigorous flow 270 

adjacent to and over the continental shelf  (Johns et al. (2008)). West of the Bahamas 271 

archipelago, the Gulf Stream at 26ºN is confined to the Florida Straits, where it is 272 

                                                
1 ‘Salinity’ means practical salinity in this text. Where absolute salinity is used it is 
referred to explicitly.  
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monitored by cable measurements calibrated with regular ship sections since 1982 273 

(Baringer and Larsen (2001),  Meinen et al. (2010)). 274 

The initial moored array deployed in 2004 consisted of 22 moorings with a total 275 

of 192 instruments  (Rayner et al. (2005)). In the configuration deployed in Autumn 276 

2012, the array consisted of 19 moorings2 and 22 landers3, with a total of 252 instruments 277 

(McCarthy (2012)). Based on experience with the initial deployments some changes in 278 

the locations and design of the moorings have been made  (Rayner and Kanzow (2011)). 279 

This has lead to a data return of 100% and 96% for the array as recovered in 2011 and 280 

2012 respectively, compared to 73%, 91% and 85% for the recovery years 2005, 2006 281 

and 2007 respectively. The return rates for these years are high in comparison with recent 282 

results from other long-term operational moored arrays such as the TAO array in the 283 

Pacific  (McPhaden et al. (2010)). 284 

 285 

Figure 2.1: Design of the array for calculation of the basinwide geostrophic transport as deployed in October 286 

2012. Vertical red lines indicate the location and vertical extent of the moorings. Instruments are as indicated in 287 

the legend. Locations A, B, C and D refer to the western, ‘marwest’, ‘mareast’ and eastern boundary arrays 288 

respectively. Note the x-axis is not scaled evenly. The shaded areas are the effective area included in the dynamic 289 

height calculation.  290 

                                                
2 “Moorings” refers to wire/rope constructions with instruments that take measurements 
in the water column. 
3 “Landers” refers to seafloor constructions equipped with bottom pressure recorders. 
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The array was designed similar to the virtual arrays simulated by  Hirschi et al. (2003) 291 

and  Baehr et al. (2004) to monitor the AMOC in the ocean general circulation models 292 

OCCAM and FLAME respectively (Figure 2.1) Within this overall array, we consider the 293 

three sub-arrays highlighted in Figure 2.1: (A) the western boundary array, (D) the 294 

eastern boundary array and (B) the mid-Atlantic Ridge array consisting of moorings on 295 

the western flank (marwest) and (C) eastern flank (mareast) of the ridge. A single 296 

hydrographic profile for each sub-array is constructed by horizontally merging the 297 

moorings, giving profiles from the shallowest instrument to 4820 dbar at marwest, the 298 

eastern and western boundaries, and, at mareast, from 3700 dbar to 4820 dbar. Dynamic 299 

height anomaly calculated at each of these locations is referenced to 4820 dbar—the 300 

deepest standard measurement level. The transport profile is then proportional to the 301 

difference between each adjacent pair of merged dynamic height anomaly profiles, prior 302 

to adjustment for mass conservation.   303 

 304 

To account for the mid-Atlantic ridge, transports deeper than the ridge crest at 3700 dbar 305 

are the sum of the transports from the eastern boundary to mareast plus those from 306 

marwest to the western boundary. Shallower than the ridge crest, the transports are 307 

essentially the dynamic height difference between the eastern and western boundaries. 308 

The transports shallower than the ridge crest and those deeper than the ridge crest are 309 

adjusted so that there is no discontinuity at 3700 dbar. The mid-Atlantic ridge array is 310 

particularly important in resolving the mean northward flow between the western flank of 311 

the ridge at depths greater than the permeable height of the ridge (pressures greater than 312 

3700 dbar) and the western boundary. If the mid-Atlantic ridge moorings are excluded, 313 
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the calculated AMOC is overestimated by about 1.6 Sv as this deep northward flow is 314 

unaccounted for.  315 

2.2 Location of the measurements in the sub-arrays 316 

 317 

Figure 2.2: (l) Schematic of moorings in the western boundary sub-array as deployed in October 2012 with the 318 

names of each mooring indicated. The instrument types are as indicated by the legend. (r) Schematic illustrating 319 

the merging of the moorings to construct the western boundary dynamic height anomaly profile at 26ºN. Each 320 

colour block represents an individual mooring covering a given depth range (depth axis corresponds to left axis)  321 

and deployment period (dates in mm/yy format). The depth of the shallowest instrument is illustrated by 322 

whitespace at the top. WBH1 (not shown on left) lay between WBH2 and WB2. 323 

A schematic of the moorings that comprise the western boundary sub-array is 324 

shown in Figure 2.2; the moorings that are merged to create the western boundary 325 

temperature and salinity profile are illustrated on the right, where each colour block 326 

represents a mooring that covers a particular time and depth range; the mooring names 327 

and zonal location of the moorings are shown on the left. The most important mooring is 328 

the WB2 mooring that extends from approximately 50 m below the surface to 3850 m 329 

depth, close to the steep continental shelf east of Abaco Island. The gradient of the 330 

continental slope is 0.35 near WB2, which is only 7 km offshore of the 1500 m isobath. 331 
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This large gradient means that the continental slope acts similar to a vertical wall. 332 

Westward propagating mesoscale features cannot be sustained near to vertical walls and 333 

transform into meridionally propagating waves  (Kanzow et al. (2009)). The suppression 334 

of these westward propagating mesoscale features at the western boundary results in the 335 

RAPID array measuring a standard deviation of a few Sv (Cunningham et al. (2007)) 336 

rather than 16 Sv that would be expected if an eddy dominated signal were being 337 

measured  (Wunsch (2008)). In fact, the steepness of the western boundary proved to be a 338 

crucial element to the effective measurement of the basinwide AMOC signal in an eddy 339 

filled ocean. This, together with the Gulf Stream measurements in the Florida Strait, is 340 

why 26.5ºN is such an excellent location to make these measurements. 341 

One significant period of data interruption occurred on the western boundary. 342 

From November 2005 to March 2006, the WB2 mooring failed (Figure 2.2). For this time 343 

period the mooring WB3 was the primary western boundary mooring. Repeating the 344 

calculation of the AMOC using WB3  as the western boundary generally leads to an 345 

increase in the rms variability of 1.9 Sv with a slight decrease in the mean strength of 0.3 346 

Sv for these 5 months.  347 

 348 

Figure 2.3: Same as 2.1 but for Eastern boundary sub-array. Mini-moorings (EBM) were inshore of EBH4/5 at 349 

the depth corresponding to the right hand figure. 350 
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Figure 2.3 shows the mooring schematic for the eastern boundary sub-array, 351 

showing the location of the moorings and the moorings chosen to construct the eastern 352 

boundary profile. In contrast to the western boundary, the eastern boundary has a gentle 353 

continental slope with an average gradient of 0.02 from 1000 m to 3000 m depth, 354 

dropping to 0.002 from 3000 m to 5000 m depth. The eastern boundary array spans a 355 

much larger zonal extent with 1000 km separating the shallowest moorings on the 1000 356 

m isobath from the deepest moorings on the 5000 m isobath. On average, 7 moorings are 357 

used to construct the eastern boundary profile in contrast to the 3 moorings used on the 358 

western boundary. This leads to regions known as bottom triangles below the deepest 359 

common measurement level between the moorings that are not sampled. The array is 360 

designed to minimize these bottom triangles. The full array covers 97% of the basin 361 

area—practically 100% shallower than 3000 m. The impacts of bottom triangles are 362 

considered further in the conclusions. 363 

Constructing the eastern boundary profile with moorings close to the continental 364 

shelf proved important for capturing the density fluctuations associated with the seasonal 365 

cycle of the AMOC  (Chidichimo et al. (2010)). From 2006 to 2008, a series of mini-366 

moorings consisting of single CTDs and shallow-rated acoustic releases were deployed 367 

inshore of the 1000 m isobath to extend the merged density profile close to the African 368 

coast. The deployment of these mini-moorings ceased following heavy losses through 369 

what is thought to have been fishing activity: 58% of mini-mooring deployments were 370 

either not found or lost the CTD from the mooring. Since 2009, the top 1000 m of the 371 

water column is resolved by a mooring that sits on the 1000 m isobath (Figure 2.3). 372 



 19 

Another data loss at the eastern boundary occurred in February and March 2006 373 

due to battery failure of eastern boundary instruments related to a firmware change. This 374 

gap was linearly interpolated over. Simulation of linear interpolation across any 2 month 375 

segment of data at the eastern boundary typically results in a decrease in the rms 376 

variability of the calculated 10-day filtered AMOC by 1 Sv with no significant impact on 377 

the mean.  378 

 379 

Figure 2.4: Same as Figure 2.1 but for mid-Atlantic Ridge sub-array. Merging schematic for mareast is not 380 

shown as it is a single mooring (MAR3). 381 

Figure 2.4 shows the schematic of the moorings at the mid-Atlantic ridge. These 382 

moorings are concentrated in two sub-arrays: one on the western flank of the ridge 383 

(marwest) and one at the eastern flank of the ridge (mareast). The mareast profile is 384 

constructed from a single mooring and hence the merging schematic is not shown. On the 385 

west flank, two moorings are merged to make a full depth profile (Figure 2.4 (b)).  386 

The mareast mooring deployed in November 2009 was not recovered and a 387 

replacement was not deployed until January 2011. For this time period, mareast was 388 

replaced by average values. The estimated additional uncertainty and variance of the 389 

AMOC from this is not significant (< 0.1 Sv) as the mareast mooring is more important 390 



 20 

to the mean structure of the deep circulation than to the variability of the full circulation 391 

as measurements shallower than 3800 dbar are unaffected.  392 

2.3 Calibration accuracy of moored CTDs 393 

As the calculation of the AMOC relies on geostrophic dynamics, the accurate 394 

determination of density from the moorings is crucial (Equation 1.3). Moored CTDs are 395 

used to measure temperature, salinity (via conductivity) and pressure on the moorings, 396 

from which density is calculated. In this section we describe the calibration procedure, 397 

the major sources of calibration inaccuracy and the size of that inaccuracy in terms of the 398 

impact on the AMOC calculation.  399 

Pumped SeaBird CTDs are the instruments that are used on the moorings. These 400 

have a manufacturers specification for temperature (initial accuracy: stability: resolution) 401 

of 2 mºC: 0.02 mºC/month: 0.01 mºC; for conductivity of 0.003 mS/cm: 0.003 402 

mS/cm/month: 0.0001 mS/cm; and for pressure of 0.1% full-scale:0.05% of full scale 403 

range per year: 0.002% of full scale range   (Sea-Bird Electronics (2014)). All moored 404 

instruments are calibrated against shipboard CTDs prior to and following deployment as 405 

described in Kanzow et al. (2006), rather than being calibrated in a laboratory. 406 

Temperature and conductivity calibration coefficients are calculated by examining the 407 

average difference between the shipboard and moored CTD data after the instruments 408 

have had a chance to equilibrate (> 5 mins) at deep (> 2000 m) bottle stops. Pressure 409 

coefficients are determined using the difference between the deployment depths of the 410 

moored instrument and the shipboard CTD. A least squares polynomial extrapolation is 411 

performed to derive the pressure coefficient if the shipboard CTD cast was shallower 412 

than the depth at which the moored CTD was deployed. Pre and post calibration 413 
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coefficients are then used to calibrate the moored CTD data with either a constant offset 414 

or a linear trend. Any pressure drifts and spurious data are removed if necessary. A 415 

detailed analysis of this method by  Rayner et al. (in prep) shows that this method of 416 

shipboard calibration of temperature and salinity compares well with laboratory 417 

calibration of moored CTDs. They also show that the adjustments required for the 418 

instruments are frequently less than the manufacturer’s stated accuracy and stability. 419 

Following this calibration procedure, we estimate that the accuracy of the moored 420 

instruments is approximately 1 dbar:0.002ºC:0.003 for pressure:temperature:salinity 421 

respectively over the duration of the deployment.  422 

Calibration inaccuracies can affect the calculation of the AMOC in two ways: 423 

errors due to individual instruments being inaccurate or systematic biases between 424 

density profiles on the eastern or western boundary (Equation 1.4). We expect no 425 

systematic bias in the accuracies of the instruments themselves. Hence random errors due 426 

to individual instruments in each boundary dynamic height anomaly profile are offset by 427 

the fact that, on average, there are 20 instruments in each profile. This reduces the 428 

standard error in each profile due to potential inaccuracies of individual instruments 429 

substantially. On the other hand, from 2004 to 2012, the eastern and western sub-arrays 430 

were serviced on different cruises i.e. the instruments were calibrated against different 431 

CTDs. Temperature measured by shipboard CTDs is highly accurate and stable, and is 432 

not generally adjusted by calibration. Salinity measured by shipboard CTDs, on the other 433 

hand, does need to be calibrated against standard seawater. Pressure measured by 434 

shipboard CTDs is not adjusted. In comparison with shipboard CTDs, moored CTD 435 

temperature is accurate and often not adjusted whereas moored CTD salinity and pressure 436 
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does need to be calibrated against shipboard CTDs. Hence the limiting factor is the 437 

accuracy of the salinity and pressure of the CTD against which the instruments are 438 

calibrated.  439 

Salinity proves to be the most important factor is terms of impact on the AMOC 440 

calculation. A 0.003 difference in salinity between eastern and western profiles leads to a 441 

0.7 Sv error in the estimated AMOC. In comparison, a 1 dbar bias in pressure results in a 442 

0.05 Sv error in the estimated AMOC. Pressure errors also affect the calculation of 443 

salinity. A 1 dbar error in pressure leads to a 0.0005 error in salinity. We do not consider 444 

a temperature bias as temperature measurements are very consistent but, for comparison, 445 

a 0.002ºC error in temperature leads to a 0.1 Sv error in the estimated AMOC. 446 

Temperature has a large effect on the calculation of salinity with a 0.001ºC error in 447 

temperature causing a 0.001 error in salinity. Hence, the compound effect of a 0.002ºC 448 

error in temperature would be a 0.6 Sv error in the calculated AMOC. In summary, 449 

salinity and pressure are vulnerable to bias due to their necessary calibration against 450 

shipboard CTDs. A salinity bias of 0.003 and a pressure bias of 1 dbar (including the 451 

pressure effect on salinity) would lead to an error in the estimated AMOC of 0.9 Sv. 452 

This 0.9 Sv error results from consideration of the measurement inaccuracy at one 453 

boundary. The maximum error is double this value as an opposite error could occur on 454 

the opposite boundary. To compare with other rms errors quoted in this text, we consider 455 

the 1.8 Sv maximum error to be equivalent to the 95% value. Scaling this value by 456 

dividing by a 1.64 (i.e assuming the errors to be normal), and converting it by considering 457 

the 2 shipboard CTDs as the sample number, we get an estimated error of 0.8 Sv in the 458 

AMOC calculation due to the calibration error.  459 
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The major source of error arising from potential biases due to the intercalibration of 460 

the sub-arrays means that longer term averaging doesn’t significantly increase the 461 

accuracy of the calculation. Consider a year segment: typically the eastern boundary 462 

array was deployed autumn to autumn and the western boundary array from spring to 463 

spring. For a given year, there are three independent calibrations of each sub-array. If the 464 

major error is the difference between two independent calibrations, then an annual 465 

average only increases the number of samples from 2 to 3. Hence the error estimate of 0.8 466 

Sv only reduces to 0.6 Sv on annual averaging. The issue of intercalibration of CTDs has 467 

been removed following  McCarthy (2012) when the full array was refurbished in a 468 

single cruise. This allows all instruments to be calibrated against a single CTD, reducing 469 

possible calibration bias between east and west salinities. 470 

2.4 Merging and gridding 471 

The calculation of the dynamic height anomaly profiles requires the interpolation of the 472 

relatively sparse moored instrument data onto a high resolution vertical grid.  This is 473 

achieved by integrating climatology-derived temperature and salinity gradients between 474 

adjacent instruments to produce temperature and salinity on a 20 dbar grid  (Johns et al. 475 

(2005),  Kanzow et al. (2006)).  476 

The Hydrobase climatology  (Curry and Nobre (2008)) is used to derive monthly 477 

values of !"/!"  and !"/!"  that specify the mean vertical temperature and salinity 478 

gradients as a function of temperature at the locations of the moorings. Figure 2.5 shows 479 

the monthly climatological gradients for the western and eastern boundaries. A seasonal 480 

cycle is present in the surface waters above 300 dbar, approximately 18ºC. Piecewise 481 
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second order polynomials are fitted to temperature and salinity profiles from the 482 

climatology to compute smooth first and second order vertical derivatives. These were 483 

then mapped onto temperature levels as  Johns et al. (2005) found temperature a more 484 

stable variable than depth for gridding.  485 
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486 

 487 

Figure 2.5: Values of monthly of !"/!"  and !"/!"  (black contours) against temperature at (top) the western 488 

and (bottom) eastern boundaries. The marwest climatology is similar to the western climatology. Pressures are 489 

shown with red contours with heavy red line indicating the 50 dbar mark.	
  490 
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Temperature and salinity on the 20 dbar grid are calculated using the method of 491 

Johns et al. (2005). For temperature, the climatological !"/!" is combined with the 492 

actual temperatures by integrating upwards and downward from adjacent measurement 493 

points on the mooring and forming a weighted average of these estimates  (Johns et al. 494 

(2005)): 495 

! ! = !![! !! +
!"
!" (!)!"

!

!!
]

!

!!!

, 

Equation 2.1 496 

where       497 

!! = 1−
|! − !!|
!! − !!

 

and i=1, 2 are adjacent measurement levels, and the weights wi are inversely proportional 498 

to the vertical distance from the measurement depths. The same procedure is used to 499 

produce a 20 dbar salinity field. This procedure forces the temperature and salinity 500 

profiles through the measured points of the mooring while being consistent with the local 501 

seasonal stratification.   502 

The transport errors associated with this method of gridding are assessed by 503 

subsampling high resolution CTD profiles at typical moored instrument vertical 504 

separation. Moored instruments are placed closer together in regions of larger vertical 505 

gradients. A guideline is that instruments shallower than 500 dbar have separations less 506 

than 100 dbar, instruments between 500 dbar and 2000 dbar have separations around 200 507 

dbar and instruments deeper than 2000 dbar have separations of approximately 500 dbar. 508 

Subsampling temperature and salinity from the CTD profiles at these intervals, we 509 
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construct simulated ‘moored’ high resolution dynamic height anomaly profiles around the 510 

eastern and western boundaries by using Equation 2.1 and, for comparison, by linear 511 

interpolation. The AMOC is estimated using both of these reconstructed profiles and 512 

compared to the value computed using the full CTD profiles. Using Equation 2.1 results 513 

in an rms error of 0.4 Sv and a small bias of 0.04 Sv. By comparison, linear interpolation 514 

results in an rms error of 0.5 Sv and a much larger bias of 0.3 Sv, underestimating the 515 

AMOC. The bias arises from linear interpolation across rapidly changing gradients in the 516 

top 1000 m. While this gridding procedure doesn’t reduce the rms error in the profiles by 517 

a large amount, the virtual elimination of a bias is a marked improvement.  518 
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519 

 520 

Figure 2.6: Estimates of theoretical next order gridding error based on Equation 2.2 for temperature (ºC, top) 521 

and practical salinity (bottom) gridding errors. Red crosses indicate errors for the typical maximum distance 522 

from an instrument and associated rates of shear change for a RAPID mooring.  523 

The size of the error associated with gridding in a general framework is 524 

considered by examining the error associated with the rate of change of the vertical 525 

gradient in temperature and salinity. The right hand side of Equation 2.1 is recognisable 526 

as the first two terms of a weighted Taylor expansion. Therefore, the next term of the 527 

expansion can be considered as an estimate of the next largest error term. For example, 528 

0 50 100 150 200 250
0

1

2

3

4

5

6

7
x 10 5

0.003 0 003 0 003

0.01
0.01 0 01

0.05

0.05
0.05

0.2

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

d2 T/
dp

2

Separation from Inst (dbar)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10 5

0.003
0.003

0.003

0.003 0.003

0.01

0.01

0.01
0.01

0.05
0.05

0.05

0.2

d2 S/
dp

2

Separation from Inst (dbar)



 29 

the temperature error associated with the next largest term in the expansion may be 529 

expressed as: 530 

!error~
1
2
!!!
!!! (! − !!)

!, 

Equation 2.2 531 

where !! is the pressure of the nearest instrument. This allows us to estimate the errors 532 

associated with the gridding technique. Figure 2.6 shows this error term contoured 533 

against instrument separation and rates of shear change. Based on the typical separation 534 

of instruments described in the previous paragraph, the maximum distance from an 535 

instrument and typical rates of shear change are highlighted with red crosses. Maximum 536 

errors in temperature (salinity) are of the order of 0.05ºC (0.01) shallower than 2000 dbar. 537 

Below 2000 dbar, the shear change is small and errors due to gridding drop below 538 

instrumental accuracy.  539 

The impact of utilising a monthly rather than an annual gridding climatology is 540 

quite small. Annual climatologies do not contain a seasonal cycle and may underestimate 541 

the shear in the upper ocean. Using a seasonal gridding climatology rather than an annual 542 

leads to the estimated AMOC being stronger by 0.05 Sv in September and weaker by 543 

0.01 Sv in February.  544 

While the vertical gradients on the east are more forgiving in terms of gridding, 545 

there have been more instrument losses (Section 2.2). Here we investigate the errors 546 

arising from these losses by simulating missing instruments in CTD data. The losses at 547 

the eastern boundary, primarily due to the mini-mooring losses, are illustrated in Figure 548 

2.3. From 2006 to 2008, there was no instrument at 300 dbar; simulating the absence of 549 

this instrument indicates no discernable bias but a small increase in rms error of 0.2 Sv. 550 
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However, during 2007, there was no instrument at 200 dbar or 300 dbar. Simulating these 551 

missing instruments indicates a transport bias of 0.4 Sv and increases the rms error by 0.9 552 

Sv due to larger gridding errors for 2007. In 2004, data were not present shallower than 553 

540 dbar. These data were gridded by linearly extrapolation from 840 dbar to 540 dbar 554 

and held constant thereafter. Simulation of this method results in no bias arising but an 555 

increase of rms error of 0.5 Sv.  556 

In summary, the use of seasonal climatological gradients to increase the vertical 557 

resolution of the moored profiles are effective at improving the accuracy of the dynamic 558 

height anomaly profiles. The rms uncertainty in the estimated AMOC due to gridding is 559 

0.4 Sv for the whole timeseries. The loss of instruments increases the errors by 0.2 Sv, 560 

0.9 Sv and 0.2 Sv for 2006, 2007 and 2008 with a bias of -0.4 Sv for 2007.  561 

2.5 The shallowest transports: the transport above the shallowest instrument 562 

RAPID moorings are designed to have the shallowest measurement at 50 m to 563 

avoid the high loss rates associated with surface expressions of moorings  (McPhaden et 564 

al. (2010)). In reality, a depth of 50 m for the shallowest measurement is difficult to 565 

achieve since moorings tend to be knocked down in the presence of strong currents.  566 

Table 2.1 shows the percentages of profiles with the shallowest measurement in a 567 

given depth range. Most of the profiles have the shallowest measurement in the 100 to 568 

200 dbar depth range—deeper than the depth of the shallow summer thermocline that 569 

begins around 50 dbar. To calculate transport above the shallowest measurement, a 570 

seasonally varying extrapolation technique is required. Here we compare linear 571 

extrapolation of geostrophic shear with methods that account for the seasonally changing 572 

rates of shear in the shallowest layers.  573 
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Table 2.1: Percentage of profiles at the western and eastern boundary with the shallowest 574 

instrument in the indicated depth range. 575 

 ≤	
  100	
  dbar 200-­‐100	
  dbar ≥	
  200	
  dbar 

Western	
  Boundary 39% 49% 10% 

Eastern	
  Boundary 14% 84% 1% 
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 576 

Figure 2.7 illustrates the problem of surface extrapolation at the western boundary 577 

using monthly data from an Argo based climatology  (Roemmich and Gilson (2009)). 578 

When data are not present shallower than 200 dbar, linear extrapolation does not capture 579 

changing rates of shear shallower than 150 dbar. This leads to transports of between 1 Sv 580 

in February and 2 Sv in August not being captured by linear extrapolation. Terms of 581 

higher order than linear in depth are necessary (Figure 2.7 ):  582 

 583 

Figure 2.7: (left) Typical transport profile anomaly relative to 200 dbar for February, May and August on the 584 

western boundary. Blue lines indicate linear extrapolation from 200 dbar. (right) Black lines indicate the 585 

residual dynamic height anomaly after linearly extrapolated values are subtracted. Green dashed lines indicate 586 

a quadratic and red lines indicate a cubic fit to the black lines. 587 

 588 
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Cubic terms are needed to adequately resolve the changes in geostrophic shear in 589 

the shallowest layers. A model of the form:  590 

Φ !! =   Φ!!! +
!! − !!!!
!! − !!!!

Φ! −Φ!!! + !! !! − !! ! + !! !! − !! ! −Φ!"#$ !! , 

is used for accurate extrapolation, where Φ is	
  dynamic	
  height	
  anomaly,	
  ze	
  is	
  591 

extrapolation	
  depth,	
  zk	
  indicates	
  the	
  depth	
  of	
  the	
  shallowest	
  measurement	
  .	
  The	
  592 

parameters	
  !	
  and	
  !	
  are	
  discrete	
  variables	
  dependent	
  on	
  month	
  i,	
  calculated	
  relative	
  593 

to	
  reference	
  depth	
  zr	
  —here	
  chosen	
  to	
  be	
  200	
  dbar.	
  The	
  first	
  two	
  terms	
  on	
  the	
  right	
  594 

hand	
  side	
  of	
  the	
  equation	
  describe	
  linear	
  extrapolation	
  above	
  the	
  shallowest	
  595 

measurement,	
  the	
  second	
  two	
  terms	
  describe	
  the	
  monthly	
  varying	
  quadratic	
  and	
  596 

cubic	
  extrapolation	
  above	
  the	
  reference	
  depth,	
  and	
  the	
  final	
  term	
  ensures	
  continuity	
  597 

at	
  the	
  depth	
  of	
  the	
  shallowest	
  measurement.	
  598 

To	
  calculate	
  the	
  parameters	
  !	
  and	
  !,	
  reference	
  datasets	
  close	
  to	
  the	
  key	
  599 

locations	
  of	
  the	
  moorings	
  were	
  assembled	
  from	
  a	
  combination	
  of	
  Argo	
  profiles,	
  600 

World	
  Ocean	
  Database	
  (WOD)	
  profiles	
  and	
  glider	
  profiles	
  	
  (Smeed	
  and	
  Wright	
  601 

(2009)).	
  Figure 2.8	
  shows	
  the	
  locations	
  of	
  these	
  profiles	
  at	
  the	
  eastern	
  and	
  western	
  602 

boundaries.	
  The	
  Argo	
  and	
  glider	
  data	
  are	
  particularly	
  useful	
  for	
  providing	
  603 

seasonally	
  unbiased	
  data	
  while	
  the	
  targeted	
  WOD	
  data	
  provide	
  important	
  604 

measurements	
  near	
  to	
  the	
  continental	
  shelf	
  of	
  the	
  Bahamas.	
  The	
  glider	
  data	
  605 

provides	
  measurements	
  around	
  the	
  1000	
  m	
  isobath	
  where	
  the	
  key	
  eastern	
  mooring	
  606 

is	
  located.	
  The	
  parameters	
  !	
  and	
  !	
  were	
  then	
  calculated	
  by	
  multiple	
  linear	
  607 

regression	
  against	
  dynamic	
  height	
  anomaly	
  profiles	
  from	
  each	
  month.	
  608 
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 609 

Figure 2.8: Locations of Argo (blue), World Ocean database (green) and glider (red) profiles that are used as a 610 

reference dataset for the shear extrapolation climatology at the (left) western and (right) eastern boundaries. 611 

Black crosses mark the nominal position of the moorings above which extrapolation is needed. 612 

The results were tested robustly by randomly selecting half of the profiles to 613 

calculate the parameters and using the other half of the profiles to calculate the resulting 614 

transport error due to the method of extrapolation. This was performed on the eastern and 615 

western boundaries by simulating extrapolation above 200 dbar (Figure 2.9) and above 616 

100 dbar (Figure 2.10). Errors due to linear extrapolation are largest at the western 617 

boundary. On average, 2 Sv of transport is missed by linear extrapolation above 200 dbar 618 

with an annual range of ± 0.5 Sv. The new method of extrapolation reduces this to below 619 

0.5 Sv with little annual range. On the eastern boundary, 0.5 Sv of transport is missed due 620 

to linear extrapolation. The new method reduces this to practically zero. Linear 621 

extrapolation above 100 dbar at the western boundary misses 0.2 Sv in February, rising to 622 

1 Sv in August, with the new method reducing this below 0.2 Sv. On the eastern 623 

boundary, linear extrapolation above 100 dbar misses 0.2 Sv with the new method 624 

reducing this to practically zero also. The implications are that, when the shallowest 625 
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measurement is at 200 dbar, linear extrapolation results in an extra 1.5 Sv of northward 626 

basinwide flow and, when the shallowest measurement is at 100 dbar, linear extrapolation 627 

results in an extra 0.7 Sv in August and 0.2 Sv in February. 628 

 629 

 630 

Figure 2.9: Transport anomaly errors (positive error means overestimation of northward transport) associated 631 

with linear (gray) and monthly polynomial (black) extrapolation above 200 dbar for (left) western and (right) 632 

eastern boundaries. Error bars are ±1 standard error. 633 

 634 

Figure 2.10: As Figure 2.9 but for extrapolation above 100 dbar.  635 

The  seasonal behavior at the western boundary is also typical of that at the mid-636 

Atlantic ridge i.e. strong seasonality in the upper 50 m due to the development of a 637 

shallow, warm seasonal thermocline in the late summer. In this respect, the eastern 638 

boundary is different from the rest of the basin being in an upwelling regime where the 639 
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seasonal effects of heating are negated by the strong upwelling that occurs during the late 640 

summer and autumn  e.g. Mittelstaedt (1983). 641 

Alternative methods for extrapolation were also considered. Using a sea surface 642 

temperature (SST) value  (Reynolds et al. (2007)) with a climatological sea surface 643 

salinity point and interpolating to the shallowest measurement using the methods 644 

described in Section 2.4 was tested. This proved effective when the shallowest 645 

measurement was at 100 dbar but had errors of ± 0.5 Sv when the shallowest 646 

measurement	
  was	
  at	
  200	
  dbar.	
  Seasonal	
  errors	
  also	
  remained	
  using	
  this	
  method	
  as	
  647 

SST	
  and	
  dynamic	
  height	
  anomaly	
  integrated	
  through	
  the	
  seasonal	
  mixed	
  layer	
  lag	
  648 

one	
  another	
  due	
  to	
  the	
  persistence	
  of	
  cold	
  temperatures	
  in	
  the	
  deep	
  winter	
  mixed	
  649 

layer.	
  	
  Incorporation	
  of	
  a	
  measured	
  SST	
  value	
  would	
  allow	
  for	
  interannual	
  650 

variability.	
  However,	
  no	
  discernable	
  interannual	
  variability	
  was	
  found	
  in	
  the	
  651 

parameters	
  α and	
  β so	
  its	
  inclusion	
  did	
  not	
  improve	
  the	
  results.	
  652 

As noted above, previous versions of the RAPID calculation have used linear 653 

extrapolation of dynamic height anomaly above the shallowest measurement and will 654 

contain errors of the magnitude described here.  Haines et al. (2013) compared the 655 

RAPID measurements with two data assimilating models and found that the models had 656 

an additional 1.5 Sv flowing southwards in the top 150 m during late summer, leading to 657 

a reduction of 1.1 Sv in the strength of the AMOC. Their conclusion that this was likely 658 

to be the result of the extrapolation method used in previous RAPID calculations is 659 

consistent with the conclusions here. The method of seasonal extrapolation presented 660 

here significantly improves the transport estimates in the upper few hundred metres.  661 
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In summary, this new method reduces the mean strength of the estimated AMOC 662 

by 0.4 Sv over the full duration of the timeseries—this is due to little change in the winter 663 

months and around a 1 Sv decrease in the estimated AMOC during late summer. The 664 

change acts to slightly decrease the amplitude of the seasonal cycle as described by  665 

Kanzow et al. (2010). 666 

2.6 The deepest measurements: estimates of Antarctic Bottom Water transport 667 

The deepest measurements pose challenges due to the large pressures and often highly 668 

variable topography in the abyssal ocean. The RAPID array measures from the near 669 

surface to 4820 dbar. However, most of the northward flowing Antarctic Bottom Water 670 

(AABW) occurs deeper than this. Between 2.2 and 3.7 Sv of AABW flows northwards in 671 

waters colder than 1.8ºC at 26ºN in the region of 70.5ºW and 49ºW  (Frajka-Williams et 672 

al. (2011)). Here we incorporate two years of deep moored measurements into the 673 

estimation of the AMOC to assess the mean structure and variability of the flow deeper 674 

than 4820 dbar. 675 
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 676 

Figure 2.11: Location of the moorings that are used for calculating northward flow below 4820 dbar, which 677 

includes AABW. Grey shading indicates the area that the flow is calculated. 678 

Two years of continuous mooring data measuring the deep flow are available 679 

from April 2009 to April 2011. The key deep moorings are WB6 and MAR0 (Figure 680 

2.11). These are combined with WB5 and MAR1 respectively to create merged 681 

temperature and salinity profiles that extend to 5500 m.  These profiles are appended to 682 

the full western boundary profile and to the marwest profile. The extended western and 683 

marwest profiles can then be included in the full basinwide transport calculation as 684 

described in Section 2.1. Dynamic height anomaly is calculated from the extended 685 

western boundary and the marwest profiles and differenced to calculate the geostrophic 686 

flow between them. Following the methods established by  Frajka-Williams et al. (2011), 687 

these dynamic height anomaly profiles are referenced to 4100 dbar and linearly 688 

interpolated from 5500 dbar to zero at 6000 dbar, the area of the section deeper than 6000 689 

dbar being quite small. 690 
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 691 

Figure 2.12: (top) Full AMOC strength calculated with a constant AABW profile equivalent to 2 Sv  (black) and 692 

with a variable AABW (red, dashed). (bottom) Difference in AMOC strength between the two methods. This 693 

scales linearly with the internal geostrophic AABW flow (right hand axis) 694 
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Figure 2.12 shows the AMOC transport calculated with mooring derived AABW 695 

estimates and using a time-invariant profile of AABW transport.  Incorporation of the 696 

deep moorings results in a small mean increase of 0.1 Sv in the estimation of the AMOC. 697 

The difference between the two calculations scales linearly with the internal geostrophic 698 

transport between the deep section of the dynamic height anomaly profiles. This deep 699 

transport ranges from 1 Sv to 3 Sv in 2009 and 2010. The ratio between the change in the 700 

calculated AMOC and internal deep transport is 1:5 so that a 1 Sv increase in geostrophic 701 

flow deeper than 4820 dbar reduces the AMOC by 0.2 Sv.  Therefore the impact of time 702 

varying AABW transports on the variability in the calculated AMOC transport is ± 0.2 703 

Sv. 704 

 705 

Figure 2.13: The transports deeper than 4820 dbar during the period of time-varying AABW with the mean 706 

highlighted by the black, dashed line. 707 

The mean transport at pressures greater than 4820 dbar is shown in Figure 2.13. 708 

The transport has a mean of approximately 1 Sv. This is half the transport of AABW 709 

reported by  Frajka-Williams et al. (2011). Much of this discrepancy is due to the fact that 710 

here we estimate transport deeper than 4820 dbar, which includes some southward flow 711 
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west of 72ºW. Traditional definitions of AABW isolate the northward flowing water 712 

mass and hence result in more northward flow of AABW. 713 

 The mean vertical structure of the deep flow from the moored observations is 714 

compared with the time-invariant profile used in previous RAPID calculations in Figure 715 

2.14. The time-invariant profile was based on a number of hydrographic sections in 716 

Kanzow et al. (2010). It is likely that the sparse temporal sampling of the hydrographic 717 

sections and variations in the depth of the hydrographic profiles lead to a less smooth 718 

profile than that derived from the moorings. A new time-invariant profile based on the 719 

moored measurements below 4820 dbar is now used for the calculation of the full RAPID 720 

timeseries. This has a mean value of 1 Sv and a vertical structure as indicated in Figure 721 

2.14. Use of this profile reduces the estimated AMOC by 0.2 Sv relative to previous 722 

calculations.  723 

 724 

Figure 2.14: New (black, dashed) profile of northward flow of below 4820 dbar and old (grey, solid) profile 725 

derived from hydrographic sections. 726 
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2.7 Equation of state: TEOS-10  727 

The Thermodynamic Equation of State for seawater was introduced in 2010, here 728 

referred to as TEOS-10, replacing the previous equation of state, EOS-80. The new 729 

equation of state has a non-negligible impact on densities and hence on the calculation of 730 

geostrophic transport of the AMOC. Here, we calculate the AMOC using the new 731 

equation of state and contrast with the previous calculation.  732 

TEOS-10 provides a thermodynamically consistent definition of the equation of 733 

state in terms of the Gibbs function for seawater. It introduces conservative temperature, 734 

defined to be proportional to enthalpy, as a more accurate measure of the heat content of 735 

seawater. Perhaps the most notable change is the use of absolute salinity. Absolute 736 

salinity, or density salinity, is the salinity that most accurately reflects the density of a 737 

seawater sample in the TEOS-10 equation of state. Calculation of absolute salinity from 738 

practical salinity is a two stage process. First, reference salinity is calculated as the best 739 

estimate of the absolute salinity of standard seawater  (Millero et al. (2008))—this is 740 

practical salinity multiplied by a constant factor of 35.165/35. Secondly, a geographically 741 

varying factor is added to reflect the impact on seawater density of the variation of the 742 

composition of seawater in different ocean basins, notably the impact of silicate  (IOC, 743 

SCOR & IAPSO (2010)). It is this geographically varying factor that results in the largest 744 

change in the geostrophic transports calculated.  745 

 746 



 43 

 747 

Figure 2.15: Difference in streamfunction due to the change in equation of state: EOS-80 minus TEOS-10. A 0.4 748 

Sv decrease due to the use of TEOS-10 at the depth of 1100 dbar is highlighted. (b) Change in specific volume 749 

anomaly due to the use of TEOS-10. In both fiures, the bold line includes the geographically varying 750 

contribution to absolute salinity whereas the thin line does not. 751 

Figure 2.15 (a) shows the difference between geostrophic transport streamfunctions 752 

(Equation 1.5) calculated from EOS-80 and TEOS-10 based on moored hydrographic 753 

profiles on either side of the basin at 26.5ºN. Excluding the geographically varying factor 754 

from absolute salinity and using the new equation of state results in little change in the 755 

transport streamfunction. When this geographically varying factor is included, the use of 756 

TEOS-10 results in a weaker streamfunction at all depths. A maximum difference of 0.7 757 

Sv occurs around 2700 dbar. At the depth of the AMOC, 1100 dbar, the difference is 0.4 758 

Sv. This is the reduction in the strength of the AMOC due to the change in the equation 759 

of state.  760 

To analyse the changes, we look at the impact on specific volume anomaly due to 761 

the new equation of state. Figure 2.15 (b) shows changes in specific volume anomaly 762 
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calculated using values derived from the TEOS-10 toolbox relative to values derived 763 

from EOS-80 both including and not including the geographically varying factor in 764 

absolute salinity. In the top 2000 m, changes are evident due to the new formulation of 765 

the equation of state and are present whether or not the geographically varying factor is 766 

included. At pressures greater than 1500 dbar, there is little change due to the new 767 

formulation of the equation of state and the changes are dominated by the geographically 768 

varying factor included in absolute salinity.  769 

The geographical variation in absolute salinity can be understood in terms of the 770 

distribution of silicate at 26ºN. Silicate is the single largest contribution to the 771 

geographical variation of absolute salinity. Higher concentrations of silicate on the 772 

eastern boundary have an impact on the density and therefore the geostrophic circulation. 773 

The use of TEOS-10 rather than EOS-80 has reduced the AMOC estimate by 0.4 774 

Sv or approximately 2%, primarily due to the consideration of higher silicate 775 

concentrations at the eastern boundary in the calculation of density. This is in line with 776 

the magnitude of expected changes described in  IOC, SCOR & IAPSO (2010). This 777 

level of change is to be expected in all estimates of transport dependent on geostrophy 778 

when TEOS-10 is used. In fact, in areas such as the North Pacific, the impact could be 779 

even larger due to larger geographical changes in absolute salinity. 780 
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3 Additional	
  Components	
  in	
  the	
  AMOC	
  Calculation	
  781 

3.1 The Gulf Stream in the Florida Straits 782 

The Gulf Stream is confined to the shallow (< 800 m), narrow Florida Straits near the 783 

latitude of 26ºN. The confinement of the primary western boundary upper-ocean current 784 

geographically makes 26ºN an ideal location for measurement and separation of the 785 

components of ocean circulation there. The transport of the Gulf Stream has been 786 

measured nearly continuously by a submarine cable at about 27°N since 1982  (Baringer 787 

and Larsen (2001),  Meinen et al. (2010)), with routine hydrographic sections being 788 

collected for cable calibration multiple times per year, making it one of the longest 789 

running and most valuable timeseries in oceanography. The existence of this timeseries 790 

made 26ºN the natural location for a basin-wide array monitoring the full AMOC.  791 

The Gulf Stream has a mean strength of 32 Sv, with a daily standard deviation of 792 

about 3 Sv and a small seasonal cycle with a peak-to-peak amplitude less than 3 Sv. It is 793 

estimated that the daily transport measurements are accurate to within 1.1 Sv and annual 794 

averages are accurate to within 0.3 Sv over the time period of the RAPID measurements  795 

(Meinen et al. (2010), Garcia and Meinen (2014 )). The Gulf Stream in the Florida Straits 796 

has had a remarkably constant strength with no statistically significant long term trends 797 

discernable relative to the energetic shorter term variability.  798 

A short gap of 56 days from 3/9/2004 to 29/10/2004 exists during the RAPID time 799 

period after a hurricane destroyed the cable recording station. Subsampling intervals of 800 

this length from the complete periods of the time series randomly indicates that there is a 801 
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2 Sv rms error due to linear interpolation. No significant changes to the configuration of 802 

the cable monitoring have otherwise occurred during the RAPID time period. 803 

3.2 The Western Boundary Wedge 804 

The Western Boundary Wedge (WBW) is the name given to the continental shelf east of 805 

Abaco Island, Bahamas as far as the WB2 mooring at 76.75ºW. This is an array of direct 806 

current meters designed to measure the core of the northwards flowing Antilles Current 807 

over the quickly changing depths of the continental slope and shelf. The array is used in 808 

the AMOC calculation out to WB3 when the WB2 mooring is unavailable. The 809 

methodologies involved in the estimation of the transports in the western boundary 810 

wedge are extensively described in  Johns et al. (2008) and will not be repeated here.  811 

The array measures components of the Antilles Current and the Deep Western 812 

Boundary Current in combination from Abaco Island to WB2 (WB3) with a mean 813 

strength of 1 (-4) Sv with a standard deviation of 3 (10) Sv. We note that while the mean 814 

transports are small, the variability is large. Inshore of WB2, the northward flowing 815 

Antilles Current is the major flow whereas when extending the array out to WB3, the 816 

Deep Western Boundary Current plays a dominant role. The transports are directly 817 

measured and accurate to within 0.5 (1.5) Sv. The WBW also plays a role in reducing the 818 

variability in the calculated AMOC due to eddy noise by making measurements close to 819 

the boundary  (Kanzow et al. (2009)).  820 

3.3 Ekman transport at 26ºN 821 

Ekman transport is the local wind driven transport in the upper ocean  (Ekman (1905)), 822 

given by 823 
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!!" = −
!!
!  !, 

where !! is the zonal component of the wind stress, ! is the Coriolis parameter and ! is 824 

the density of seawater. The wind stress is calculated as 825 

!! = !!!! ! !! , 

where !! is the density of air,  ! is the wind speed at a height of 10 m and  !!  is the drag 826 

coefficient. Cd is defined  as 1×10!! for wind speeds lower than 7.5 m/s and 0.61+827 

0.063   ! ×10!! for higher wind speeds  (Smith (1980)). This transport is evenly 828 

distributed over the top 100 m in the RAPID calculation. 829 

A number of wind speed data sources have been used to estimate the Ekman 830 

transport. These are QuikScat 831 

(http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html), CCMP Level 3.0  832 

(Atlas et al. (2011)) and ERA-Interim (Dee et al. (2011)) winds. QuikScat was the wind 833 

product of choice for RAPID publications from  Cunningham et al. (2007) to  Rayner et 834 

al. (2011). Since the demise of the QuikScat scatterometer in November 2009, CCMP has 835 

been judged as the best wind product  (Kent et al. (2012)). Due to operational reasons, 836 

there is often a delay on the availability of this product. For this study, ERA-Interim 837 

winds are used. Table 3.1 summarises the differences between the three products. At 838 

26ºN, all three products agree well. This is probably due in part to the same data being 839 

included in the multiple reanalyses. Only ERA-Interim, on a sparser grid than CCMP and 840 

QuikScat, has noticeably less variability. 841 
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Table 3.1: Mean, standard deviations of Ekman transports of the QuikScat, CCMP and ERA-Interim wind 842 

products for the period April 2004 to November 2009 in units of Sv.  843 

  QuikScat CCMP ERA-Interim 

Mean 3.6 3.6 3.8 

Std. Dev. 3.4 3.3 2.9 

 844 

3.4 The External transport: solving for the reference level velocity 845 

The external transport is the transport added to the internal geostrophic transports so that 846 

there is no net meridional flow. Although in reality there is a small net southward 847 

transport through the section due to the Bering Strait inflow to the Arctic less the net 848 

evaporation-precipitation-runoff, the purpose of requiring zero net mass transport is to 849 

isolate the AMOC as a compensated meridional circulation cell that is superimposed on 850 

the (weak) net transport through the basin  (Bryden and Imawaki (2001)). Since the 851 

baroclinic circulation is fully accounted for by the trans-basin array, the residual mass 852 

transport has to be carried by depth-independent velocity. It is assumed that the flow is a 853 

uniform velocity across the basin so the transport is 854 

!!"# ! = !!"#$,!"# .! ! , 

Equation 3.1 855 

where w(z) is the width of the basin  and vcomp,ref is calculated as the sum of all the 856 

transport components (Gulf Stream, Ekman transport, western boundary wedge and the 857 

internal geostrophic transport) divided by the area of the section at 26ºN (not including 858 

the Florida Straits).  Internal geostrophic transports are calculated relative to a level of no 859 

motion at 4820 dbar, the deepest common level across the array. The average geostrophic 860 
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transports shallower than and calculated relative to 4820 dbar across the basin sum to 21 861 

Sv southwards.  While the calculation of external transport is done in a time-varying 862 

sense, on average, the 25 Sv of internal geostrophic southward transport is combined with 863 

32 Sv Gulf Stream, 3 Sv Ekman transport, 1 Sv from the western boundary wedge and 1 864 

Sv from AABW (all northwards), to require 12 Sv (equivalent to a reference level 865 

velocity of 0.04 cm/s) of southward external transport to satisfy the constraint of zero net 866 

flow.  867 

In a rectangular basin with vertical side walls, w(z) is a constant and the choice of 868 

reference level has no effect on the overturning. In a real ocean basin, the external 869 

transport does affect the overturning streamfunction due to the narrowing of the basin 870 

with depth. Figure 3.1 shows the bathymetry at 26ºN. Above 3800 m, the basin width is 871 

relatively constant; below this depth, the basin narrows substantially due to the presence 872 

of the MAR and the sloping eastern boundary. Assuming a depth- and zonally-uniform 873 

compensation velocity leads to a external transport profile, T(z), that is proportional to 874 

w(z) as shown in Figure 3.1(b), which we refer to as a "hypsometric" compensation 875 

profile. 876 
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 877 

Figure 3.1: (left) Bathymetry at 26ºN and (right) derived basin width. 878 

To investigate further the distribution of the hypsometric compensation, we 879 

consider five cases.  880 

a) Reference level at 4820 dbar, approximately the interface between northward flowing 881 

AABW and southward flowing lower North Atlantic deep water (NADW).  882 

b) Reference level at 1200 dbar, approximately the interface between northward flowing 883 

AAIW and southward flowing upper NADW.  884 

c) Treating the basin as rectangular—consequently it is insensitive to the choice of 885 

reference level.  This involves replacing ! !  with !!, the mean width of the basin, 886 

in Equation 3.1.  887 
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d) (e) uses a reference level of 4820 dbar and a basin width profile that puts all the 888 

hypsometric compensation to the west (d) and east (e) of 45.5ºW.  889 

Changing the reference level (a,b) varies the total amount of external transport 890 

required and so will lead to changes in the shear below 3500m.   While historically, 891 

hydrographic section-based estimates of transport use two levels of no motion, a 892 

shallower level in the west (near 1200 m, below the AAIW) and deeper level east of this, 893 

we are investigating the simpler case of the sensitivity of the AMOC to changing a single 894 

reference level.   Changing the reference level form 4820 to 1200m changes the total 895 

mean external transport required to balance mass from 14 Sv to 22 Sv.    Cases (c, d, e) 896 

change the profile of the hypsometric compensation but leave the total external transport 897 

unchanged. 898 

 899 

Figure 3.2: (a) Mid-ocean transport profiles derived from the five cases described in the text. (b) Transport 900 

streamfunction including mid-ocean, Florida Straits and Ekman transports. 901 

 Figure 3.2 (a) shows the resulting geostrophic transport for each of the cases. The 902 

results are all quite similar. There is little difference between any of the solutions 903 
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shallower than 3500 m apart from a small constant offset. An offset of  0.0005 Sv/m 904 

distributed over the top 4000 m results in a transport difference of 2 Sv. The different 905 

solutions vary less than this for all of the hypsometrically compensated cases (a, b, d, e). 906 

The only noticeable difference is in the deep ocean for the rectangular basin (c). This 907 

solution deviates from the other solutions in that it removes the shear below 4000 m, 908 

where the ocean basin substantially narrows.  909 

Figure 3.2 (b) shows the streamfunctions at 26ºN resulting from the various 910 

solutions (a-e). A larger difference is apparent in the streamfunction profiles since the 911 

transport differences are accumulated vertically. Nevertheless, all of the hypsometrically 912 

compensated cases (a, b, d, e) show similar solutions, none differing by more than 1 Sv at 913 

any depth. Again the rectangular basin solution (c) is the most different as the large 914 

differences in transport at depth are accumulated vertically.  915 

The experiments here choose reference levels that are based on interfaces between 916 

mean northwards and mean southward flowing water masses and also investigated 917 

changing the shape of the compensation profile. The resulting AMOC solutions show a 918 

weak dependence on reference level. Using a rectangular basin shape resulted in the 919 

largest change to the solution. In this case, the solution artificially removes shear from the 920 

deep ocean. We conclude that a hypsometric compensation is more appropriate. Finally, 921 

distributing the compensation in the eastern or western basin does not significantly 922 

influence the resulting solution. There is a small effect whereby placing all the 923 

compensation in the west results in slightly weaker southward flow above the crest of the 924 

mid-Atlantic ridge (3700 m) and slightly stronger southward flow below this depth. The 925 

converse is true for placing all the compensation in the east. It is important to note that all 926 
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of the hypsometric compensations investigated here (cases a, b, d, e) vary by less than the 927 

accuracies of the transports discussed elsewhere in this text. This is consistent with  928 

Roberts et al. (2013) whose investigations of various reference levels resulted in AMOC 929 

variations of less than 2 Sv.  930 

 Kanzow et al. (2007) observed a high correlation between transport variability 931 

derived from basinwide pressure differences in bottom pressure recorders and transport 932 

variability derived by the application of a mass compensation constraint. This result was 933 

extended, in a more limited sense, by  McCarthy et al. (2012) who observed high 934 

correlation between transport variability derived from bottom pressure records on the 935 

western boundary and a hypsometrically weighted mass compensation constraint.  936 

These independent bottom pressure observations support the calculation of 937 

AMOC variability using a hypsometrically weighted mass compensation. However, we 938 

note that the depth structure of this compensation is yet to be fully determined. A 939 

difference between some models and observations, highlighted by Roberts et al. (2013), 940 

lies in the deep overturning streamfunction. Many models (e.g. FOAM (Roberts et al. 941 

(2013)) and HYCOM (Xu et al. (2012))) show a more vigorous and shallower deep 942 

overturning cell than RAPID (e.g. Roberts et al. (2013), Figure 1; Xu et al. (2012), Figure 943 

6). Roberts et al. (2013) showed that agreement between FOAM and the observations 944 

could be recovered by calculating the AMOC in the model using the RAPID 945 

methodology. This provides a method of comparing like-with-like in terms of the depth 946 

structure of the overturning streamfunction. In an analysis of bottom pressure 947 

measurements, Kanzow (personal communication) has found that the deep compensation 948 

may be more vigorous than that derived from the hypsometric compensation described 949 
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here. While the impact of this deep compensation is a topic of ongoing research, it is 950 

unlikely to change the final value of the AMOC by more than 1 Sv. 951 

4 The	
  AMOC	
  952 

The value of the AMOC is defined as the maximum of the transport streamfunction when 953 

all the components are combined. The full time-varying transport streamfunction is given 954 

by: 955 

Ψ !, ! =    !!"# !, ! + !!" !, ! + !!!" !, ! + !!"# !, ! + !!"# !, ! !"
!

, 

where Ψ is the transport streamfunction. Subscripts flo, ek, and wbw refer to the transport 956 

in the Florida Straits, Ekman transport and western boundary wedge.  !!"# is the internal 957 

geostrophic transports derived from Equation 1.4, applied as described in Section 2.1. 958 

!!"# is the hypsometric mass compensation as described in the previous section. The mid-959 

ocean transport is defined as the sum of !!"#, !!"# and !!"!. !!"# includes the new time-960 

invariant AABW profile discussed in Section 2.6.  The mean component transports per 961 

unit depth are shown in Figure 4.1. 962 
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 963 

Figure 4.1: Mean (solid lines) and standard deviations (shading) component transport per unit depth of the 964 

circulation derived from the RAPID calculation: (green) Ekman transports, (blue) Florida Straits transport, 965 

(grey, dashed) western boundary wedge and (magenta) full geostrophic mid-ocean transports. 966 

The AMOC is defined as the maximum of this streamfunction integrating down from the 967 

surface:  968 

AMOC ! = Ψ !, !!"# ,   

 where !!"# is the depth of the maximum of the transport streamfunction. Figure 4.2 969 

shows the transport streamfunction at each time step with the strength and depth of the 970 

AMOC overlaid.  971 

The AMOC has two depth modes as seen in Figure 4.2. When northward flowing 972 

Antarctic Intermediate Water (AAIW) is present, the depth of the maximum AMOC is 973 

close to 1100 m. When no AAIW flows north, the depth of the maximum AMOC is close 974 

to 700 m: the depth of the Florida Straits. We use this depth criteria to define the AMOC 975 

when no water flows northward, such as occurred in December 2009 (McCarthy et al. 976 

(2012)). In this instance, we define the AMOC as the integral of the component transports 977 

to either 1100 m, when northward flowing AAIW exist, or to 700 m, when no northward 978 

flowing AAIW exists.  979 
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The upper mid-ocean transport is defined as the mid-ocean transports integrated 980 

from the surface down to the depth of the maximum AMOC. When the depth of the 981 

AMOC is greater than the depth of the Florida Straits, the sum of the total Florida Straits, 982 

Ekman and upper mid-ocean transports is equal to the strength of the AMOC. 983 

 984 

Figure 4.2: AMOC streamfunctions: all (grey), mean (black) and AMOC values (grey dots). 985 

The 8.5 year timeseries from April 2004 to October 2012, shown in Figure 4.3, 986 

has a mean strength of 17.2 Sv with a 10 day filtered rms variability of 4.6 Sv. This mean 987 

AMOC transport is lower than earlier estimates mainly due to the decreasing strength of 988 

the AMOC over the length of the record  (Smeed et al. (2014)).  A smaller contribution to 989 

the lower mean AMOC transport value is due to the improvements to the AMOC 990 

calculation methodology described in this paper that have resulted in a reduced mean 991 

strength of the overall AMOC of 0.6 Sv. 992 
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 993 

Figure 4.3: The latest RAPID timeseries including the AMOC (red), Gulf Stream in the Florida Straits (blue), 994 

Ekman (green) and upper mid-ocean (magenta) transports. Coloured lines are ten-day values. Black lines are 995 

three month low-pass filtered values. 996 

5 The	
  Meridional	
  Heat	
  Transport	
  997 

The meridional heat transport (MHT) carried across a trans-basin section at any latitude 998 

is given by  (Jung (1952),  Bryan (1982)): 999 

! = !  !!  !  !  !"  !"
!

!

!!

!!
 

where ! is seawater density, !! is the specific heat of seawater, v is meridional velocity, θ 1000 

is potential temperature, and where the double integral is taken over the full depth (H) of 1001 

the trans-basin section between eastern (xe) and western (xw) boundaries.  Johns et al. 1002 
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(2011) produced estimates of the MHT across 26.5°N by breaking this total heat transport 1003 

down into a number of separate components of temperature transport (relative to a 1004 

common temperature reference), which are then summed together to derive the total 1005 

MHT. The breakdown used here is: 1006 

!!"# = !!" + !!" + !!"! + !!" + !!""# 

Equation 5.1 1007 

where the different terms represent, respectively, the meridional temperature transports of 1008 

the Florida Current (!!"), the Ekman layer (!!"), the western boundary wedge (!!"!), 1009 

the zonally-averaged contribution by the mid-ocean circulation (!!"), and the mid-ocean 1010 

“eddy” contribution due to spatially correlated v and θ fluctuations (!!""#).  The latter 1011 

term is a true heat transport since it has no mass transport associated with it and is 1012 

independent of temperature reference. 1013 

The methodology by which each of these terms is estimated is described 1014 

thoroughly in Johns et al. (2011) and we will only briefly review these here. In addition 1015 

to the updated methods for computing the AMOC mid-ocean transport that have been 1016 

described in Section 2 and the Ekman transports discussed in Section 3.3, changes to the 1017 

calculations of  Johns et al. (2011)  include the following:  1018 

1. The Ekman heat transport is now calculated using ERA-Interim winds and the 1019 

interior ocean temperature profiles derived from Argo (see 2 below), where the Ekman 1020 

transport is essentially assumed to be confined to the upper 50 m of the water column.  1021 

Thus the Ekman layer temperature is a weighted average of the upper 50 m temperatures. 1022 

Previously we had used Reynolds SST's in the interior and assumed the Ekman layer 1023 

temperature to be equal to the Reynolds SST. We estimate that averaging over the top 50 1024 
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m gives an estimate of 0.005 PW lower than the SST based estimate, with all of the 1025 

difference occurring in the summer—the only time the mixed layer depth is less than 50 1026 

m. Distribution of the Ekman heat transport over the top 50 m is consistent with Hall and 1027 

Bryden (1982), who used a weighted temperature average over the top 50 m, and with the 1028 

findings of Wijffels et al. (1994), who found that all of Ekman transport occurred within 1029 

0.2ºC of the SST value.   1030 

2. The mid-ocean "eddy" heat flux !EDDY is derived from an objective analysis of 1031 

available Argo data profiles in the interior combined with T/S profiles from the RAPID 1032 

moorings. This objective analysis (OA) product is produced internally by the RAPID 1033 

program, based on Argo and moorings data, at weekly temporal resolution. Argo data has 1034 

good coverage at this latitude (approximately 40 profiles per month from 2004-2006 and 1035 

more than 100 profiles per month from 2008), allowing accurate determination of the 1036 

internal temperature and salinity fields. Meridional velocity anomalies across the section 1037 

are derived from this OA using a geostrophic approximation relative to 1000 m.  1038 

Previously, !EDDY had been calculated from a "piecewise" mooring approach (also 1039 

relative to 1000 m) using only the mooring data across the section, as described in  Johns 1040 

et al. (2011) and, as such, the principal improvement here is the increase in resolution 1041 

across the section provided by the Argo floats. The two approaches agree within error 1042 

bars and are consistent with the range of estimates available from trans-basin 1043 

hydrographic sections along 26ºN. As noted in  Johns et al. (2011), this "eddy" heat flux 1044 

is actually associated mainly with the large-scale structure of v and T anomalies across 1045 

the subtropical gyre, rather than mesoscale features. The Argo data are therefore able to 1046 

resolve it adequately even at relatively coarse resolution across the section. 1047 
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3. The interior zonal average temperature transport !!" now uses a time varying 1048 

interior temperature field derived from the Argo and RAPID mooring data as above, 1049 

merged into a seasonal temperature climatology below 2000 m based on the RAPID 1050 

HydroBase product described in  Johns et al. (2011). Previously the interior zonal mean 1051 

temperature field was taken only from the seasonally varying RAPID HydroBase 1052 

climatology. 1053 

 1054 

Figure 5.1: Time series of the MHT (black), and the contributions by the temperature transport of the Florida 1055 

Current (blue), the Ekman layer (green), and the mid-ocean region from the Bahamas to Africa (red).  High-1056 

frequency data are 10-day averages and smooth curves represent 90-day low pass filtered data. 1057 

The updated time series of the MHT is shown in Figure 5.1, where the three contributions 1058 

in the mid-ocean region (QMO, QWBW, and QEDDY) are combined into one term. There is 1059 

overall a very close correspondence between the MHT time series and the AMOC time 1060 
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series, where the MHT reaches low values in the winters of 2009/10 and 2010/11 during 1061 

the corresponding low AMOC events.   1062 

Accuracies of the individual components and the total MHT are given in Table 5.1, 1063 

along with their mean values, standard deviations, and standard errors over the 8.5 year 1064 

record obtained to date (April 2004—October 2012) .   The overall accuracy of the daily 1065 

mean MHT estimate is 0.21 PW, which is about a factor of two smaller than its standard 1066 

deviation of 0.36 PW. The error variance associated with this random measurement 1067 

uncertainty (0.212 = 0.04 PW2) is thus about one-third of the actual sample variance of 1068 

the MHT time series (0.362 = 0.13 PW2).  The integral time scale of the MHT timeseries 1069 

is 29 days, and so this gives 53 degrees of freedom, assuming one independent 1070 

measurement for each two integral timescales. The overall statistical uncertainty in the 1071 

mean MHT estimate is therefore dominated by the intrinsic MHT variability. The 1072 

standard error of the mean MHT over the 8.5 year record is 0.05 PW, which is reduced 1073 

significantly due to the long length of the record. A bias error of up to 0.06 PW is added 1074 

to this statistical error to account for possible sampling and computational biases in the 1075 

observing system, as outlined in  (Johns et al. (2011)), leading to a total error for the 1076 

mean MHT of 0.11 PW, or about 10% of the measured mean value of 1.25 PW.   1077 
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Table 5.1: Summary of statistics for the total MHT and its components as measured by the 1078 

RAPID array. Temperature transports (multiplied by ρcp) are computed relative to 0°C (QEDDY 1079 

and QTOT are independent of temperature reference). The mean values reflect the averages from 1080 

April 2004 to October 2012.  In computing the standard errors of the mean quantities, the number 1081 

of degrees of freedom is estimated by dividing the record length by twice the integral time scale 1082 

of the variability of the respective quantity (Johns et al., 2011). 1083 

MHT Component 
Temperature or Heat transport (PW) 

Mean value Std. dev. Meas. error Std. error 

QFC 2.51 0.25 0.12 0.03 

QEK 0.35 0.29 0.11 0.03 

QWB 0.12 0.18 0.02 0.02 

QMO -1.81 0.31 0.13 0.04 

QEDDY 0.08 0.03 0.03 0.01 

QTOT 1.25 0.36 0.21 0.05 

 1084 

As described in  Johns et al. (2011), the RAPID data can also be used to 1085 

determine the "overturning" and "gyre" components of the MHT, which are defined by  1086 

(Bryan (1982), Böning and Herrmann (1994)): 1087 

!!" = ! !! ! ! !" 

!GYRE = ! !!∗!∗!"!# 

where angle brackets now represent the zonal average across the entire transoceanic 1088 

section (from Florida to Africa), asterisks represent the deviations from these zonal 1089 
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means, and V is the transport per unit depth profile. These heat transports represent the 1090 

heat fluxes carried by individually mass-conserving vertical ("overturning") and 1091 

horizontal ("gyre") cells, where the former is also sometimes called the baroclinic heat 1092 

transport  (Bryden and Imawaki (2001)). The breakdown into the overturning and gyre 1093 

MHT components is shown in Figure 5.2, where it is clear that approximately 90% of the 1094 

heat transport—and an even higher proportion of the interannual variability observed thus 1095 

far—is contained in the overturning component.  The gyre component on the other hand 1096 

shows a fairly regular seasonal cycle which is mainly dominated by the annual cycle of 1097 

the Florida Current. 1098 

 A natural companion of the MHT estimates is the estimation of continuous 1099 

freshwater fluxes across the section using the moored array. The initial analysis of this is 1100 

described in McDonagh et al., (submitted) and will not be discussed further here.  1101 
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 1102 

Figure 5.2: Breakdown of the total MHT (black) into its "overturning" (blue) and "gyre" (red) components; see 1103 

text for definitions. The curves shown are 90-day low pass filtered values. 1104 

6 Summary	
  and	
  Conclusions	
  1105 

Table 6.1: Summary of the errors associated with the components and calculation of the AMOC. 1106 
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Gridding	
  error	
   0.4	
   0.4	
  

Other	
  components	
   	
  	
   	
  	
  

Western	
  Boundary	
  Wedge	
   0.5	
   0.5	
  

Gulf	
  Stream	
  in	
  Florida	
  Straits	
   1.1	
   0.3	
  

 1107 

In this paper we have reviewed and discussed the AMOC measurements at 26ºN, 1108 

including improvements to the calculation of the AMOC and MHT since  Rayner et al. 1109 

(2011) and Johns et al. (2011). We have made detailed estimates of the uncertainties 1110 

(Table 6.1) and described improvements to the calculation of the AMOC—by use of a 1111 

better shear extrapolation technique, improved AABW profile and the use of the new 1112 

equation of state TEOS-10—and MHT—by using an Argo and mooring climatology to 1113 

improve estimation of Ekman, eddy and mid-ocean temperature transports. As these 1114 

observations are frequently used for model comparison and validation, it is important that 1115 

the details and errors in the observations are understood.  1116 

The AMOC calculation at 26ºN takes advantage of the geostrophic balance to use 1117 

a relatively sparse array of moorings to measure the northward flow. The latitude of 26ºN 1118 

is an ideal location for a basinwide AMOC monitoring array for two main reasons: 1119 

firstly, the measurement of the Gulf Stream in the Florida Straits  (Baringer and Larsen 1120 

(2001)) defines the western boundary current and, secondly, the steep continental shelf 1121 

off the Bahamas suppresses westward propagating mesoscale features and allows for 1122 

estimates of transport representative of the basinwide flow  (Kanzow et al. (2009)).  1123 

This method relies on accurate profiles of dynamic height anomaly, derived from 1124 

temperature, salinity and pressure measurements from moored instruments. The accuracy 1125 
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of the instruments themselves is improved by a careful process of ship-board calibration  1126 

(Kanzow et al. (2006)). This results in temperature, salinity and pressure measurements 1127 

accurate to 0.002ºC, 0.003 and 1 dbar, respectively. Of these measurements, it is salinity 1128 

that is the largest source of error in the calculated AMOC due to potential biases in the 1129 

calibration process. Temperature and pressure errors of 0.002ºC and 1 dbar have a 1130 

smaller impact on the estimated AMOC than a salinity error of 0.003. We estimate an 1131 

rms uncertainty of 0.8 Sv due to calibration issues.  1132 

There are around 20 instruments on a typical full depth mooring. These need to be 1133 

interpolated on to a high resolution vertical grid to construct useful dynamic height 1134 

anomaly profiles. We use the method of  Johns et al. (2005) based on the gradients of 1135 

temperature and salinity to interpolate the sparse instruments onto a high resolution grid. 1136 

There is an rms uncertainty of 0.4 Sv in estimating the AMOC due to this procedure. 1137 

While this rms uncertainty in the AMOC is small, the estimated maximum gridding 1138 

inaccuracies of 0.05ºC in temperature in the thermocline are 25 times larger than the 1139 

accuracy with which temperature can be determined. In comparison, a maximum 1140 

gridding inaccuracy of 0.01 in salinity is only 3 times larger than the accuracy with which 1141 

salinity can be determined. For a different application, interspersing some cheaper 1142 

temperature-only instruments between the moored CTDs might be considered so that 1143 

errors due to gridding are reduced relative to the accuracy of the measurement.  1144 

The errors associated with gridding and calibration of the dynamic height 1145 

moorings are combined with the errors in the Gulf Stream transport, western boundary 1146 

wedge and Ekman transports to give an overall estimate of the error for the estimated 1147 

AMOC. The 10-day estimations of the AMOC have an rms uncertainty of 1.5 Sv (Table 1148 
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6.1). We have also considered uncertainties in annual averages. The errors do not drop 1149 

dramatically for annual averages due to the nature of the uncertainties. When the full 1150 

array is operational, an annual rms uncertainty of 0.9 Sv is estimated. This can increase 1151 

when mooring losses occur. The mooring losses that have occurred only significantly 1152 

influence the error estimate in 2005 and 2007, when the WB2 mooring failed and mini-1153 

mooring losses on the eastern boundary respectively increased the estimated annual rms 1154 

uncertainty to 1.1 Sv and 1.4 Sv. 1155 

The shallowest and deepest measurements present particular challenges. The 1156 

practicalities of deploying a mooring in the real ocean mean that measurements shallower 1157 

than 100 m are often absent.  Haines et al. (2013) compared the RAPID measurements 1158 

with a data assimilating model and found that linear extrapolation above the shallowest 1159 

measurements in RAPID failed to capture 1.5 Sv of southward transport in the late 1160 

summer in the top 150 m. Here, we have implemented a seasonally varying extrapolation 1161 

technique that captures additional southward transport due to the shallow seasonal 1162 

thermocline. We estimate that the transport not captured by this technique is less than 0.1 1163 

Sv.  1164 

The deepest measurements pose a challenge due to the large pressures, remote 1165 

location and often highly variable topography that the moorings are deployed in. 1166 

Moorings have been successfully deployed to measure deep (> 4820 dbar) transport for a 1167 

duration of 2 years. The variability of the estimated AMOC changed by ± 0.2 Sv when 1168 

these deep moorings were included in the calculation. While the variability observed was 1169 

small, the continuous measurements lead to improvements to the mean shape and 1170 

strength of the transport profile. Consequently a new moorings-based time-invariant 1171 
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transport profile has replaced the previous hydrography-based transport profile. The new 1172 

profile fixes transport deeper than 4820 dbar to 1 Sv. This transport is not directly 1173 

comparable to AABW transport as the 4820 dbar delimiter differs from the standard 1174 

1.8ºC potential temperature isotherm often used in hydrographic studies  (Frajka-1175 

Williams et al. (2011)). Even so, these seemingly low estimates of AABW transport 1176 

coincide with changes in the deep overturning cell.  Hydrographic estimates of AABW 1177 

transport since 1957 at 24ºN suggested that transport in these deeper layers used to be 1178 

stronger  (Johnson et al. (2008)).  Purkey and Johnson (2012) used hydrography to 1179 

estimate large-scale changes in transport of the deep overturning cell from 1993 to 2006, 1180 

giving a reduction of the deep overturning cell by as much as 8.2 Sv over this 13 year 1181 

period. While the previous hydrographic section-based estimates of transport are subject 1182 

to issues of aliasing when used to quantify transport variability, the present estimates 1183 

from the RAPID array supports the observations that AABW transport is lower than it 1184 

has been in the past.  1185 

The AMOC at 26.5ºN is now calculated using TEOS-10, the new equation of state 1186 

for seawater. The introduction of the geographical variations in absolute salinity 1187 

primarily driven by silicate concentrations were found to have a non-negligible effect on 1188 

the calculation of the density gradient across the basin and hence the AMOC. The 1189 

AMOC, as estimated using TEOS-10, is 0.4 Sv weaker than using EOS-80. This 2% 1190 

change is of the order of predicted changes to basinwide transports when transitioning to 1191 

the new equation of state  (IOC, SCOR & IAPSO (2010)). Estimates of circulation 1192 

strength throughout the world’s oceans will need to be revised by similar amounts due to 1193 

this new equation of state, with some regions changing more than others.  1194 
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The use of a hypsometric mass compensation, taking account of the narrowing of 1195 

the basin with depth, to reference the internal geostrophic transports introduces a 1196 

dependence on the choice of reference level for the resulting overturning estimate  1197 

(Roberts et al. (2013)) . Here, we have compared a number of choices of reference level 1198 

and shapes of hypsometric transport profiles. We conclude that the impact on the 1199 

estimated strength of the AMOC due to choice of reference level is less than 1 Sv, which 1200 

is comparable to the accuracy of the calculation. There is some uncertainty in the 1201 

magnitude of the deep transport and this is a topic of ongoing research. 1202 

The calculation of the AMOC is made by combining the Gulf Stream, western 1203 

boundary wedge, Ekman and mass-compensated geostrophic transports together to get an 1204 

overall basinwide transport profile. This is integrated vertically to get a transport 1205 

streamfunction, the maximum of which is defined as the strength of the AMOC. The 1206 

AMOC has a strength of 17.2 Sv from April 2004 to October 2012. This is lower than the 1207 

estimate of 18.7 Sv for the first year of measurements in 2004  (Cunningham et al. 1208 

(2007)) mainly due to an observed decline in the strength over the period of observation  1209 

(Smeed et al. (2014)) and also due to improvements to the calculation detailed in this text 1210 

that have reduced the strength of the AMOC by 0.6 Sv (-0.4 Sv due to the new 1211 

extrapolation above the shallowest measurement, +0.2 Sv due to the new AABW 1212 

transport, -0.4 Sv due to the new equation of state). 1213 

The calculation of the MHT is more difficult than the AMOC as it needs, in 1214 

principle, the covariances of temperature and velocity across the section. Here, we have 1215 

presented an update to the methods of Johns et al. (2011) by incorporation of time-1216 

varying Argo temperature and velocity fields in the calculation of the mid-ocean, Ekman 1217 
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and eddy heat flux terms. Changes in the calculation of the AMOC also have implications 1218 

for heat transport. Specifically, Haines et al. (2013) highlighted a 0.1 PW lower MHT in 1219 

a high resolution ocean model compared to RAPID caused by disagreement in the top 1220 

100 m transport. Improvements to the surface extrapolation described in Section 2.5 have 1221 

reduced the mean MHT by 0.04 PW (maximum reduction of 0.07  PW in October; 1222 

minimum of 0.01 PW in January). This change is smaller than that found by Haines et al. 1223 

(2013) but in line with the reduction in the AMOC described in this manuscript. Overall, 1224 

the reduction in the mean value of the MHT from 1.22 PW to 1.33 PW published by 1225 

Johns et al. (2011) was mainly due to very low heat transport in 2009 and 2010 1226 

(Cunningham et al. (2013)) and also the decline in AMOC transports over the ten years 1227 

(Smeed et al. (2014)), rather than changes in methodology. 1228 

The AMOC monitoring project at 26ºN has revolutionised our understanding of 1229 

the variability and structure of the AMOC on sub-annual (Cunningham et al. (2007)), 1230 

seasonal  (Kanzow et al. (2010), Chidichimo et al. (2010)) and interannual (McCarthy et 1231 

al. (2012)) timescales. It has provided the first continuous estimates of heat transports 1232 

across an ocean basin   (Johns et al. (2011)).  Smeed et al. (2014) have presented the first 1233 

multi-year trend analysis of the timeseries. The 26ºN measurements were the first full 1234 

ocean depth, basinwide, continuous in time estimates of the AMOC and it is hoped that 1235 

the detailed description of the calculation and discussion of the associated errors in this 1236 

manuscript will contribute to greater understanding of these AMOC and MHT estimates. 1237 
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