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Abstract

Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the
lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of
calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for
thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite
saturation states (Var). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea
(Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days.
Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Var,0.8), losing 1.4% of
shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite
dissolution, in being higher at Var levels slightly above 1 and lower at Var levels of between 1 and 0.8. This indicates that
shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection
for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present
observations was compared to a function for gross calcification derived by a different study, and showed that dissolution
became the dominating process even at Var levels close to 1, with net shell growth ceasing at an Var of 1.03. Gross
dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing
their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased
carbon and carbonate fluxes to the deep ocean.
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Introduction

Formation and dissolution of calcium carbonate (CaCO3), and

carbon export from the surface to the deep ocean are important

mechanisms in the global carbon cycle, immediately related to the

control of atmospheric CO2 (carbon dioxide) and regulation of the

dissolved CO2 concentration and pH [1–4]. CaCO3 can occur in

calcite, aragonite, or high-magnesium calcite form, and different

planktonic species produce shells or skeletons of one of these

mineral forms. Aragonite is the more soluble form of CaCO3, and

its formation and dissolution is determined by the CaCO3

saturation state (Var), which is the product of the concentrations

of calcium (Ca2+) and carbonate ions (CO3
22) at the in situ

temperature, salinity, and pressure, divided by the apparent

stoichiometric solubility product for the structural form of CaCO3

(K*sp):

Var~
Ca2z½ � CO3

2{½ �
K�sp

ð1Þ

Surface waters are generally supersaturated with CO3
22 but

their concentration tends to decrease with depth. Below the

saturation horizon (Var,1), the concentration of these ions

decreases to the point where aragonite starts to dissolve [5–9].

Carbonate ions in the surface ocean buffer the increased uptake of

atmospheric CO2, leading to a decrease in their concentration and

a shallowing of the saturation horizon [2,10–11]; this process is

referred to as ocean acidification. The greater solubility of

aragonite in colder waters means that ocean acidification effects

will be most evident in polar regions [11–13]. For instance, the

Southern Ocean is predicted to reach surface undersaturation

seasonally by about 2038 [14].
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Among the most vulnerable organisms to ocean acidification are

pteropods, which are thin-shelled aragonite producers particularly

abundant at high latitudes. Pteropods are a major component of

polar ocean food webs, and they play a key role in energy transfer

and carbon fluxes in these regions by exerting a high grazing

pressure with large feeding webs, faeces, and pseudofaeces sinking

rapidly and transferring carbon to the ocean interior [15].

Furthermore, as a ballast for other particulate organic matter

[16], the rapid sinking and dissolution of the pteropod shells at

depth is an important contributor of carbon and alkalinity in the

deep ocean [5].

As pteropods exert little control over the pH and carbonate

chemistry of their calcifying fluid, they are more sensitive to the

effects of ocean acidification than other calcifying marine

organisms [17]. Corals, for example, can elevate the pH of their

calcifying fluid relative to the surrounding sea water, buffering

ocean acidification effects [18–19]. Nevertheless, pteropods could

potentially counteract the loss of shell through calcification

processes within the shell interior, as occurs in aragonite-based

corals [20]. Lischka et al. [21], for example, presented evidence of

‘‘repair’’ calcification in pteropods, with shell thickening at sites of

previous shell dissolution.

The response of thecosome pteropods to aragonite saturation

state in terms of rates of calcification was considered by Comeau

et al. [22], who carried out incubations with the Arctic pteropod,

Limacina helicina. They noted that calcification did not cease at

Var levels below 1, but in fact was still evident at Var of 0.6.

However, the rate of calcification was sensitive to saturation state,

and demonstrated a logarithmic decrease from Var levels of 2.0 to

0.6 such that, by Var equal to 1, the calcification rate was less than

half of that observed at Var of 2.0. The study only determined

gross calcification rates but did not also assess whether such rates

would be sufficient to counteract dissolution.

One approach to accounting for rates of dissolution is to apply

dissolution kinetic algorithms as follows:

R~k: 1{Varð Þn for Varv1 ð2Þ

where R is the rate of dissolution (%); k, the dissolution rate

constant (d21); and n, the dimensionless reaction order [6].

The dissolution rate constant for aragonite has been principally

derived through studies on non-living biogenic material and used

to estimate dissolution rates as part of the global aragonite cycle

[6,23]. Gangstø et al. [23] considered the dissolution of abiogenic

aragonite to be a first order reaction (n = 1) with a dissolution rate

constant (k) of 10.9 d21. Such an approach is supported by

observations of Bednaršek et al. [24], who showed that, in the

natural environment as well as in laboratory experiments,

dissolution of the shell of the Southern Ocean pteropod L.
helicina can be rapid and substantial when exposed to Var levels

near or below 1.0. Nevertheless, the rate of dissolution in living

pteropods may not simply be a function of abiogenic dissolution

kinetics since living individuals have specific shell structures and

mechanisms that can slow down damage from dissolution

processes [25]. Thus, it is important to verify that dissolution

rates of abiogenic material agree with dissolution rates of living

organisms.

In this study, we consider the consequences to the shells of living

specimens of Limacina helicina ant. of exposure to seawater

undersaturated for aragonite. We examine the shells in two ways

to derive an overall level of gross dissolution: firstly, by examining

the shell aperture to determine the penetration thickness of

dissolution and/or any calcification, and secondly, by estimating

the proportion of the surface shell undergoing dissolution. As the

dissolution rate of aragonite is an important biogeochemical

parameter, this study will determine whether it can be equally

applied to living aragonite producers as it can to abiogenic

aragonite. Finally, pteropods are a major source of CaCO3 to the

deeper layers of the Southern Ocean, and any processes acting to

decrease shell weight through dissolution will impact this flux. This

study will examine how measured dissolution levels will impact the

amount of pteropod-derived CaCO3 flux leaving the surface layers

for eventual export to the ocean interior.

Materials and Methods

Sampling methods
Sampling and incubation were carried out aboard the RRS

James Clark Ross during cruise JR177 to the Scotia Sea in January

and February 2008 along a transect from 62.21uS 44.4uW to

50.6uS 35.1uW. Samples were collected in accordance with a 5-

year permit for science operations and sampling (No. S3–3/2005)

issued to the British Antarctic Survey by the British Foreign and

Commonwealth Office under Article VII of the Antarctic Treaty

and Article 17 of the Protocol on Environmental Protection to the

Antarctic Treaty.

The methods for animal collection, the perturbation experi-

ments, and pteropod shell analysis have been described in

Bednarsek et al. [24,26–27] and are only briefly summarized

here. Juvenile and adult pteropods were collected with a variety of

nets including a vertically hauled Bongo net with 100 and 200 mm

meshed nets, a MOCNESS with 330 mm nets, and a towed Bongo

with 300 mm and 600 mm meshed nets. Ship speed was between 1

and 2 knots during towing operations. The towed nets were

generally more effective at capturing adult specimens, while

juveniles were caught in both the vertical and towed nets. All

deployments were carried out between 0 and 400 m. Captured

pteropods were counted and examined under a light microscope to

look for any instances of damage to the shell. Pteropods with

evidence of cracks, pits, etchings, or perforations were excluded

from the incubations.

Control populations
Shelled pteropods are prone to mechanical damage, the two

main causes being: (1) net sampling, and (2) incubation in the

experimental chambers. This was accounted for by including two

types of control in the experimental design: (1) natural environ-

ment control samples, caught in the upper 125 m, where

Var = 1.8260.60, made up from individuals without any sign of

net-induced damage that were preserved in 70% ethanol

immediately upon collection; (2) experimental control samples,

which were individuals incubated in the same experimental setup

as those in perturbed conditions but in which pCO2 (partial

pressure of CO2) was maintained at present day levels. This was

achieved through bubbling air with a 375 ppm (mmol/mol) CO2

mixing ratio through filtered seawater such that Var was

1.7060.08. Undamaged pteropods were incubated in these

conditions for eight days.

Perturbation experiments
The effects of dissolution on shells of pteropods was determined

at three different Var saturation states: (1) supersaturation,

simulating present day Var levels; (2) transitional state, where Var

was close to 1; and (3) undersaturation, where Var was less than 1.

The incubation conditions were achieved by bubbling synthetic air

containing CO2 mixing ratios (BOC Special Products) of 375, 500,

750, and 1200 ppm through filtered seawater from the ship’s

surface seawater supply that was previously filtered using a
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0.22 mm GF/F filter. The bubbling was conducted either in 15 L

carboys (for incubation of the adults) or in 2 L flasks (for

incubation of the juveniles) and was carried out on deck at 3–

4uC with the gas mixtures being introduced via micro-porous air-

stones. The pCO2 in the headspace was measured using a LI-

COR CO2/H2O analyser 6262. The bubbling was stopped and

the porous stone apparatus was removed once the water had

reached the target pCO2 before adding the pteropods. The flask

was then sealed, taking care to reduce the headspace to a

minimum. The flasks were kept at a constant temperature of 4uC
and blacked-out for the duration of the experiments.

To ascertain the exact chemical perturbations achieved by the

bubbling procedure, water was taken at the start and end of each

experiment (250 ml+50 ml HgCl2 solution). These samples were

analysed for total alkalinity (TA) and total dissolved inorganic

carbon (DIC) using a VINDTA model 3C, calibrated with

Certified Reference Materials (batch 76 from Andrew Dickson,

Scripps Institute of Oceanography). The analytical precision and

accuracy for TA was 62 mmol kg21 and 64 mmol kg21

respectively and, for DIC, 61 mmol kg21 and 62 mmol kg21

respectively. The remaining carbonate parameters were deter-

mined through application of the CO2SYS software (http://cdiac.

ornl.gov/ftp/cp2sys) [28] using equilibrium constants from

Mehrbach et al. [29] (as refitted by Dickson and Millero [30])

and the total pH scale. The error in pHT was 60.0062 and, in

pCO2, 65.7 matm [31]. The start and end values of TA and DIC

were used to determine an average Var value (6 min/max value)

for each perturbation experiment (Table 1).

Pteropod shell analysis
Pteropod samples were examined with scanning electron

microscopy (SEM) to determine the level of shell dissolution,

following Bednaršek et al. [26]. Abiogenic crystals were removed

from the shells using 6% diluted hydrogen peroxide H2O2

followed by dehydration and drying using 2,2-dimethoxypropane

and 1,1,1,3,3,3-hexamethyldisilazane. After the samples were

mounted on an aluminium stub, oxygen plasma etching was

carried out to expose microstructural elements of the shell and

make them visible on the shell surface under SEM. This procedure

was demonstrated to be non-destructive and very efficient. The

SEM analysis was done with a JEOL JSM 5900LV fitted with a

tungsten filament at an acceleration voltage of 15 kV and a

working distance of about 10 mm [26]. The samples were gold

coated in vacuo with a Polaron SC7640 sputter coater. Typical

coating thicknesses ranged from 7 to 21 nm. The shell surface was

examined by moving in small incremental steps around and across

the shell and taking SEM micrographs (10–15 per animal). The

first SEM micrograph was taken at the first whorl and the last at

the growing edge (Fig. 1). A total of 38 animals were analysed

equating to 60–90 micrographs per perturbation experiment. The

SEM magnification was calibrated against known surface areas

prior to any image analysis, upon which a calibration curve was

produced [26]. This calibration curve was used to estimate the

surface area of the shell.

Dissolution of shell carbonate
To quantify the level of dissolution from SEM images, a number

of further analytical steps were necessary, which we outline briefly.

The calcified layers of the pteropod shell are made up of two

layers: the outer prismatic layer and the inner crossed-lamellar

layer. Previous work has shown that the level of dissolution of the

prismatic and crossed-lamellar layers varied according to the type

of dissolution observed (i.e., Type I, II, and III) [26]. We initially

evaluated the extent of dissolution expressed as percentage of

dissolved shell area of the three dissolution types, separately. This

was then converted to the respective percentage of shell area over

which the prismatic and crossed-lamellar layers were affected. The

level of penetration into these layers was estimated through

comparative measurements of size-normalized thickness in pristine

and incubated shells. The percentage of shell lost to dissolution

was expressed in terms of CaCO3 loss by applying previously

reported relationships for length to shell weight and inorganic to

organic carbon [27].

In pristine shells, the prismatic layer constituted 20% of the shell

thickness and the crossed-lamellar layer, 80%. The level of

dissolution of the calcified layers was only slight in Type I

dissolution and those areas were not considered when calculating

the level of CaCO3 lost to dissolution. For Type II dissolution, it

was assumed that the prismatic layer (20% of shell mass) was

completely dissolved but that the dissolution of the crossed-

lamellar layer was only minor and constituted a negligible loss of

CaCO3. In areas with Type III dissolution, it was implicit that the

prismatic layer was completely dissolved, and that there was

partial dissolution of the crossed-lamellar layer. The scoring of

shells into areas of no dissolution, Type I, Type II or Type III

dissolution was carried out ‘‘blind’’ (i.e., without knowledge of the

treatment) and only related back to the treatment once the scores

had been established.

The next analytical stage was to determine the mean level of

dissolution of the crossed lamellar layer in Type III dissolution.

This was carried out at the shell aperture, where a natural cross-

section of the shell could be resolved. All measurements were

expressed as thickness-to-length (T/L) ratios to normalize for the

shell size. Shell length measurements (expressed as shell diameter)

were made at 90u to the direction of the shell aperture using a light

microscope with a calibrated graticule (Fig. 2). Measurements of

shell thickness were made at the same position of each shell

aperture using SEM. Comparisons of T/L ratios were made

between three sample sets: natural environment controls, exper-

imental controls, and 14 day incubations of live juveniles held at

undersaturation conditions. It is to be noted that this represented a

subset of all experimental incubations given the time-intensive

nature of these measurements. The proportional difference in T/L

ratio values between the controls and the undersaturation

incubation specimens was denoted as u. A mean value for u was

determined across all measurements made on aperture cross-

sections and was assumed to be the mean depth to which the

prismatic plus the crossed-lamellar layer was dissolved in all areas

exhibiting Type III dissolution (DTypeIII). Consequently, the

proportion of shell dissolved as a result of Type II and Type III

dissolution (Dtotal) was calculated as follows:

DTypeII~saTypeII
:0:2 ð3Þ

DTypeIII~saTypeIII
:u ð4Þ

DTotal~DTypeIIzDTypeIII ð5Þ

where DTypeII and DTypeIII is the proportion of shell-loss resulting

from Type II and Type III dissolution respectively, sa is the

relative surface area of the shell affected by the different types of

dissolution, and u is the relative thickness of the shell lost in areas

of Type III dissolution and 0.2 represents the proportion of the

shell mass within the prismatic layer. DTotal represents the total

proportion of shell lost per specimen. DTotal actually represents

Polar Pteropod Shell-Mass Maintenance
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minimum gross dissolution since this estimation method is also

influenced by any ongoing calcification that would act to counter

the gross amount of dissolution. As discussed later, this source of

bias was likely to be minimal over the course of the incubations.

The next step was to convert proportional shell loss to absolute

loss of shell mass. This required estimating initial shell mass (M0,

mg) from measurements of shell length, achieved by applying the

following conversion by Bednaršek et al. [27] for populations

extracted from the study region:

DW~0:137L1:5005 ð6Þ

where DW is dry weight in mg and L is shell diameter in mm.

DW was converted to total carbon mass by multiplying by a

factor of 0.25 [32] and then partitioned into particulate inorganic

carbon (PIC) and particulate organic carbon (POC) fractions by

applying a ratio of 0.27:0.73, as derived by Bednaršek et al. [27].

The mass of CaCO3 (i.e., M0 in mg) was determined by

multiplying PIC by 8.33, which is the molecular mass ratio of

Figure 1. SEM micrograph of a Limacina helicina antarctica specimen with signs of surface shell dissolution. SEM micrograph exhibiting
signs of dissolution at sites 1, 4, and 11 on the shell surface.
doi:10.1371/journal.pone.0109183.g001

Figure 2. SEM micrograph of Limacina helicina antarctica showing the shell thickness measurements. SEM micrograph showing the shell
thickness measurements with indication of the position where shell thickness measurements were made.
doi:10.1371/journal.pone.0109183.g002
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carbon to CaCO3. The daily mass loss of CaCO3 (V, mg d21)

from the shell during incubation was then calculated as:

V~M0
: DTotal

100
: 1

t
ð7Þ

where t is the duration of the incubation in days. The above term

was alternatively expressed as the percentage of CaCO3 mass loss

d21 (v), which is V?100 divided by M0.

Changes to mineral structure
To determine whether there were any changes in the mineral

structure at the growing edge of juvenile pteropod shells, Raman

analysis was used to distinguish the occurrence of CaCO3 minerals

other than aragonite. The samples were studied directly with no

sample preparation. Instead, the growing edges of 25–30 animals

from various experimental setups were examined in small

incremental steps. The Raman bands for CaCO3 occur at

,1085 Dcm21 and a minor mode band at ,155 Dcm21.

Aragonite has two additional bands at ,207 and 704 Dcm21.

Laboratory measurements were performed with a laser Raman

spectrometer, manufactured by Kaiser Optical Systems, Inc. The

spectrometer and laser were connected to an optical probe head

which was integrated into a Leica microscope with a 10 times

magnifying objective (f/2.0. at 5.8 mm working distance, ,50 mm

spot size). Measurements were made on specimens exposed to

manipulated conditions with high pCO2 levels to compare to those

that were only exposed to ambient conditions.

Statistical treatment
The data generated by the image segmentation analysis of shell

surface dissolution were non-normally distributed and therefore

were subjected to a square root transformation followed by an

arcsine transformation [33]. Data on shell length and thickness

were already converted to a ratio and so were not subjected to any

further transformations. Datasets were analysed with t-tests

provided they passed tests for normality (Kolmogorov-Smirnov

test) and equal variance (variability about the group means). Non-

normal datasets were otherwise analysed non-parametrically using

a Mann-Whitney rank-sum test.

Dissolution and calcification simulations
Our estimates of CaCO3 mass loss (V) under different aragonite

saturation levels were compared to the findings of Comeau et al.

[22], who estimated the rate of gross calcification in L. helicina
exposed to varying conditions of aragonite saturation state and

temperature. Comeau et al. [22] found a logarithmic relationship

between aragonite saturation state and the amount of CaCO3 (Q,

mmol (g wet weight)21 h21) precipitated, as follows:

Q~Aln Varð ÞzB ð8Þ

where A is 0.5760.4 and B is 0.2560.02. We converted the

calcification rate Q from Eq (8) for a range of Var values into mg

CaCO3 per ind d21 by firstly assuming an average shell diameter

(L) of 0.31 mm [27] and determining the equivalent DW (mg)

using Eq. (6). Wet weight (WW) was estimated by dividing DW by

0.28, following Davis and Wiebe [34]. The average WW of an

individual was entered in Eq. (8) to derive the rate in terms of mmol

CaCO3 ind21 h21. This was converted to mg CaCO3 ind21 d21

by applying a molar mass of 1 mole per 100.09 g and multiplying

by 24 hours per day. Although there are known genetic differences

between the Arctic and Antarctic populations of L. helicina [35],

we assumed these to have a negligible effect on calcification rates

in the present analysis.

Trajectories of mean shell weight were derived for two

scenarios: first, for supersaturation levels (Var = 1.8), where only

calcification would be performed; and second, for an under-

saturation level of 0.8, where there would be both calcification and

dissolution occurring. This level of undersaturation corresponds to

the mean level achieved in the undersaturation incubations

performed in the present study. It further represents the level of

undersaturation that would prevail in the Southern Ocean surface

waters by 2050 [14]. A period of 100 days for the trajectories was

set based on the average productivity period at mid-latitudes in the

Southern Ocean [36], when the majority of growth and

development occurs in the pteropod population [27].

To estimate the rate of calcification using Eq. (8), it was

necessary to estimate the growth in WW over the 100 day

scenario. Hence, it was assumed that WW grew in direction

proportion to shell weight, M, when in supersaturated conditions.

For every daily increment in shell mass due to calcification, mcalc,

an increment of growth in WW was also added at a ratio of 1:6.35,

(mcalc:WW). The next daily increment of mcalc was then

determined from the new WW and the process repeated, as

follows:

mcalc,tz1~mcalc,tz
C:100:09:24

1000

� �
for t ~1 to 99 ð9Þ

where

C~ Q:WWt
1000

ð10Þ

and

WWt~mcalc,t
:6:35 ð11Þ

For the undersaturation scenario, it was assumed that growth in

the non-shell fraction of WW remained the same but that growth

in shell mass progressed at a different rate, as determined by Eq.

(5).

The effect of gross dissolution (mdiss) was determined as follows:

mdiss,tz1~mdiss,t{ mdiss,t
:DTotalð Þ for t~1 to 99 ð12Þ

A trajectory of net shell mass (Mt, mg CaCO3 ind21) over the

100 day simulation period was determined as:

Mt~
Pt~99

t~1

Mcalc,t{
Pt~99

t~1

Mdiss,t ð13Þ

It is to be noted that mdiss was assumed to be negligible in

supersaturation conditions.

Results

Shell aperture analysis
We found that exposure to undersaturated conditions thinned

the shell at the shell-aperture (Fig. 3). On average, specimens

incubated for 14 days in undersaturated conditions were thinner

by 39%69% compared to specimens from the natural environ-
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ment controls and the experimental controls. This value (expressed

as a proportion) was assumed to be the value of u in all subsequent

calculations of shell dissolution rates.

Shell-surface analysis
Saturation state effects for juvenile pteropods. Levels of

dissolution over the entire shell were quantified with image

analysis. Pteropods in the experimental control displayed higher

levels of Type I dissolution (56%67 in the 8 day at

Var = 1.7060.1), compared to the natural control samples (0.3%,

Fig. 4). This is likely to be a consequence of rearing pteropods in

enclosed vessels where biological (respiration, calcification),

chemical (dissolution) and physical (headspace-water CO2 ex-

change) processes altered the pCO2 level. Nevertheless, Type I

dissolution represented only a minor loss of CaCO3 from the shell

and was considered negligible in the development of dissolution

regressions. Specimens kept at supersaturated conditions for 14

days (Var = 1.4960.15) exhibited up to 55%611% Type I and

9%67% Type II dissolution, but there was no evidence of any

Type III dissolution. Areas of Type III dissolution were present on

Figure 3. Thickness-to-length ratio of juvenile Limacina helicina antarctica. Thickness-to-length (T/L) ratio of juveniles from natural
environment and experimental control populations, and from specimens incubated for 14 days in undersaturation conditions. Horizontal line
represents the median; box limits, the 25th and 75th percentiles; whisker limits, 10th and 90th percentiles; and dots, the outliers.
doi:10.1371/journal.pone.0109183.g003

Figure 4. Proportion of shell surface dissolution in live juveniles incubated in different saturation conditions. Proportion of shell
surface dissolution in live juveniles incubated in supersaturation conditions for 8 days and 14 days in different saturation conditions.
doi:10.1371/journal.pone.0109183.g004
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specimens incubated at either Var,1 or in undersaturated

conditions (Var,0.8), with more extensive dissolution in the latter.

Temporal effects. Type II and Type III dissolution was

evident in juveniles incubated in undersaturated conditions for 4

days (Var = 0.7860.03) and 14 days (Var = 0.8360.02) (Fig. 5).

The level of Type II dissolution was similar, at 27%66% after 4

days and 25%67% after 14 days. However, whereas only around

3%63% of the shell was covered with Type III dissolution after 4

days, surface dissolution extended to 31%66% after 14 days.

Therefore, Type II dissolution occurred almost immediately on

exposure to undersaturation conditions, whereas Type III

dissolution mainly became apparent between 4 and 14 days.

Size and maturity effects. We found levels of Type I

dissolution to be significantly greater in adults (59%611%) than in

juveniles (23%67%) (Fig. 6; Normality and equal variance passed,

t = 25.59, df = 5, P = 0.003). However, there was no significant

difference in the levels of Type II and Type III dissolution between

adults and juveniles (Type II: adult 21%615% vs. juvenile

29%613%, Type III: adult 1%61% vs. juvenile 3%64%;

Normality and equal variance passed, t = 20.71, df = 5, P = 0.51

for Type II; t = 0.84, df = 5, P = 0.44 for Type III). Therefore,

Figure 5. Proportion of shell surface dissolution in live juveniles incubated in undersaturation conditions for 4 and 14 days.
Proportion of shell surface dissolution in live juveniles incubated in Var undersaturation conditions for 4 days or 14 days.
doi:10.1371/journal.pone.0109183.g005

Figure 6. Proportion of shell surface dissolution in live pteropods incubated in transitional conditions for 14 days. Proportion of shell
surface dissolution in live specimens that were either juvenile or adult, incubated in VA transitional conditions for 14 days.
doi:10.1371/journal.pone.0109183.g006
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Table 2. Calculation of the CaCO3 mass loss for various aragonite saturation states for G2 (Proportions were converted to
percentages for clarity).

Pteropod length (mm) 0.320

Pteropod weight (mg) 0.025

Pteropod carbon (Larson, 1978) 0.006

PIC (0.27 of carbon) (mg) 0.002

POC (0.73 of carbon) (mg) 0.005

CaCO3 mass (mg) 0.014

Dissolution in 4 days V,1.5 SD at V,1.5 V,1 SD at V,1 V,0.8 SD at V,0.8

Type II surface area (TypeII) 27.0% (66.0%)

Type III surface area (TypeII) 3.0% (63.0%)

Type II% shell loss (DTypeII) 5.4% (61.2%)

Type III% shell loss (DTypeIII) 1.2% (61.2%)

Total %shell loss (DTotal) 6.6% (62.4%)

Total % shell loss d21 1.6% (60.6%)

CaCO3 loss ind21 d21 (mg) 2.30E-04 (68.31E-05)

Dissolution in 14 days V,1.5 SD at V,1.5 V,1 SD at V,1 V,0.8 SD at V,0.8

Type II surface area (saTypeII) 9.0% (66.0%) 29.0% (67.0%) 25.0% (613.0%)

Type III surface area (saTypeII) 0.0% (63.0%) 3.0% (66.0%) 31.0% (61.0%)

Type II% shell loss (DTypeII) 1.8% (61.2%) 5.8% (61.4%) 5.0% (62.6%)

Type III% shell loss (DTypeIII) 0.0% (61.9%) 1.2% (62.3%) 12.1% (60.4%)

Total % shell loss (DTotal) 1.8% (63.1%) 7.0% (63.7%) 17.1% (63.0%)

Total % shell loss d21 0.1% (60.2%) 0.5% (60.3%) 1.2% (60.2%)

CaCO3 loss ind21 d21 (mg) 1.80E-05 (62.37E-05) 6.97E-05 (63.75E-05) 1.71E-04 (62.99E-05)

doi:10.1371/journal.pone.0109183.t002

Figure 7. Percentage of shell mass loss across a range of aragonite saturation states. Shell mass loss d21 (v) in live and dead specimens
incubated between 4 and 14 days. Solid line represents a 2-parameter exponential function (695% confidence intervals) fitted to all live specimens’
data points. The bold hashed line represents the dissolution kinetic rate law for aragonite. Error bars show 61 SD on VA values in the incubations and
v respectively.
doi:10.1371/journal.pone.0109183.g007
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juveniles and adults showed the same Type II and Type III

dissolution response at transitional saturation levels (Var,1).

Changes in mineral structure
Aragonite was consistently observed in all the spectra made by

Raman spectroscopy regardless of the Var saturation state. No

mineral structure other than aragonite was found anywhere on the

growing edge of any juvenile or adult pteropod. Therefore, the

animals did not change their mineralization process in response to

perturbations in the saturation state.

Shell mass loss due to dissolution as a function of
saturation state

The percentage shell mass loss due to dissolution over the course

of the incubations was a minimum of 1.8%63.1% under

supersaturated conditions for 14 days to a maximum of

17.1%63.0% in undersaturated conditions for 14 days (Table 2).

In terms of shell mass loss d21 (v), this equated to 0.1%62% in

supersaturated conditions, 0.5%60.3% at Var,1 and between

1.2%60.2% in undersaturated conditions (Var,0.8). The de-

crease in aragonite saturation levels from 1 to 0.8 therefore

resulted in a two- to threefold increase in the rate of dissolution.

When expressed in terms of equivalent loss in CaCO3 per

individual, this is an increase from 0.07 mg d21 to a maximum of

0.23 mg d21 over the range of these saturation states.

This rate of % shell loss d21 was most adequately represented

by a 2-parameter exponential growth function, as follows:

v%~65:76e{4:7606Var

Adj: R2~0:99, F~609:27, 7 df , pv0:0001
� � ð14Þ

Both our observations and the fitted function show levels of

dissolved shell loss at Var levels greater than 1, which was not

predicted by the dissolution rate algorithm (Fig. 7). At Var levels

below 0.9 however, the fitted function shows a slower increase in v
shell loss d21 than the rate kinetics. This reflects our observations

that, for Var levels of around 0.8, v was between 0.7% and 1.7%,

and not 2.2% as predicted by Eq. (2).

Dissolution and calcification simulations
To compare growth trajectories between saturation conditions,

we simulated the effect of exposure to undersaturated (Var,0.8)

compared to supersaturated conditions (Var,1.8) for 100 days

(Fig. 8). It was assumed that any dissolution would be negligible

when in supersaturation conditions, and shells grew through

calcification according to the rate derived by Comeau et al. ([37];

Eq. (8)). v was set at 1.4% d21, representing the average of

dissolution observed on live specimens incubated for either 4 or 14

days at Var,0.8 (Table 2).

Figure 8. Simulation of dissolution and calcification on the shell weight exposed to supersaturation and undersaturation
conditions. Simulation of the effect of dissolution and calcification on the shell weight when exposed to supersaturation or undersaturation
conditions for 100 days. Bold line indicates the amount of CaCO3 dissolved over the course of the simulation where Var is 0.8.
doi:10.1371/journal.pone.0109183.g008
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We found that the rate of gross calcification within undersat-

urated conditions compensated little for the loss of shell mass in

these conditions. The total amount of CaCO3 lost by this juvenile

pteropod through dissolution over 100 days would have been

0.014 mg.

Weight-specific function for net calcification
The combined effects of gross dissolution and gross calcification

on shell growth was examined through deriving trajectories for

weight-specific net calcification against Var for L. helicina (Fig. 9).

The trajectory was fitted closely by a three parameter exponential

function as follows:

t~{0:5705z0:5783: 1{e{4:1752Var
� �

(Adj: R2~0:99, F~8412:94, 17df ,pv0:0001)
ð15Þ

where t is weight-specific net calcification (d21).

Whereas gross calcification ceases at an Var level of around 0.6,

the additional influence of gross dissolution means that net

calcification (t) will become 0 at an Var level of approximately 1.

Calculation of potential sinking flux
Declines in shell weight may in turn influence the level sinking

flux. We estimated this through firstly assuming a standing stock of

L. helicina ant of 32 mg C m22, containing 9 mg m22 of PIC,

following Bednaršek et al. [24]. Applying a PIC:CaCO3 mass ratio

of 8:33 gives a mean population shell mass of 74.97 mg CaCO3

m22. Bednaršek et al. [24], also derived a Production:Biomass

ratio of 0.06 d21, which, when applied to the population shell

mass, gives a population shell mass production rate of 4.50 mg

CaCO3 m22 d21. Based on observations made during this study, a

juvenile exposed to Var,0.8 for 100 days would reduce in

individual shell mass by 50%, which in turn would reduce the

potential sinking flux to 2.25 mg CaCO3 m22 d21.

Discussion

Gross dissolution
In this study, we directly estimated the amount of CaCO3 shell

lost to dissolution and found Type I dissolution was common in all

incubations, although its absence from the natural control

specimens indicated that at least some of this dissolution was an

experimental artefact. Quantitatively, Type I dissolution repre-

sents a very minor loss of CaCO3 from the shell and can be

ignored in terms of gross dissolution, while Type II and III

dissolution represent a much greater amount of CaCO3 loss. The

amount of shell surface covered by the latter two dissolution types

increased with decreasing Var levels and longer periods of

exposure. Nevertheless, when converted into a rate of shell mass

loss due to dissolution, all undersaturated incubations (Var,0.8)

resulted in a loss-rate of around 0.2 mg CaCO3 ind–1 d21, which

equates to approximately 1.4% of total shell mass d21 regardless of

the duration of the incubation.

Shell loss mitigation processes
We found the dissolution response to Var undersaturated

conditions to be relatively rapid; however, it was lower than

predicted for the dissolution rate of abiogenic aragonite [6]. Like

many molluscs, pteropods maintain an outer organic layer [38–39]

that is analogous to the periostracum in molluscan groups such as

the bivalves. In bivalves, the periostracum is comprised of

chemically robust proteins and is believed to protect the shell

from dissolution [40]. Partial chemical resistance and mechanical

degradation could also be rendered through the multiple shell

layers that provide both elasticity and hardness [39]. In addition, a

microstructure with a higher organic content provides higher

dissolution resistance through the shrouding of the crystals [41].

The full function of the outer organic layer in pteropods remains

to be revealed but it appears to be able to offer some protection to

the shell when faced with undersaturated conditions.

Figure 9. Weight-specific rates of net change processes as a function of aragonite saturation state. Weight-specific rates (d21) of net
change in shell mass as a function of aragonite saturation state.
doi:10.1371/journal.pone.0109183.g009
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One possible means of dissolution mitigation is through ‘repair

calcification’ [21,25] where pteropods with shell dissolution were

found to have affected areas repaired with new crystals. Although

we found no evidence of repair, our methods were not ideal for

resolving it. Furthermore, dissolution damage could be repaired

over longer timescales on return to saturation conditions [21]. It is

to be noted that, if repair calcification was taking place during the

present incubations, this would result in an underestimation of the

true value of gross dissolution since we assumed that specimens did

not add any further shell mass over the course of the incubation.

Functional response to undersaturated conditions
There have been a number investigations focused on the

dissolution process, particularly targeting abiogenic aragonite (e.g.,

[6,23,42–46]). A study by Gangstø et al. [23] proposed an

aragonite dissolution rate constant of 10.9 d21. We compared the

predictions of this rate to our own fitted relationship and found

that abiogenic dissolution rate law only applies to Var#1.

However, we also found evidence of dissolution at transitional

saturation levels; in live juveniles, daily shell mass loss amounted to

0.5% in specimens incubated in Var = 1.03. The fitted function in

turn reflected this transitional level mass loss, with the upward

inflection starting at around Var of 1.3, reaching 0.6% d21 at Var

equal to 1. Such dissolution at transitional saturation levels has

previously been reported by Betzer et al. [5] in the North Pacific,

who found marked reductions in aragonite fluxes between two

supersaturated depth horizons (100 m and 400 m), implying a loss

in pteropod shell mass through shell dissolution. Although Betzer

et al. [5] had no direct explanation for the pattern, they did refer

to the findings of Morse et al. [45] and McGowan and Hayward

[47], who proposed that freshly calcified aragonite surfaces in

young pteropods (1–3 days old) are significantly more soluble than

aged aragonite surfaces (30–70 days old). Greater solubility may

therefore be expected in younger specimens or where new shell

growth is occurring in older specimens.

There is a reasonable agreement to the predictions of the

abiogenic rate of dissolution and our fitted function at Var levels

just below 1. However, at increasing levels of undersaturation, we

found that the abiogenic rate of dissolution overestimated the rate

of shell mass loss in live organisms compared to observations. For

instance, at Var of 0.8, juveniles showed a shell mass loss rate of

between 0.8% and 1.5% d21, whereas the rate law predicted 2.2%

d21. We advocate that it is unsafe to apply abiogenic dissolution

rates when predicting the dissolution of aragonite in live organisms

in biogeochemical models without also taking into account

biological protection mechanisms.

Net calcification
In incubations of L. helicina carried out in the Arctic, Comeau

et al. [22] found that calcification continued even in undersatu-

rated conditions down to Var,0.6. We demonstrated that the loss

from dissolution would be twice the amount contributed by net

calcification, leading to a net decrease in the mass of the shell of

0.007 mg (50% of original shell mass) over the 100-day simulation

period.

Comeau et al. ([48], their Table 3) made projections under the

IPCC (Intergovernmental Panel on Climate Change) SRES

(Special Report on Emission Scenarios) A2 scenario for anthro-

pogenic CO2 emissions on the rates of gross calcification by

pteropods at a number of oceanic sites where L. helicina has been

caught, including sites in the Arctic and Antarctic. At one site in

the Arctic (83.58u N, 98.58u W), the projection was for Var to drop

to 0.4 by 2095, by which point gross calcification in pteropods

would cease. At another Arctic site (Svalbard, 79.8u N, 11.8u E)

and in the Southern Ocean (62.8u S, 60.8u E), the prognosis for

2095 was for Var to drop to 1.1 and for gross calcification to

continue at a rate of between 50 and 60% of the preindustrial rate.

According to the net calcification function derived by the present

study, such Var levels would result in L. helicina being incapable of

calcifying enough to offset dissolution. They would be unable to

grow in shell mass in any of these polar oceanic regions that they

typically inhabit.

Influence of net calcification on net aragonite flux
We estimated potential sinking fluxes of 4.50 mg CaCO3

m22 d21 in supersaturated conditions (Var,1), and 2.25 mg

CaCO3 m22 d21 in undersaturated conditions (Var,0.8), assum-

ing that juveniles are exposed to undersaturated conditions over a

100 day productivity period. Attempts at measuring pteropod

sinking flux have been made by determining accumulation rates of

bottom sediments [49–50] or vertical fluxes measured with

sediment traps [5,49] but these approaches have been criticised

because of the combined effects of dissolution in deeper layers and

predation [5,51–54]. As an alternative, sinking fluxes can be

determined based on productivity rates or instantaneous growth

rates [55–56]. At Ocean Station PAPA, aragonite production was

measured at 4.4 mg CaCO3 m22 d21, split between L. helicina
(2.660.3) and Clio pyramidata (1.860.2) [55]. Similar levels were

found in the Bahamas (2.860.3 mg CaCO3 m22 d21), the

equatorial Pacific (6.661.2 mg CaCO3 m22 d21), and the Central

Pacific (1.460.6 mg CaCO3 m22 d21) [56]. On average,

productivity values were around 0.5 mg CaCO3 m22 d21 greater

than estimates made from sediment traps in the same regions

[5,56]. 50% decrease in the sinking flux that we predict would

occur under undersaturated conditions would have a much greater

significance to the overall carbonate cycle in the Southern Ocean,

as well as other high-latitude regions, where pteropods are found

in high abundances.

Accompanying the decrease in overall shell mass is also the

decrease in shell weight in terms of how fast it will sink through the

water column. Byrne et al. [6] proposed that the decrease in

sinking rate scales with loss of mass, as follows:

s~so
M

M0

� �
ð16Þ

where s is the revised sinking velocity (cm s21), so, the original

sinking velocity (cm s21), M, the remaining shell mass (mg

CaCO3), and M0, the original shell mass (mg CaCO3).

Byrne et al. [6] measured the sinking speed of Limacina inflata,

of the same size as juvenile L. helicina ant. in the present study

(,0.3 mm shell diameter, ,0.014 mg CaCO3) to be 1.4 cm s21.

Exposure to Var levels of 0.8 for 100 days would reduce shell mass

to 0.007 mg CaCO3, resulting in the sinking speed being reduced

to 0.7 cm s21. As a consequence, the partially dissolved shell

would take twice the amount of time to sink to the bottom of a

3000 m water column (5.7 days versus 2.5 days). In undersatu-

rated conditions, the level of dissolution in these lighter shells will

be even greater, making their sinking rates even slower. With

respect to the carbonate cycle, slower sinking speed will result in a

longer retention time in the upper water column, which may have

a mitigating effect in neutralising anthropogenically induced

acidification of mid-water depths [8–9,49,57]. Nevertheless, the

lighter, slower-sinking pteropods would have a diminished impact

in their role as ballast to sinking particulate organic matter [16].

This will result in greater subsurface water column remineraliza-

tion of this particulate organic material and, ultimately, a less

effective carbon pump.
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Concluding remarks
In modelling the sensitivity of pelagic calcification to ocean

acidification, Gangstø et al. [23,58] determined that anthropo-

genic CO2 emissions may lead to irreversible changes in Var for

several centuries. Even under optimistic emission scenarios, the

ratio of open-water CaCO3 dissolution will continue until 2500

where it will be 30–50% higher than at pre-industrial times. The

consequence is a severe loss of suitable habitat for aragonite

calcifiers. This in turn will result in a depletion of the rate of

carbon and carbonate flux to the deep ocean. As confidence

intervals of future projections increasingly narrow, the argument is

progressing beyond whether suitable habitat will be lost to when

and to what extent. The application of results obtained in this

study will now enable regions of imminent habitat loss to be

identified and monitored and the consequences to the sinking flux

to be estimated.
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