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a b s t r a c t

Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthro-
pogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport
it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited
below the sea bed on continental shelves. A key operational requirement is an understanding of best
practice of monitoring for potential leakage and of the environmental impact that could result from a
diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath
limate change mitigation
the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The com-
plex processes involved in setting up the experimental facility and ensuring its successful operation are
discussed, including site selection, permissions, communications and facility construction. The experi-
mental design and observational strategy are reviewed with respect to scientific outcomes along with
lessons learnt in order to facilitate any similar future.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
. Introduction

This paper presents and discusses the controlled release of
O2 beneath the seabed for the QICS project (Quantifying and
onitoring Potential Ecosystem Impacts of Geological Carbon Stor-

ge, http://www.qics.co.uk), which was undertaken by researchers
rom seven research institutes in the UK and a further seven partner
rganizations in Japan in 2012.

Carbon capture and storage (CCS) has been argued as presenting
technically possible, financially attractive and socially accept-
ble method for mitigating global CO2 release (IEA, 2013; IPCC,
005; The Global CCS Institute, 2014). The main benefit of this
mergent technology is that release of anthropogenic CO2 can be

∗ Corresponding author. Tel.: +44 0 1631559000; fax: +44 0 1631559001.
E-mail address: pete.taylor@sams.ac.uk (P. Taylor).
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750-5836/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

mitigated: emissions targets and “green” commitments can be met,
while simultaneously utilizing existing energy production infras-
tructure and contributing to the global carbon economy (Bachu,
2008). Nevertheless, as with the inception of any new technology,
it is important that the degree of risk posed by the solution is fully
constrained, prior to full deployment.

In the case of CCS these risks fall into a number of categories
(IPCC, 2005). One risk factor is the potential for leakage from a CCS
storage facility, producing either a diffuse leak of gaseous or dis-
solved CO2 from a small fracture in the reservoir seal, through to a
catastrophic rupture in, for example, a transfer pipeline of super-
critical or dense phase CO2 (Blackford et al., 2009). This is especially
the case for the sub-seabed storage of CO2 in abandoned oil and gas

reservoirs where the immediate impact of any leak may not be so
apparent.

Research to date has made significant advances to our under-
standing of the dispersion of CO2 in the marine environment,

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ts chemical signature and potential to impact ecosystems, using
combination of models, natural analogue sites and laboratory
anipulations (Blackford et al., 2009). However each of these

pproaches has limitations.
Models are able to simulate the dispersion of gas and liquid

hase bubbles/droplets in the vicinity of the leakage site and calcu-
ate the resulting change in acidity (pH) and the partial pressure of
O2 (pCO2) (e.g. Dewar et al., 2013). Similarly, models can address

arge-scale dispersion of dissolved CO2 along with its resulting
hanges in seawater chemistry (Phelps et al., 2014). Such models
re able to inform both monitoring strategy and impact by quan-
ifying the volume of seawater experiencing either detectable or
amaging chemical changes. However, these models fail for lack of
bservational data by which to properly evaluate their predictions
Mori et al., 2014). Models have also been used to attempt impact
tudies (Blackford et al., 2009); however, models have very limited
bility to represent the complexity of marine communities and the
ntricacy of their response to high CO2.

Laboratory simulations have revealed a range of both chemical
mpacts, such as heavy metal mobilization (e.g. Ardelan et al., 2009;
ruz Payan et al., 2012) and biological impacts ranging from stimu-

ation of species to mortality in others (Widdicombe et al., 2013 and
apers in the associated special issue, e.g. Widdicombe et al., 2009).
hese reveal a high degree of species- and circumstance-specific
esponses. Other stressors acting on a population can greatly exac-
rbate the detrimental effect of CO2. Laboratory experiments are
lso limited in that they cannot replicate true environmental
omplexity; ecological or behavioural responses to, for example
hanges in predation pressure or resource competition and escape.
t also remains difficult to establish the recovery potential of com-

unities in laboratory simulations.
The third widely used approach is the study of natural CO2

mission sites as analogues for CCS leaks (e.g. Caramanna et al.,
011; Pearce, 2006). This approach, while having many merits, has

imitations, including (1) most studied sites are long-term phe-
omena and thus no base-line (pre-release) data exists, (2) the
elease rate cannot be controlled or “turned off” to study the rapid-
ty with which more typical local conditions are re-established, (3)

any sites are within volcanic settings (Hall-Spencer et al., 2008)
nd therefore may be contaminated with H2S and have atypical
emperatures. Although these analogue studies are often insight-
ul, they are of limited geographical distribution; for example the
hallow, warm and clear water situations described by Caramanna
t al. (2011) and Hall-Spencer et al. (2008) do not directly trans-
ate to colder deeper and turbid sites on other continental shelves.
f offshore implementation of CCS in Europe is to become a more
stablished mitigation strategy, it will almost certainly be used
n colder, more turbid, shelf seas, such as the North Sea, so that

ore appropriate analogues, with closely similar fauna, seabed sed-
ments, irradiance and temperatures need to be studied before the
ndings can be directly utilized by policy makers.

Whilst some injections of small amounts of CO2 directly into the
ater column have been performed (Barry et al., 2013), the injec-

ion of significant and quantified amounts of CO2, in a controlled
ay, directly into marine sediments from below would effectively
imic the final stages of a leakage from storage reservoirs. This
ould allow for the first time a study of the vertical movement

f CO2 through the sediments, into the water column and of the
iochemical transformations and impacts that occur as the CO2
asses through a vertically structured marine sediment ecosystem,
hereby mimicking the shallowest stages of migration and emission
t the seabed.
An initial scoping study developed a set of criteria for a suc-
essful experiment, namely an injection of between one and ten
onnes of CO2, at approximately ten metres below the seafloor, con-
inuing over a period of several weeks. The main driver for these
enhouse Gas Control 38 (2015) 3–17

calculations was the need for a release large enough to impose
changes and detectable signals onto a natural system, but small
enough to avoid a large-scale pollution event. Clearly a short-term,
small-scale release of CO2 is not a full analogue for a CCS leak. How-
ever, it does encompass many of the processes and systems that are
important to understand and guide both monitoring and impact
assessment within the marine environment. A release of CO2 into a
sufficient thickness of sediment to include a hetrogenous sequence
and diverse geological structures provides an opportunity to assess
the dispersive and retentive capacity of a range of unconsolidated
sediment types. These control the phase and dynamics of CO2 pass-
ing through the sedimentary sequence and transfer into the water
column, mechanisms about which knowledge is essential, if ade-
quate and successful monitoring systems are to be designed.

This release would permit the examination of how fine-scale
hydrodynamic processes act to disperse both the detectable and
harmful plumes of CO2-enriched water. This approach would also
allow a range of monitoring methods: passive and active acous-
tics; chemical sensors; biological and geochemical indicators. At
the same time the experiment allows the assessment of ecosys-
tem impact within the context of normal seasonal cycles and
behavioural responses.

Successful completion of the experiment required a number of
challenges to be overcome. The first was to develop a risk adverse
and cost-efficient mechanism for injecting CO2 into a sediment
layer without creating artificial conduits for leakage. There was
then a need to identify a site which was both a suitable analogue
for operational CCS but sufficiently accessible to facilitate injection
and numerous observations. Not least, there is a social and politi-
cal dimension in that injection of a potentially harmful substance
into any environment is inherently controversial (e.g. Schiermeier,
2009).

An overview of the experimental design, the processes behind
the release site selection and the permissions and communication
strategy that were required is outlined in this paper. Following
this, the experiment site, drilling methodology, the gas release
facility and its performance are described. Further, information on
the initial baseline study and outline of the sampling strategy are
presented, before outlining the range of findings generated. The
scientific outcomes of the experiment are described in more detail
in Blackford et al. (in press) and in many other papers presented in
this special issue, referenced below. This manuscript, as well as pro-
viding the detailed methodology in support of these papers seeks
to present, discuss and identify lessons learnt from the delivery of
this complex project in order to support and facilitate future work
of a similar nature.

2. Methodology

The volume of CO2 required to detect an impact, along with the
need to approach the release point from below to avoid disturbing
overlying sediment layers dictated that a borehole containing the
injection pipeline should be horizontally directionally-drilled from
shore into a suitable coastal setting (Fig. 1). This allowed the CO2
to be stored and control mechanism equipment to be situated on
land for ease of access.

A general summary of the risk analysis procedures applied to the
controlled release experiment with selected examples is presented
in Table 1. In practice a generic risk assessment was developed and
then applied to each prospective site as part of the site selection

process. Whilst many of the individual hazard-consequence-action
elements are largely common sense the collation of all risk ele-
ments based on discussions within a multi-disciplinary project
team and using consultants where appropriate proved valuable.
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Fig. 1. Simplified schematic of the experiment, showing the on-shore location of the gas injection equipment, the borehole and associated submarine CO2 release point.

Table 1
A general summary of the risk analysis procedures applied to the controlled release experiment with selected examples.

Risk breakdown Approach

Project phase The risk analysis was divided into project phases based on the experimental timeline, thereby prioritising protective actions:
Site selection
Drilling process
CO2 release system
Observational approach

Hazard/event Every conceivable hazard was listed, for example:
Inappropriate geological substrate to support drilling and bore hole
No suitable affordable tenders for the drilling work
Drilling fails to produce a usable borehole
Sediment ecosystem is incompatible with deeper settings
Gas does not percolate through the sediments or it escapes at a remote point
Observations interrupted by extreme weather
Land station vandalised
Stakeholder objections
Occurrence of unforeseen environmental impacts
Diver requires medical attention

Cause An underlying cause or causes for each hazard/event was identified:
Poor site selection
Mismanagement of drilling tendering process, poor costings
Lack of knowledge of gas flux mechanisms in sediments
Poor communication
Misunderstanding of impact potential, unsuitable release strategy
Poor observational planning, lack of training

Consequence For each hazard/event, what is the consequence for the project, for example:
Insufficient funds to run project as envisaged
Failure of gas injection
The gas flux and impact is not sufficient to be measured
The experimental findings cannot be easily transferred to other settings
Experimental shutdown

Measures in place For each cause, what measures are in place to minimise the risk of occurrence or impact, for example:
High resolution seismic surveys completed
Biological communities characterized
Literature review of gas behaviour in sediments
Communication strategy planned
CO2 injection rates flexible, dosage/response impact curves understood
Diving depths less than 15 m, professional divers contributing to planning

Further actions needed What further actions are required, for example:
Increased or additional site characterization
Scope alternative and flexible approaches to instrument deployment
Reconsideration of sampling strategy
Modelling of gas flow through sediments and dispersion in water column
Ensure 24 h a day on site presence

Risk category Risks where categorised broadly in to three categories, enabling further prioritization:
Green: unlikely to cause an impact, even if event occurs
Orange: could be significant, but unlikely to halt the experiment
Red: potential show-stoppers
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In the following sections we detail the approach to site selection,
ite characterization, regulatory permissions and communications,
rilling operations, gas supply, injection strategy and sampling
trategy.

.1. Site selection

The suitable experimental location had to meet several impor-
ant criteria to ensure successful experimental set-up and accurate,
epeatable monitoring of the CO2 injection:

. Accessibility: The site had to be easily accessible, both from land
and by sea. On-shore, there needed to be appropriate access for
large drilling machinery and delivery of sufficient volumes of
CO2, as well as space for the installation of the CO2 injection facil-
ity. Offshore, the site required nearby berths for survey vessels to
minimize transit times and permit regular repeat surveys. Water
depths needed to be between 10 m and 20 m with a moderate
tidal range; deep enough to allow boat access for acquisition of
high quality marine geophysical surveys, but shallow enough to
facilitate diver based sampling and instrument deployment. Ide-
ally, the site would be in a sheltered location to reduce the impact
of adverse weather conditions and minimize the potential for
days when survey was not possible. Land owners would have
to agree to permit regular access to the site for several months
during the drilling and gas release phases.

. Sediment stratigraphy and underlying bedrock: Offshore, the site
needed to have a minimum sediment cover of ten metres
through which the injected CO2 could migrate, and a maxi-
mum of 25 m sediment thickness to ensure injected CO2 would
migrate to the seabed within the time constraints of the exper-
iment, but sufficient overburden of sediment would impede
direct release into the sea through a large crater. Ideally, the
sub-surface stratigraphy would be comparatively simple; an un-
faulted, flat, shallowly dipping sequence of a range of sediment
types representative of North Sea Quaternary sediments but
avoiding glacial strata containing boulders (diamict) that might
deflect or block the positioning of the diffuser pipe. Underlying
these sediments the bedrock needed to be suitable to sustain
drilling with a low density of rock fractures to ensure an appro-
priate grouted seal. The specific offshore release site satisfying
the above stratigraphic criteria had to be within a practical
drilling range (maximum 400 m) of an on-shore location

. Faunal type and diversity: The study location must support fau-
nal types and faunal diversity similar to sites targeted for CCS
operations since a primary research goal was to study the effect
of CO2 injection on typical marine fauna.

. Logistical and scientific support: The selected site had to be near
to a well-equipped marine laboratory with appropriate research
equipment, laboratories, research vessels and, importantly, a sci-
entific diving team to reduce the cost and time of transport
between the experiment site and the facilities that would be
used.

Initial considerations suggested that the vicinity of Oban (Scot-
and) offered potential locations with an underlying bedrock
uitable for drilling, and a large number of small islands and bays
hat would provide moderately sheltered survey conditions. Fur-
her, the location of UK national scientific diving facilities and other
ogistical support from the nearby marine research laboratory,
cottish Association for Marine Science (SAMS), at Dunstaffnage,
ban (Fig. 2) was a vital component. Flexible diving support was

ission critical given the high intensity of sampling and installa-

ion of seafloor instrumentation at very specific target areas and the
equirement to react to circumstances as the experiment developed
Fig. 2).
enhouse Gas Control 38 (2015) 3–17

After detailed surveys of nine local sites with over 400 km of
very-high-resolution chirp seismic reflection data, together with
extensive multi-beam bathymetry surveys, a preferred location
was identified for the experiment, fulfilling all of the criteria listed
above. The optimal study site was selected in the northern part of
Ardmucknish Bay (Fig. 2), and additional seismic reflection profiles
were collected to characterize the site before and during the release
(see Cevatoglu et al., 2014 for more details).

2.2. Site characterization

To fully characterize the site, the dense seismic survey grid
(approximately 20 m line spacing) of over 30 line kilometers of
chirp profiles and 40 line kilometers of boomer profiles acquired
within an area measuring 1.5 km by 1.5 km and augmented by
lithological characterization using sediment grab and gravity core
samples were examined. This detailed geophysical mapping exer-
cise allowed the identification of the sites geological structure and a
target area for drilling. Following site selection, a further 18 boomer
lines were run to produce a high density grid (Fig. 2c) and to con-
firm bedrock continuity along a likely borehole trajectory between
the proposed drill rig location and the target area. The final site
selection was an area in which sediment likely to contain boul-
ders, which would have been a significant drilling challenge, was
absent. It also served to generate an accurate baseline of the sed-
iment structure as an aid for detecting the migration of carbon
dioxide gas within the sediment following initiation of gas release
as well as subsequent geophysical investigations during the exper-
iment examining gas migration pathways (Blackford et al., in press;
Cevatoglu et al., 2014).

2.2.1. Geology
This site survey study identified three distinct seismic strati-

graphic facies (SSS I through III) overlying a very high-amplitude
but irregular basal reflector of multiple overlapping diffraction
hyperbola (Fig. 3), representing the interface between bedrock and
unconsolidated sediments.

I. Unit SSS I is characterized by chaotic reflectors, it is dis-
continuous, of highly variable thickness and directly and
unconformably overlies the bedrock surface.

II. Unit SSS II is a thick seismo-stratigraphic facies (up to 40 m)
that overlies and infills the uneven upper surface of SSS I. It
extends across most of the study area and may directly overlie
bedrock where SSS I is absent. SSS II is characterized by laterally
continuous layered reflectors. It is unconformably overlain and
includes units of SSS III. SSS II is exposed at sea bed where SSS
III is absent.

III. Unit SSS III comprises a number of locally discrete, thin (up to
5 m), acoustically transparent units that unconformably overlie
or are included within SSS II. The base is always unconformable
truncating the layered reflectors of SSS II and where the upper
surface may be exposed at the sea bed. Where units of SSS III
are within SS II the upper boundary is gradational from the
transparent internal fill to the layered reflectors of SSS II.

These seismo-stratigraphic facies were interpreted as repre-
senting: a layer of glacial diamict deposited on top of the regional
bedrock surface (SSS I); layered, fine-grained glaciomarine sed-
imentation (SSS II); and a stacked sequence of incised fluvial
deposits of coarser material (SSS III). This interpretation was in
keeping with the glacially dominated stratigraphy observed both

locally (Howe et al., 2002; Nørgaard-Pedersen et al., 2006) and
regionally (Stoker et al., 2009). The whole sedimentary sequence
was observed to thin towards the shoreline, with the exception
of SSS I, which locally thickens on the irregular acoustic bed-rock
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Fig. 2. QICS Experimental geometry, and pre-release geophysical data. (a) Site map of Ardmucknish Bay (on the Scottish West Coast, see inset) with water depth contours
(dotted lines), positions of release epicenter (Z1) and reference (Z4) zones. (b) Close-up of experimental area at the northern end of Ardmucknish Bay, showing positions of
all four sampling sites (Z1—epicenter of release, Z2–25 m distant, Z3–75 m distant and Z4—control, 450 m distant), located c. 5 km from the Scottish Association for Marine
Science facility at Dunstaffnage. The position of the directionally-drilled sub-surface pipeline is indicated, which terminated at (c) 11 m depth beneath the seabed at Z1. The
position of the boomer seismic reflection profiles collected pre-release and illustrated in Figs. 3 and 5 are also shown. (c) Multi-beam bathymetric image taken over the
epicentre of the later release, with the colour scale indicating depth between 4 and 12 m water depth. The red line is the position of the sub-surface pipeline which was
subsequently drilled. The positions of some of the boomer seismic reflection profiles taken during the site characterization (pre-release) stage of the experiment are also
indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ig. 3. Uninterpreted (top) and interpreted (bottom) seismic reflection profile w
ackages and sub-surface horizons. Refer to the main text for further explanation.
ole in controlling gas migration during the release experiment (called horizon H2

opography, and a surficial SSS III unit which thickens towards the
each and demonstrates limited internal architecture in very shal-

ow water (Cevatoglu et al., 2014). The boundary between SSS II and
his surficial SSS III deposit was observed to play an important role
n gas migration through the subsurface (Cevatoglu et al., 2014).

The selected access point for drilling equipment was a large flat
rea suitable for heavy vehicles, within 20 m of the shore. The site
as secluded and surrounded by trees which reduced the impact of
oise from the drilling operations on the nearby Tralee Bay Holiday
ark visitors. Following site selection, a further 18 boomer seismic
ines were run to produce a high density grid (Fig. 2c) close inshore
nd to confirm bedrock continuity along a likely borehole trajec-
ory between the proposed drill rig location and the target area.
he bedrock at the drill rig location is Dalradian Quartzite (British
eological Survey, 1991), with an unconfined compressive strength
f 187 MPa, indicative of hard drilling (Long et al., 2012). This would
end to facilitate a secure and stable borehole that would not col-
apse during the drilling process, avoiding long delays and large cost
ver-runs. The quartzite continues, interrupted only by a Carbonif-
rous quartz-dolerite dyke up to two meters wide, until the final
en meters of the required hole where the planned borehole exits
his rock formation into unconsolidated sediments, interpreted to
e dominantly silty, but may comprise a thin layer of diamict (till)
t the bedrock surface. The bedrock exit point was targeted where
he shallow seismic suggested the lag and/or diamict (SSS I) was
hinnest or absent to minimise potential drilling difficulties. The
nly observed fault trends north-east to south-west, dipping to
he south-east, and has a throw of 20–30 m. The proposed release
ite was provisionally selected at 11 m below the seafloor and 23 m
elow mean sea level
.2.2. Hydrodynamics
The characterization of local hydrodynamics was important to

nsure that vertical and horizontal water mixing was not atypical
rdmucknish Bay (position indicated in Fig. 2) illustrating the main sedimentary
ertical axes are TWT (two way time) in milliseconds. Unconformity 3 has a major
atoglu et al., 2014).

in the selected area. It was also required to optimise the sampling
strategy, including the location of the control or reference site. This
detailed information was also essential for modelling and tracking
the plume of CO2 enriched water generated during the experiment.
Ideally, the area selected should have had an element of tidal flush-
ing, distributing CO2 enriched sea water to facilitate investigations
into techniques for tracing CO2 leaks over a wide area, but not
so great a flushing rate that there would be no build-up of CO2
concentrations in the area during the experiment.

Ardmucknish Bay is small, 3 km long and 3.5 km wide. It is open
to the Firth of Lorn, the largest gulf on the West coast of Scotland at
its south western extent and connected via a narrow (100 m) and
shallow (9–13 m) channel to Loch Etive to the southeast. The circu-
lation and mixing regime in Ardmucknish Bay is primarily driven by
the semidiurnal tide with a maximum tidal range of 4.3 m. The tidal
wave brings saline (S > 34) waters from the west during the flood
phase whilst releasing pulses of brackish (S = 21–30) water from the
adjacent strongly salinity-stratified sea loch during the ebb. This
brackish low density water flows over the sill of the loch at high
speed (4.5 m s−1) and develops into a buoyant plume as it decel-
erates and propagates out into the bay at speeds of approximately
0.3 m s−1. This repeated buoyancy input leads to the formation of a
very thin (2–5 m) surface layer resulting in a persistent, near surface
salinity stratified water column, with the sea bed at the experi-
ment site below this surface layer at all times. The dynamics of each
plume and the ambient stratification are known to generate sharp
fronts and nonlinear internal wave features both ahead of, and in
response to the reflection of the plume from the North-westerly
headland.

The nature of these dynamic processes has more recently been

investigated using a Hydroid Remus Autonomous Underwater
Vehicle (AUV) equipped with forward-mounted microstructure
sensors (Boyd et al., 2010). The authors demonstrate that non-
linear internal wave processes lead to the downward displacement
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Fig. 4. (a) Tidal current ellipses of M2 constituent from the single depth current meters deployed at a depth 10 m in May–October 2012 (site Z1 with Seaguard, sites Z4 and BI
with RCM9) and from the vertically-average currents velocities form the East and West sites in February 2011 (RDI-ADCP). The latest (2012) multibeam topography (survey
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I-Number 1373, courtesy of UK Hydrographic Office) is shown with every 5 m isob
alues (c), obtained from velocity microstructure sensor at a depth of 10 m in Febru

f near-surface water coinciding with a two orders of magnitude
ncrease in the measured turbulent kinetic energy (TKE) above
he background level (Boyd et al. (2010)). During the periods of
ntensified TKE, active mixing is shown to occur as salinity and tem-
erature values do not return to those of the ambient fluid before
he arrival of the turbulent features. These internal wave features
re thought to be generated each tidal cycle and evidence support-
ng this hypothesis was found via a further deployment of the AUV
n 2011, as shown on the lower panels of Fig. 4. Direct observa-
ions of this energetic process were obtained in the central deeper
ection of the bay between moorings sites E and W (Fig. 4b and
), where the effects have been limited to the upper 15 m of the
ater column. Surface manifestations of the processes have been

bserved near the CO2 release site and thus may have an impact
n the local mixing energetics. The direction of the currents within
he bay confirmed that a reference site to the South and East of the
elease zone would not be exposed to the plume of CO2 enriched
ea water that the experiment generated.

In order to study the depth averaged tidal dynamics, those

eneath the brackish surface layer of the bay and the CO2 release
ite itself, several long and short term moorings, including an
ANDERA and RDI-ADCP current sensor and a CTD along with an
DCP were deployed at various sites in Ardmucknish Bay during
AUV transect between E and W sites with salinity (b) and Turbulent Kinetic Energy
11 are shown at lower panel.

2011–2012, prior to the QICS experiment commencing, to gather
detailed base-line data. Tidal analysis of the most energetic con-
stituent, that of the semidiurnal tide, allows for an insight into the
circulation patterns within the bay. The tidal ellipses from each
mooring site show that currents are generally aligned with the
bathymetric contours (Fig. 4a). Rotation direction of tidal veloc-
ity vector was found to be mostly clockwise, except at the Bay Inlet
(BI) mooring, where it was anticlockwise. The tidal currents reduce
in strength from the southern entrance towards the head of the Bay
from 6.3 cm s−1 at site E to 1.6 cm s−1 at the release zone.

The E and W tidal ellipses shown in Fig. 4a represent currents
flowing towards the Northwest and Northeast, respectively, dur-
ing the flood phase and Southeast and Southwest during the Ebb
phase, resulting in a tidally driven horizontal circulation within the
bay. Long term residual current velocities near the CO2 release site
(Atamanchuk et al., 2014) demonstrate a westerly and southwest-
erly flow, which is consistent with the prevailing winds in the area
during the experiment.
2.2.3. Biology and seafloor sediment characteristics
A key aim of this study was to conduct the experiment in a

habitat that had relevance to those habitats that could potentially
be affected by leakage from industrial applications of CCS. These
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abitats will predominantly be soft sediment areas in the North
ea and most of these areas will be in water depths greater than
ould be achieved with the current study. However, even with the
onstraints of needing a shallow environment, due to limitations
ssociated with the drilling and the use of divers for sampling, it
as still possible to find an environment that had general rele-

ance to these other situations. After a series of preliminary surveys
cross a number of potential sites it was concluded that the sed-
ment characteristics and biology found in Ardmucknish Bay was
epresentative of the North East Atlantic margin and whether there
ere any significant differences in sediment or biology across the

ay that may limit the validity of conclusions arising from the QICS
roject. To support this conclusion a series of more detailed mea-
urements and observations were made before the start of the
elease experiment.

The initial stage of habitat characterization was to determine
f the sediments across Ardmucknish Bay were of uniform type in
erms of physical structure and carbon content. For this a total of 24
ores were collected across the site from the four zones outlined in
ig. 2. They were cut into 2 cm slices and then analysed for poros-
ty, organic carbon content (Corg%) and grain size. Analysis of the
ata shows that the sediments had a uniform grain size and poros-

ty across the four zones (Fig. 5). The organic carbon content was
nalyzed in zones one and four and, although more variable, there
ere no large differences between the two zones.

It was clear from this work that the basic properties of the sed-
ment were uniform across the experiment area, allowing a valid
omparison to be made between the different experiment zones
uring and after the CO2 release phase.

The structure and diversity of the macro-infaunal communi-
ies found in Ardmucknish Bay are detailed by Widdicombe et al.
2014). In summary, all four experimental zones were considered
ypical of NE Atlantic shallow, coastal fine sand sediments. The
auna were numerically dominated by several species of annelids
Exogone hebes, Prionospio fallax, Chaetozone christei, Tharyx killar-
ensis, Euclymene oerstedii), a bivalve mollusc (Thyasira flexuosa)
nd a crustacean (Tanaopsis graciloides). Mean diversity and abun-
ance were similar across all zones. The total number of taxa
ound within each zone was highest in Zones 1 and 4 (60 and 63
axa, respectively), and slightly lower in Zones 2 and 3 (51 and
7 taxa, respectively). PERMANOVA analysis on 4th root trans-
ormed species abundance data showed that there was a small yet
ignificant difference in community structure before injection com-
enced between the zones (Pseudo F = 2.5077, P(perm) = 0.001),
ith significant pairwise difference seen between all zones except

etween Zones 1 and 2 (Table 2).
However, the variability between the five replicate community

amples taken from within each of the zones was high with average
ray–Curtis similarity ranging from as low as 42.3% at Zone 2 up to
0.56% at Zone 3. Measurements of community variability between
ones was only slightly lower than the variability seen within zones,
ith average Bray–Curtis similarity ranging from 35.05% between

one 1 and Zone 4, to 45.81% between Zone 1 and Zone 4. Shallow
ediments are inherently patchy over very small scales (Kendall and

iddicombe, 1999) so much of the variability observed between
ores, both within and between sites could largely be due to the
elatively small core size (10 cm diameter, 0.008 m2) used to collect
acrofaunal samples. In a study conducted in sediment similar to

hat sampled in the current study (fine sand), also using a 0.008 m2

iver operated core in similar water depths (10–12 m), Kendall and
iddicombe (1999) found similar numbers of species (21.45 ± 1.1)

nd slightly higher numbers of individuals (78.82 ± 6.31) per core.

he slightly higher levels of abundance may be due differences in
he timing of sampling between the two studies.

In addition, Kendall and Widdicombe (1999) found that in an
rea of sediment that was considered to be a homogeneous area
enhouse Gas Control 38 (2015) 3–17

of fine sand, average levels of dissimilarity between samples taken
only 50 cm apart was around 59% and for samples taken around
500 m apart average similarity was reduced to 49%. All of which
indicates that the zones selected for the QICS study are not atypical
in terms of the macrofaunal diversity, abundance and commu-
nity structure expected for, fine sand sediments in the UK. For a
more comprehensive description of the macrofaunal community
response to the QICS experiment see Widdicombe et al. (2014).

2.3. Permissions and public consultation

With sufficient geological, hydrodynamic, biological and bio-
geochemical information having been gathered to assure ourselves
that Ardmucknish Bay was a suitable location for the release exper-
iment, we proceeded to pinpoint an optimal target for the drillers
and identify the requirements of the gas diffusion and release
equipment. At this point we initiated the process of gathering the
relevant permissions needed to proceed with the experiment.

At the project proposal stage, prior to site selection the bod-
ies with formal regulatory roles were approached for an informal
indication that the experimental procedure would meet with their
approval. This afforded an opportunity to identify any initial con-
cerns from these parties. For this experiment the regulatory bodies
were Marine Scotland and the Crown Estates, the later control activ-
ities associated with the seafloor in the UK. Clearly each country
would have its unique regulatory structure.

Having identified the most favourable drilling location, the first
priority was to contact the local landowner, Lochnell Estates, and
the land leaseholder, Tralee Bay Holiday Park, to discuss the envis-
aged experiment and the associated requirements. Both parties
kindly granted consent in principle for the experiment to proceed.
Following this initial step, permission was sought and obtained
from the two relevant regulators, Marine Scotland and the Crown
Estates, for the drilling under- and into the seabed, deployment
of instrumentation and marker buoys and for taking sediment
samples. Scottish National Heritage, the Scottish Environmental
Protection Agency and Argyll and Bute Council were also informed
of the proposed activities. With no objections from the landowner
and the leaseholder, support of the Scottish Government and the
vast majority of the local community, all relevant permissions were
granted before drilling was scheduled to commence.

A consultation with members of the local community quickly
ascertained that the experimental area under active consideration
was of no interest to local commercial fishers and/or aquacultur-
ists, although this exercise revealed that a nearby jetty was under
frequent use for launching small boats to transport divers to sites
in the bay and by leisure fishers.

Public acceptance was greatly aided by the strong links that
SAMS has with the local population. Whilst local people did not nec-
essarily support CCS as a “good thing”, the majority were convinced
by the unbiased attitude of the researchers and the need to conduct
this research, once its aims were described to them. Public events
before, during and after the CO2 release phase were well attended
with scientists being regularly approached by curious members of
the public while the drilling and release experiment was under-
way, with such approaches encouraged by prior agreement with
the landowners (Mabon et al., 2014a,b).

In order to address the project’s objectives of providing informa-
tion of direct use to a wide range of stakeholders, and build on the
discussions held in the initial stages of the project a stakeholder
group was initiated which included representatives of a diverse
range of interested parties, from local industry representatives such

as commercial shellfish growers, through the bodies that would
be approached for planning consent for CCS to other interested
parties such as Natural England, the International Energy Agency
Greenhouse Gas R&D Programme, NGO’s and industrial bodies with
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Fig. 5. Porosity, organic carbon content (Corg%) and mean grain size of the upper 25 cm of the sediments in the experiment Zones 1 to 4. The horizontal bars are the variation
of the parameters during the experiment at each site.

Table 2
Fauna information showing most dominant species and groups.

Zone 1 Zone 2 Zone 3 Zone 4

Number of species (per core) 25.8 (±2.7) 20.8 (±5.1) 22.0 (±3.5) 24.0 (±2.0)
Total number of species (5 cores) 60 51 47 63
Number of individuals (per core) 54.4 (±10.9) 44.0 (±11.1) 47.6 (±7.9) 46.0 (±11.2)
Average similarity within site 49.13% 42.30% 60.56% 43.08%

Pairwise similarity Pairwise dissimilarity Zone 1 Zone 2 Zone 3 Zone 4
Zone 1 54.19 56.59 64.95
Zone 2 45.81 56.11 61.78
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Zone 3 43.41
Zone 4 35.05

n interest in CCS such as oil and power companies. A full list of
takeholders is on the QICS web page (http://www.qics.co.uk). The
takeholder forum allowed the project scientists to refine objec-
ives and dissemination on the basis of direct feedback, but also
ncouraged discussion between groups with diverse attitudes to
CS.

.4. Drilling operations

The well design called for the majority of the drilling to go
hrough the local bedrock, only drilling into the unconsolidated
ediment for the bottom 10 m of the well, to reduce the likelihood
f borehole collapse or sediment fracture to the lowest possible
evels. The horizontal directional drilling (HDD) operations were
onducted using an HDD rotary drilling rig, employing a tubular
teel drill string (Fig. 6a), with a 16.5 cm diameter tri-cone bit with
ungsten carbide stud inserts to cope with the hard bedrock (Fig. 6d
nd e), while optimizing the rate of penetration. The well was
rilled with an initial angle of 16◦ to horizontal. However, the final
ell trajectory formed a gentle curve (Fig. 7). The location of the
rill bit in three dimensions was calculated using an electromag-
etic wire coil positioned on the seafloor by divers which could be
nergised to determine the bit location by producing a temporary
agnetic field within a precisely located set of points. Magnetic

irection finding sensors in the navigation package, placed 10 m

ehind the drill bit sensed the location of this magnetic field to
ithin four decimal places. Drilling adjustments were then made

o keep the hole in the correct trajectory. Connections between the
9 m drill pipe sections were made-up using KopR-Cote lubricant
43.89 59.15
38.22 40.85

grease in order to prevent the screw joints between the drill pipe
sections seizing under high torque loading.

Drilling fluid, primarily composed of fresh water and bentonite
and suitable for drilling water wells for domestic supply, was cir-
culated through the well while drilling and recycled through two
“shale shakers” – mechanical sieves – to remove all but the finest
clay sized particles from the fluid.

On reaching the unconsolidated sediment, slight losses of
drilling fluid to the formation were observed over the final six
metres of the well bore, with an observed maximum mud loss to the
unconsolidated formation of 2.3 m3 (Long et al., 2012). When the
target position was reached the drill bit was initially washed out of
the hole, pumping drilling fluid while the bit was pulled back out
of the hole to remove as many drilled solids as possible.

A mesh diffuser, five metres in length, composed of 316 grade
stainless steel made from wedge wire mesh and with an effective
mesh opening size of 0.5 mm and a 28 mm internal diameter was
welded to 316 grade stainless steel tubing (Fig. 6b–d). This was
used to ensure that there was an even spread of very small gas
bubbles released into the sediment during the experiment. The dif-
fuser was pushed into the well by using the pressure of drilling fluid
against the black rubber packers mounted on the pipe (Fig. 6b) and
then pushed a further six metres into undrilled sediment at the
end of the well, located 11 m below the sediment water interface,
which is 12 m below mean sea level. The spear assembly at the tip
of the mesh diffuser (Fig. 6c) ensured that subsequent operations

would not dislodge the mesh from the sediment. To ensure CO2
did not migrate back up the hole, a cement pipe was used to seal
the well 100 m from the end and to hold the stainless steel injec-
tion pipe permanently in place. The site was returned to its original

http://www.qics.co.uk/
http://www.qics.co.uk/
http://www.qics.co.uk/
http://www.qics.co.uk/
http://www.qics.co.uk/
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Fig. 6. Drilling images (a) directional drill rig and drill bit, (b) 5 cm diameter stainless steel pipe line with flanges, (c) 5 m gas dispersion screen with sediment anchor, (d)
close up of screen with 0.5 mm wide and 5 mm long slits constructed from wedge wire mesh. (e) the 16.5 cm tri-cone bit prior to use, (f) the bit after use showing clear signs
of wear, but still functional with no missing insets.

Fig. 7. Borehole trajectory and land surface superimposed on pre-release boomer seismic reflection profile. The major lithological units as well as the track of the borehole
(purple line) are indicated, with the diffuser at the end of the borehole shown by the short red line. The experiment was designed so that the diffuser was positioned to come
out of bedrock, at the base of the sediments, 11 m beneath the seabed. The position of the seismic reflection profile and strike of the borehole are shown in Fig. 2. The pink
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ine indicates the interface between SSS I and SSS II as discussed in Section 2.2.1, wi
SS III. LAT is the lowest astronomical tide. (For interpretation of the references to c

tate, leaving only a man-hole cover overlying the hole in which
he injection pipe protruded from the borehole.

.5. Gas injection system

On site, CO2 was stored Manifolded Cylinder Pallets (MCP’s),
ith 15 standard 80 kg gas cylinders placed in a frame, all man-

folded down to a single gas outlet point. Four MCP’s could be
eld securely at the injection site (Fig. 8a). The MCP’s were con-

ected to an automatic manifold with two MCPs supplying gas

or the experiment at any time and two MCP’s on standby. When
he supply pressure of the gas reduced to a threshold, the mani-
old automatically switched to the full MCP’s and injection would
yellow line indicating the horizon (H2 of Cevatoglu et al., 2014) between SSS II and
in this figure legend, the reader is referred to the web version of this article.)

continue uninterrupted, the empty MCP’s were then replaced.
Heaters were installed to prevent freezing of the manifold as the
pressure was stepped down from cylinder pressure to injection
pressure. MCP’s were housed in a secure 20 ft (6 m) container with
doors at each end, allowing access for regular and easy exchange
of the 2600 kg MCP’s using a Rough Terrain telehandler forklift
(Fig. 8b), as well as ensuring adequate ventilation in the event of
a leak from the MCP’s. The container was fitted with a CO2 alarm
which could be heard in the vicinity of the container.
A mass flow controller monitored gas pressure at the injection
manifold, as well as controlling the rate of flow of gas in standard
litres per minute. The system logged the temperature, pressure and
rate of gas injection every 12 s. The outlet of the mass flow controller
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Fig. 8. (a) 20 ft (6 m) Tunnel container with doors open, waiting for gas change with telehandler forklift. (b) inside of tunnel container showing MCP’s in use. (c) manifold,
heaters and computerised mass flow controller and logger. (d) simplified schematic of the gas injection system. (1) represents Manifolded Cylinder Pallets (MCP), (2) heaters
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o stop gas freezing at high injection rates, (3) is an automatic manifold, drawing
omputer controlled mass flow meter and controller, logging gas flow rate, pressur
ressure gauge, before the gas enters the borehole (h). The photograph to the left o

as attached to an armoured flexible gas hose which passed out of
he container and into the manhole. Inside the manhole a pressure
auge, a check valve and a shut off valve were installed at the top
f the injection pipe. The check valve was installed in case of an
nterruption of gas flow into the well to stop the hydrostatic pres-
ure of the sea water forcing gas back up the injection pipe should
here be a sudden reduction in gas pressure The pressure gauge was
nstalled so that a comprehensive leak test could be carried out on
he equipment prior to operation. A simplified schematic of the gas
njection system is shown in Fig. 8d, (detailed schematic available
n request from lead author).

.6. Gas release strategy

The primary risk in the design of the injection strategy was
ausing overpressure in the sediment, which would produce
racture-like pathways to the seabed. This was highly undesirable
ince the principle project aim was to explore natural pathways
f leaking CO2, and to measure the geochemical and biological
hanges within the sediment as a consequence of this and to
onitor the fate of CO2 as it migrated through the sediment. Con-

ervative criteria to ensure that the sediment would be unlikely to
e mobilized in a single large catastrophic gas venting event was

hat the overpressure at the bottom of the well should not exceed
he weight of the sediment.

Conversely, sufficient CO2 needed to be injected to induce a
otentially measurable impact on the environment. The question
m two MCPs, swapping to two full MCPs when the active two are empty, (4) is a
temperature every 12 s, (5) is a one-way check valve, (6) is a shut-off valve, (7) is a
chematic, shows the MCP’s, heaters, manifold and flow controller.

of how much CO2 was needed was non-trivial and could be bro-
ken down into a more refined series of questions involving: the
mass balance, fluid pathways and rates of migration and whether
the pathways to the seabed would be diffuse or localized? Can the
CO2 rise buoyantly through the sediment? How much CO2 would
dissolve in the sediment pore water and how much would remain
in the gaseous phase?

During the design, our key uncertainty was the projected
sub-surface volume distribution. If the injected CO2 spread out
symmetrically into a plume which buoyantly rises, a large volume
of pore space would need to be filled before the CO2 could reach the
seabed. However, if the CO2 were to rise up a narrow chimney—less
pore space would need to be filled before the CO2 would break
through. A first-order estimate of the time to breakthrough could
then be made using the injection rate. The uncertainty in such
volume distribution and flow pathways led to an uncertainty in
breakthrough time from days to months for this system. In practice,
CO2 emerged from the seabed in bubble form within hours of injec-
tion commencing, indicating relatively direct pathways (Cevatoglu
et al., 2014).

Prior to the start of injection, the design of an injection strategy
is often informed by performing a well test which then allowed
the operator to determine likely achievable flow rates given some

pressure differential at the well. This is where the injectivity and
permeability of a target formation is constrained by performing
either injection or extraction tests. In our case it was not practical
to do this as it would have perturbed the site, perhaps initiating
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ig. 9. Gas injection parameters: (a), injection pressure in kPa, (b) litres of gas per m
as injected during the experiment in kilograms in red, (c) temperature of the gas
eader is referred to the web version of this article.)

ractures in the sediment. At this stage, the CO2 injection pressure
as observed to oscillate in phase with tidal cycles.

In this project, the strategy was to start injecting at a low flow-
ate and monitor the pressure at the well-head which gives a
ydrostatically corrected indication of the pressure at the injec-
ion point. The initial flow rate of 4 L min−1 (at standard conditions)
ressurised the system to a peak wellhead pressure of 461 kPa
hich rapidly decreased back to ∼413 kPa. This pressure and flow

ate was held for 4 h to saturate the sediments with CO2 in order
o increase the relative permeability of the CO2 gas phase (Fig. 9).

ithin 3 h, streams of bubbles were observed exiting the seabed,
hich were shown to be CO2 (Fig. 10). Since a measurable impact
as required, gas flow rate was gradually stepped up to 32 L min−1

ver 167 h. Over this period the average pressure stabilised at
441 kPa despite the increase in flow rate. This was a positive indi-

ation as to the performance of the injection system. These rates
ere based on modelling of plumes of CO2 in sea water (Dewar

t al., 2013, 2014), which generated a guide to the flow rates of gas
hat would produce a significant, but not catastrophic, signal at the
eafloor as well as being constrained by gas injection pressures.

In response to feedback from the remote and direct observa-
ions at day 20, the injection rate was further increased in a series of

ncrements, reaching 80 L min−1 on day 32. When the injection rate
eached 80 L min−1 there was an increase in the well-head pressure
hich was interpreted as the maximum flow rate deliverable to

he experiment without a detrimental effect on the structural and
at standard pressure and temperature (100 kPa, 0 ◦C) in black, with the cumulative
manifold. (For interpretation of the references to colour in this figure legend, the

geotechnical integrity of the sediments. The changes in flow rate
were initiated to increase the rate of change in sediment chem-
istry and to test the responsiveness of the system to change. After
37 days, the injection was terminated as planned, with a total of
4200 kg of CO2 released into the sediments during this period. Occa-
sionally, undesirable fluctuations in gas injection temperature were
caused as gas expanded and cooled in the manifold and the ther-
mostat controlled gas heaters failed to respond quickly enough. In
future a computer controlled system with a temperature feed-back
loop to the heaters would be preferable.

2.7. Experimental remit, and observational strategy

The experiment was planned with a before–after-
control–impact (BACI) design strategy, with four experiment
zones chosen (Fig. 2). A 10 m radius around the release epicenter
was designated Zone 1, with Zone 2 being 25 m away from this,
Zone 3 a distance of 75 m away and a reference zone which could
not be affected by the gas release some 450 m distant SE of the
release epicenter (Atamanchuk et al., 2014; Lichtschlag et al.,
2014).

In the two weeks immediately prior to the initiation of gas

release 15 sediment cores, with a diameter of 10 cm, were taken
by divers from each of the four experiment zones, for subsequent
base-line analysis for sediment pore water chemistry, nutrient
cycling, examination of in-fauna and for sub-sampling for later
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Fig. 10. In situ image of the release zone, showing bubble streams of CO2 gas leav-
ing the sea bed, pock marks can be seen at the base of the bubble streams caused
by mechanical disturbance to the sediment. Photograph also shows various sen-
sors deployed for monitoring, to the right is an Aanderaa Seaguard current meter
equipped with a pCO2 optode and a CTD to the left. The cable running across the
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from the release site. The release site was expressly chosen due to
eafloor is an Online pCO2/pH ISFET electrode sensor. The results from these sensors
s discussed in detail in Atamanchuk et al. (2014).

xamination of the microbial community. Cages containing
egafauna of commercial interest (king scallops Pecten maximus

nd common mussels Mytilus edulis) were deployed for later col-
ection during the release phase. Instruments comprised ADCPs,
ydrophones, spear sensors for measuring sediment pH and pCO2
t up to 1 m depth in the sediment, cameras taking time lapse
hotographs to determine movement of fauna, a transect profiling

ander, pCO2 optodes and recording CTDs, pCO2/pH ISFET sen-
ors, sampling grids and baskets containing pCO2 and pH optode
ecorders. In addition, benthic chambers were deployed to mea-
ure biogeochemical fluxes and diffuse gradient in thin film (DGT)
robes were used to determine metal mobility within sediment
ore waters. During this period repeated CTD casts from through-
ut the bay were taken, extensive Chirp seismic surveys were
ompleted as was a multi-beam survey and water sampling.

Immediately after the release commenced, it was discovered
hat the gas was bubbling out of the seafloor some ten metres dis-
ant from the expected location, some lateral offset having been
ntroduced to the gas flow by the sub-seabed geological structures.
s a result the location of Zones 1, 2 and 3 were moved to com-
ensate. This was not an issue for the experiment design as it had
lready been ascertained that the experiment area in Ardmuck-
ish Bay was sufficiently homogenous with respect to the required
arameters, as described in Section 2.2. Multi-beam and chirp sur-
eys were regularly completed during the first week of release,
arried out on an almost daily basis.

During the first week of CO2 release the sampling campaign was
epeated, with a further 15 sediment cores from each zone taken
y divers spanning four dives in a 48 h period. Incubation chambers
ere again deployed, as were DGT probes, cages of fauna were col-

ected from the pre-positioned frames and an AUV was deployed on
everal occasions. Sampling was also conducted during the second
eek of release, as well as the final week of release. Immediately on

essation of release a fourth sampling week was completed, with a
fth sampling week occurring three weeks after the cessation of gas
elease. A seventh sampling week took place in September, three
onths after the cessation of CO2 release, with a final sampling
eek, of more limited scope, occurring 1 year after the initiation

f CO2 release. In total, over 200 individual dives collected over

50 sediment cores and 300 water samples, took over 500 images
nd laid 1600 m of underwater cable, in addition to deploying and
ecovering the equipment outlined in this section.
enhouse Gas Control 38 (2015) 3–17 15

3. Discussion

3.1. Experiment outcomes

As shown in Fig. 8, gas bubbles were seen escaping the seabed
during the QICS experiment, proving within hours of the release
commencing that the CO2 was being released into the sediment
as planned and that gas was not migrating back up the annulus
of the borehole, or one of the other worst case scenarios. However,
empirical evidence collected by divers and using hydrophones sug-
gested that only 15% of the injected CO2 bubbled from the seafloor
during the QICS experiment (Berges et al., 2014; Blackford et al.,
in press) with the rest of the CO2 remaining within the sediment
during the gas release phase (Cevatoglu et al., 2014). The released
gas that reached the water column was detected over a small area
around the release zone (Atamanchuk et al., 2014). During the
release phase, CO2 enriched pore waters were observed close to
the sediment–water interface (Lichtschlag et al., 2014) and the pH
of the sediment surface was significantly different to the reference
zone 450 m distant (Taylor et al., 2015), with in situ pH and pCO2
sensors in the sub-seabed also monitoring the movement of CO2
(Shitashima et al., 2015). In addition, the observed plume of CO2
enriched sea water was mapped, as was the CO2 concentrations in
the atmosphere in the release zone (Maeda et al., 2014).

Given that this could be characterized as a deliberate pollution
event in an environment famed for its natural beauty, the local pub-
lic supported the experiment and its aims, were well informed and
interested in the experiment (Mabon et al., 2014a,b).

4200 kg of CO2 gas was released into the sub-seabed sediments
for a period of 37 days (Blackford et al., in press). During this time
the gas could be tracked by geophysical techniques (Cevatoglu et al.,
2014) and was observed bubbling from the seabed both directly by
divers and remotely by hydrophones (Berges et al., 2014; Blackford
et al., in press). Further, the progress of the CO2 as it dissolved in
sea water (Dewar et al., 2014; Sellami et al., 2014) was detected
using several techniques (Atamanchuk et al., 2014) and mapped in
both the sea water and the atmosphere (Maeda et al., 2014). The
presence of injected CO2 within the sediment was confirmed by
Lichtschlag et al. (2014), while its impact on the pH and pCO2 of
the seabed sediment was directly measured (Queiros et al., 2015;
Shitashima et al., 2015; Taylor et al., 2015).

Further, the effect that the CO2 had on the microbial commu-
nity and infauna in the sub-seabed as well as megafauna within the
water column was quantified (Kita et al., 2014; Pratt et al., 2014;
Tait et al., 2015; Widdicombe et al., 2014), consequently nutrient
cycles were also investigated (Tsukasaki et al., 2014; Watanabe
et al., 2014). Numerical modelling was carried out based on empir-
ical data collected during the experiment (Dewar et al., 2014; Mori
et al., 2014) and future best practices for monitoring for a leak from
a CCS facility were posited (Blackford et al., 2015).

The recovery of the release zone was monitored for up to one
year after the release phase was terminated (Tait et al., 2015;
Widdicombe et al., 2014).

3.2. Experimental limitations

The data on the geology of Ardmucknish Bay was mostly inferred
from remote sensing, such as chirp and boomer seismic surveys
and by direct sampling from a number of cores taken for analysis,
although these were confined to the top 20–30 cm of sediment. It
was attempted to take longer cores, with a gravity corer, but this
was limited by areas of larger boulders within the sediment away
the small number of larger boulders in the sediment in that area.
However, collecting long (>4 m) cores close to the release site of the
experiment may have generated a weak point, or conduit, which
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ould allow preferential gas migration, in direct contradiction to
he experiment requirement for a diffusive release. Extensive cor-
ng by gravity core was therefore limited in the area immediately
urrounding the release zone. This in turn limited the available
nformation on geotechnical strength of the sediment into which
he CO2 was to be released, indicating a precautionary approach to

aximizing the gas release rate during the experiment. It is possi-
le that more accurate geotechnical information on the sediments

n the area could have allowed greater release rates of CO2 during
he experiment.

The base-line study prior to the experimental release was car-
ied out fully, but over a limited time period. Ideally a longer, more
ntensive base-line study should be carried out, to allow better dif-
erentiation between observed impacts and natural variation in
rdmucknish Bay. Potentially this should be at high spatial reso-

ution for a full year prior to the experiment to better understand
ariations in key parameters and even response to extreme events,
uch as a storm. Additionally, better quantification of the different
hases of CO2, dissolved, gaseous and even solid phase precipita-
ion within the sediment would be encouraged. Ultimately, 85% of
he injected CO2 was not traced (Blackford et al., in press), how-
ver, as pointed out above, this is ultimately a difficult decision to
ake as it would involve deep coring, thus providing an easy con-

uit for gas escape and potentially negating several other aspects
f the experiment. Ultimately, deep cores should be taken from an
rea near-by the release site, but with very similar geology to better
nform modellers and geologists of the sediment.

The experiment was specifically designed to provide a concen-
rated and small impact to the natural environment, given that a

ore massive release would have a more wide ranging impact and
he increased likelihood of opposition to such a move. As a result
he impact area was concentrated, with a small footprint. This was
xactly as dictated by the experiment design, but made coordinat-
ng deployment of sensors on the seafloor with diver movements
nd AUV surveys complex and time consuming, as a great deal of
ffort was focused on one small area.

The duration of the gas release was not long enough. The exper-
ment had planned to release gas for 30 days. In the event, it was
ecided to use all stocks of CO2 on site rather than terminate on day
0, extending the gas release to 37 days. Analysis of samples taken
round this point and discussed in detail elsewhere in this special
ssue (e.g. Lichtschlag et al., 2014) indicate that a longer gas release
hase would have resulted in a larger impact being observed as
plume of CO2 enriched pore water was reaching the sediment
ater interface in the days immediately prior the gas release being

topped. However, to facilitate monitoring, tracers could be used
n the injected gas, to further allow the accurate quantification of
he gas and whether or not there are measurable fluxes from the
ea bed.

Ultimately, the experiment should be carried out in situ prox-
mal to a site that will use CCS as an industrial application, for
xample in the North Sea. This would ensure that the conditions of
he experiment exactly match the geology, biology and hydrody-
amics in the area surrounding the CCS facility and would “ground
ruth” the findings of this experiment as accurately as possible,
owever such an experiment was out with the resources of the
ICS project.

. Conclusions

The sub-seabed CO2 release experiment in Ardmucknish Bay

as successful. The migration of the gas could be imaged in the

ub-surface, and detected in surface sediments, within the water
olumn and in the atmosphere. Key factors which were important
o the success of the experiment include:
enhouse Gas Control 38 (2015) 3–17

• Initial detailed geophysical surveying to choose an appropriate
site was crucial to the success of the experiment.

• The significant effort made in informing and interacting with
the local population was essential. The project was successful
in ensuring that local people both understood the rationale for
the work and felt empowered to approach the project person-
nel should any issues arise. The experiment proceeded with the
support from an interested public and follow up public meetings
discussing the experiment were well attended.

• Drilling activities were significant and noisy and the project delib-
erately undertook drilling activities during the winter months to
minimize any impact on tourist activities in the region.

• A constant and reliable gas supply was required; gas deliveries
had to be carefully planned in advance of the release phase.

• Good site selection assured that access to the experiment site
was possible throughout the experiment, with only two day’s
sampling being delayed by 24 h, due to inclement weather.

• The sampling strategy was extensive and involved over 200 indi-
vidual dives and 12 weeks of boat time. There was, however, a
compromise in the resolution of data gathered and the cost of
collecting and analyzing these samples. In retrospect, the most
rapid changes in many observed parameters occurred immedi-
ately after the gas release commenced and upon its cessation.
More sampling dates around these points would have been ben-
eficial.

• From the data acquired during this experiment, a longer release
phase is indicated in any subsequent experiment.

The release rate of gas was only slowly increased due to con-
cerns about fracturing the sediment and generating a direct conduit
through the sediment to the overlying water. In future geotech-
nical information on sediment strength would better inform this
decision making process.
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