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Summary

1. Policy-makers increasingly demand robust measures of biodiversity change over short time periods. Long-

term monitoring schemes provide high-quality data, often on an annual basis, but are taxonomically and geo-

graphically restricted. By contrast, opportunistic biological records are relatively unstructured but vast in quan-

tity. Recently, these data have been applied to increasingly elaborate science and policy questions, using a range

of methods. At present, we lack a firm understanding of which methods, if any, are capable of delivering unbi-

ased trend estimates on policy-relevant time-scales.

2. We identified a set of candidate methods that employ data filtering criteria and/or correction factors to deal

with variation in recorder activity. We designed a computer simulation to compare the statistical properties of

these methods under a suite of realistic data collection scenarios. We measured the Type I error rates of each

method–scenario combination, as well as the power to detect genuine trends.

3. We found that simple methods produce biased trend estimates, and/or had low power. Most methods are

robust to variation in sampling effort, but biases in spatial coverage, sampling effort per visit, and detectability,

as well as turnover in community composition, all induced some methods to fail. No method was wholly unaf-

fected by all forms of variation in recorder activity, although some performedwell enough to be useful.

4. We warn against the use of simple methods. Sophisticated methods that model the data collection process

offer the greatest potential to estimate timely trends, notablyFrescalo and occupancy–detectionmodels.

5. The potential of these methods and the value of opportunistic data would be further enhanced by assessing

the validity of model assumptions and by capturing small amounts of information about sampling intensity at

the point of data collection.

Key-words: biodiversity, biological records, distribution, Frescalo, occupancy modelling, simula-

tions, trends

Introduction

Robust quantitative measures of the stock and rate of change

in biodiversity are crucial for assessing species’ risk of extinc-

tion (Mace & Lande 1991), for measuring progress against

international targets (Butchart et al. 2010) and testing against

predictions about climate change impacts (Maclean & Wilson

2011). The demands for timely information are increasing. For

instance, the EU Habitat and Bird directives require changes

in species’ status to be reported every 6 years, and progress

against the Convention of Biological Diversity targets is

reported on a decadal basis.

Long-term, standardized, monitoring schemes produce

timely and robust estimates of status and trends, often on an

annual basis (Gregory et al. 2005). Unfortunately, such data

are available for only a small number of taxa in a few countries.

The next best sources are opportunistic data, such as those

available on the Global Biodiversity Information Facility

(GBIF), including records submitted by volunteers (Prender-

gast et al. 1993). These data are less structured than monitor-

ing schemes but high in quantity: GBIF comprises

>400 million observations of 1�4 million species (http://www.

gbif.org). Opportunistic data have delivered substantive

insights into the ecological impacts of climate change (Hickling

et al. 2006), invasive species (Roy et al. 2012) and habitat loss

(Warren et al. 2001).

While opportunistic data have been used to describe coarse-

scale changes in biodiversity (Thomas et al. 2004; Carvalheiro

et al. 2013), the absence of standardized protocols presents

serious challenges for estimating timely trends in the status of

individual species. The noise generated by opportunistic sam-

pling has the potential to swamp any signal of real change, or

to produce spurious signals of change where none exists. We

use the term ‘variation in recorder activity’ to refer to the sam-

pling biases inherent in opportunistic data, of which there are

four principle forms: (i) uneven recording intensity over time,

measured as the number of visits per year (a visit is defined as

unique combination of site and date in the records data), (ii)

uneven spatial coverage, (iii) uneven sampling effort per visit

and (iv) uneven detectability. Each source of variation has the
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potential to introduce substantial bias in trend estimates for

individual species. The growth of citizen science programs

(Dickinson et al. 2012) is likely to increase data volumes, and

affect the nature of recordingwith potentially far-reaching con-

sequences for how the data may be used to infer biodiversity

trends (Tulloch et al. 2013).

In the past, opportunistic data were collated into broad time

periods, for example published Atlases. This compensates to

some degree for variation in recorder activity, allowing

changes in species’ distributions to be assessed over the years

between atlas periods (Thomas et al. 2004; Tingley &Beissing-

er 2009; Botts, Erasmus &Alexander 2012). This approach has

limited potential to deliver trends in a timely fashion, because

Atlas periods are typically measured in decades. In principle, it

should be possible to derive trend estimates on subdecadal

time-scales by incorporating information about the data col-

lection process (Szabo et al. 2010; Roy et al. 2012; van Strien,

van Swaay & Termaat 2013). Therefore, a pressing need exists

to understand how recorder activity can be treated statistically.

There are numerous methods proposed in the literature for

estimating trends in species’ distributions from opportunistic

data while taking into account recorder activity. A number of

authors have proposed methods based on filtering the data

(Rich & Woodruff 1996; Maes & Van Dyck 2001; Warren

et al. 2001; Hickling et al. 2006; Kuussaari et al. 2007; Van

Calster et al. 2008; Maes et al. 2012; Roy et al. 2012), based

on the number of years per site and/or the number of species

per site (or visit). All are based on the premise that filtering is

an effective tool to remove the bias while leaving a signal of

biological change.

A second category of methods has a statistical correction

procedure to treat recorder activity. Thesemethods are less fre-

quent in the literature than selection methods, but have a

greater variety of mechanisms to control for recorder activity.

Many authors have sought to correct for uneven sampling

intensity over time. Telfer, Preston & Rothery (2002) used the

estimated trend in all species together as an indirect measure of

how recording intensity differed between two sampling peri-

ods. If recorder intensity is higher in the second period, all spe-

cies are expected to show increases compared with the first

period. Any deviation from the overall expected trend is con-

sidered as an index of change for the species of interest. Ball

et al. (2011) proposed that modelling a species’ status as the

proportion of the total records would be an effective way to

control for changes in overall recording intensity over time,

under the assumption that the effort per visit does not vary

among years. Szabo et al. (2010) proposed a modification in

which individual visits (or species lists) are the unit of analysis

(thereby controlling for variation in the number of lists over

time). Their innovation was to treat the number of species on

the list (the list length,L) as a proxy for recorder effort per visit.

Another innovation is to add the study site (or grid cell) as a

random effect (Kuussaari et al. 2007; Roy et al. 2012), to con-

trol for uneven sampling in space. An alternative type of cor-

rection factor is to use benchmark species as proxy for

recorder activity. Benchmarks are common species whose dis-

tribution is assumed to show no overall trend (Hill 2012).

Occupancy–detection models, which are derived from cap-

ture–recapture theory (MacKenzie 2006), have recently been

successfully applied to large-scale models of distribution

(Lahoz-Monfort, Guillera-Arroita & Wintle 2013) and distri-

butional change (van Strien et al. 2010; van Strien, van Swaay

& Termaat 2013). The key feature of occupancy–detection

modelling is the use of replicated visits within a season to esti-

mate the conditional probability that a species is recorded

when present. Themodel consists of two hierarchically coupled

submodels: one governing occupancy (presence vs. absence)

and the other governing the observations (detection vs. non-

detection).

Here, we test the statistical properties of a representative set

of methods using computer simulation.We focus on situations

where species’ occurrences are recorded with high temporal

and spatial precision (the site visit), and where an observation

of one species can often be used to infer the non-detection of

others (i.e. species are typically recorded as an assemblage).

Most of the methods we compare have been designed to use

such data, but they interpret non-detections in a variety of

ways. Specifically, we estimate the Type I error rates of 11

methods under realistic scenarios of recorder activity, and their

power to detect genuine trends in species’ occupancy. Our aim

was to identify methods that produce timely trend estimates

and that are robust to multiple forms of variation in recorder

activity. Identifying robust and powerful methods would open

a vast frontier of previously unexploited data for use in both

biodiversity policy and applied ecology.

Materials andmethods

SIMULATION OVERVIEW

We constructed a computer simulation to assess the perfor-

mance of candidate methods under simple deviations from

random sampling and changes in community composition.We

generated species occurrence matrices using simple rules,

which were then subjected to a suite of recording scenarios by

virtual observers (Zurell et al. 2010) to generate a set of real-

ized data sets. Most recording scenarios simulate temporal

trends in recorder activity, generating bias in the pattern of

detection and non-detection. Where possible, our scenarios

were parameterized using observed patterns of recording in the

Great Britain and the Netherlands (see Appendix S1 for

details). We ran all simulations over a period of 10 years, but

the species occurrence matrix remained unchanged over time

formost species undermost scenarios.

For each realized data set, we estimated a trend in the distri-

bution of one ‘focal’ species using 11 candidatemethods, which

are defined below. The performance of each method–scenario

combination was assessed from 1000 simulated data sets. We

conducted separate tests of each method’s validity and its

power to detect change.

All the computer code required to run the simulations is

available from a Github repository (https://github.com/Bio-

logicalRecordsCentre/RangeChangeSims). Appendix S2 con-

tains information about how to access and use the code.
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SPECIES OCCURRENCE MATRICES

Our system consists of 1000 ‘sites’, which we assert to be

separated in space (although for simplicity our simulation is

not spatially explicit). Our sites can be thought of as a sam-

ple of 1 km2 grid cells (Roy et al. 2012; van Strien, van

Swaay & Termaat 2013), but the precise definition is not

important. Each test data set consisted of one focal species

and 25 non-focal species (preliminary analyses with up to

200 non-focal species produced identical results). Species

were distributed randomly among sites: each distribution

was determined by drawing 1000 times from a binomial dis-

tribution with a species-specific probability of being occu-

pied. For the focal species, we fixed this probability at 50%

in all simulations; for non-focal species, we used random

numbers from a beta distribution with shape parameters 2

and 2, such that mean species richness among sites was

c. 13 species, with a variance among sites of c. 5.

CONTROL SCENARIO

This section defines theControl scenario, which corresponds to

random sampling. Each year, a team of virtual observers vis-

ited a certain number of sites. In a selection of British and

Dutch recording data sets, the distribution of visits among sites

each year is characterized by a power law in which the number

of sites receiving n visits is 4 times greater than the number

receiving 2n visits (Fig. S5, Table S1). We therefore defined

the probability of any site receiving n visits as a.n�2, where a is

the probability of being visited once.We selected three levels of

overall recording intensity: a = 0�05 (low), 0�07 (medium) and

0�10 (high). This range of values was chosen to generate data

sets that superficially resemble the records of British butterflies

(high intensity), Odonata (medium) and Hymenoptera (low

intensity; Figs S5–S6, Tables S1–S4). The frequency distribu-

tion of visits among sites was sampled from the power law

function above, truncated so that no site receivedmore than 10

visits in any one year.

Having determined the number of sites to be visited in any

year, we then selected the identity of these sites at random, but

apportioned visits among them non-randomly. Specifically,

visits were allocated to selected sites according to species rich-

ness, with the most speciose site receiving most visits. This was

carried out to mimic real data sets in which records are clus-

tered around nature reserves and other sites that are known to

harbour interesting wildlife.

Site visits under the Control scenario have equal survey

effort, but do not automatically record all species present.

Each species had a fixed probability of being detected if

present: the focal species’ detection probability was fixed at

0�5 per visit; for non-focal species, the detection probability

was drawn at random from the sigmoid curve described in

Hill (2012) and varied from 0�16 to 0�88. This species-spe-

cific detection probability can be thought of as the product

of visual apparency (Dennis et al. 2006) and mean abun-

dance. Species’ detection probabilities were uncorrelated

with occupancy.

BIASED RECORDING SCENARIOS

We devised five biased recording scenarios (Table 1): four cap-

ture the major axes of variation in recorder activity identified

above and were generated by subsampling records generated

by theControl. The final scenario simulates changes in commu-

nity composition.

The first simulates an increase in the number of visits per

year (i.e. recording intensity is uneven over time, Fig. S1). In

theMoreVisits scenario, the expected number of visits per year

doubled over the 10-year recording period. We simulated this

by subsampling from the Control scenario: each year, we sam-

pled (without replacement) a proportion of visits, with the pro-

portion in the final year set equal to 1. Our second scenario,

MoreVisits+Bias, is a modification in which a trend exists in

the ratio of focal:non-focal sites being visited, thus simulating

temporal change in the spatial coverage of sites. Specifically,

sites containing the focal species are 27%more likely to be vis-

ited (than non-focal sites) in year one, but in year 10, the focal

and non-focal sites are equally represented.

Uneven sampling per visit is the thirdmajor axis of variation

in recorder activity (Figs S3–S4). Inter-annual variation in

sampling, effort is a potentially serious form of bias for some

methods, because it affects species’ probabilities of being

recorded. We simulated a directional trend towards shorter

lists, as might result from changes in recorder behaviour (e.g. a

growth in the number of inexperienced recorders with limited

identification skills). In the LessEffortPerVisit scenario, visits

from the Control were selected at random and resampled to

produce shorter lists. The proportion of visits producing short

lists varied from year to year, increasing from 60% to 90%

during each simulation. Short lists contained 1, 2 or 3 species,

in the ratios 2:1:1, respectively. The total number of records

produced byLessEffortPerVisit is around half the number pro-

duced by theControl.

Table 1. Description of recording scenarios in the simulation

Scenario Summary

Control Constant recording intensity over years. All

species have a fixed probability of being

recorded per visit

MoreVisits Number of visits per year doubles over the

course of the recording period, as would be

observed if the number of recorders increased

MoreVisits+Bias AsMoreVisits, the extra visits are biased

towards sites where the focal species is present,

asmight be observed if the spatial footprint of

recording changed over time

LessEffortPerVisit Sampling effort per visit declines over time,

increasing the proportion of ‘short lists’ from

60% to 90%of visits, reflecting a shift from

systematic to ‘incidental’ recording

MoreDetectable The focal species is 20%easier to detect at the

end of the recording period than at the start,

for example if a new field guidemakes it easier

to identify

NonFocalDeclines 50%of non-focal species are each declining at

30%over the recording period
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We also model situations in which species become more

detectable over time, for example through the adoption of new

technology or publication of a field guide. In the MoreDetect-

able scenario, we model a gradual increase in the focal species’

probability of detection per visit, from 0�4 at the start of the

simulation to 0�5 at the end (i.e. a 20% increase over the

recording period).

Several of the methods under test measure relative, rather

than absolute, change. For this reason, an important consider-

ation is the degree to which these relative trends are impacted

by changes in the status of other (non-focal) species. We tested

this by simulating a decline of 30% over 10 years in 50% of

non-focal species (NonFocalDeclines). Declining species were

selected at random in each simulation.

RANGE CHANGE METHODS

We compare 11 methods of trend estimation, which we

selected to represent the diversity of approaches that have been

applied in the literature. Methods differ in the spatial and tem-

poral resolution at which they are applied, but we focus on the

underlying assumptions they make (specifically with respect to

non-detections). Technical details of all the methods, including

mathematical notation, can be found inAppendix S1.

Our simplest measure of change is the linear trend (or differ-

ence) in the annual number of sites (or grid cells) on which the

focal species was detected [i.e. a Poisson generalized linear

model (GLM)]. This model has no mechanism to control for

recorder activity, so we refer to it as the Na€ıve method. The

Na€ıve method is unique in that it uses only records from the

focal species. All others employ records from other species to

control for variation in recorder activity, either assuming that

a record of one species indicates the absence of others, or as a

means of estimating sampling effort.

We included the methods of Telfer, Preston & Rothery

(2002) and Hill (2012), both of which are commonly used in

the literature (Powney et al. 2013; Fox et al. 2014). The Telfer

index for each species is the standardized residual from a linear

regression across all species (see Appendix S1 for details) and

is a measure of relative change only, because the average real

trend across species is obscured. We predict that Telfer will be

sensitive to scenarios in which recording is biased with respect

to the focal species (e.g. spatial bias or changes in detectability).

Hill’s method, which is known as Frescalo, uses information

about sites’ similarity to one another to assign local bench-

marks within neighbourhoods, and provides site-specific esti-

mates of recording intensity. We compare two variants: in

Frescalo_P,we pooled the data into two equal time periods; in

Frescalo_Y, the data were analysed in ten time periods (i.e. one

per year). Frescalo trends are expressed as the reporting rate of

focal species relative to that of the benchmarks (Hill 2012; Fox

et al. 2014). We predict the performance of Frescalo will be

similar toTelfer’smethod, butmore powerful.

Our remaining methods are based on generalizations of a

simple model calledReportingRate, in which the response vari-

able is the proportion of visits within a given year that produce

a record of the focal species (Ball et al. 2011), and which we

model as a binomial GLM with year as a covariate (Appen-

dix S1).Modelling the focal species as a proportion is expected

to make the trend estimate robust to unevenness in recording

over time (MoreVisits scenario). To this simple model, we can

add four components (Table 2, Fig. S8), each of which is

designed to address one specific form of variation in recorder

activity.

Filtering the data based on number of years per site (+SF)

and adding a random effect for site identity (+Site) are both

intended to address the problem of uneven spatial coverage

over time (MoreVisits+Bias scenario). Our site-filtered

(+SF) models contain only those sites that received visits in

at least 2 of the 10 years in the simulation. Adding a list

length covariate (+LL), as in Szabo et al. (2010), provides a

means to control for uneven sampling effort per visit (LessEf-

fortPerVisit). The fourth component is the addition of a

nested submodel for detection, and our OccDetSimple model

is formulated following MacKenzie et al. (2002), but for mul-

tiple seasons (one per year: see Appendix S1 for details). We

included all four single-component models (Table 2) in our

simulation. However, these components can be applied

Table 2. Trend estimation methods and their the key features. The ‘trend unit’ column refers to the units in which trends are expressed. The ‘grain

size’ defines the basic unit of analysis. The remaining columns indicate which components each method employs for dealing with variation in recor-

der activity. See Appendix S1 for further details

Method Trend unit Grain size Non-detections

Site

filtering

List length

covariate

Random

site effect

Detection

submodel Other

Na€ıve Site Year

Telfer Site Species X X

Frescalo_P Site Site : Period X X

Frescalo_Y Site Site : Year X X

ReportingRate Visit Year X

RR+SF Visit Year X X

RR+LL Visit Visit X X

RR+Site Visit Visit X X

OccDetSimple Site Visit X X

RR+SF+LL+Site Visit Visit X X X X

OD+SF+LL+Site Site Visit X X X X X
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together; for example, van Strien, van Swaay & Termaat

(2013) included a detection submodel with a list length co-

variate (+LL) and terms to control for phenological varia-

tion in detectability (which we do not consider here). We

include two multi-component models in our simulation: one

with all components except the detection submodel

(RR+SF+LL+Site) and the model with all four compo-

nents (OD+SF+LL+Site), in which OD refers to the fact

that occupancy and detection are modelled separately.

We predict that multi-component models are likely to be

more robust than single-component models, which in turn will

outperform the simplest models (Na€ıve, ReportingRate). How-

ever, we predict that some components are likely to lead to a

loss of power. In particular, filtering the data (+SF models) is

likely to reduce power because the number of observations is

reduced. We also suspect that occupancy–detection models

might have low power, due to their greater statistical

complexity.

ESTIMATING THE TRENDS AND EVALUATING MODEL

PERFORMANCE

For each simulated data set, we tested the null hypothesis of no

change in the focal species’ distribution using each of the 11

method variants (see Appendix S1 for details). For Telfer and

Frescalo_P, we split the realized data into two 5-year periods.

To implement Frescalo, we generated a random matrix of

neighbourhood weights: randomly generated neighbourhoods

would be inappropriate for real data sets where communities

show strong evidence of species sorting, but are reasonable for

our simulated data inwhich species were independently distrib-

uted. Other parameters of Frescalo were set following Hill

(2012). We implemented occupancy–detection models in a

Bayesian framework using JAGS with three Markov chains,

5000 iterations per chain, a burn-in of 2500 and a thinning rate

of three (van Strien, van Swaay&Termaat 2013).

For the test of validity, the distribution of the focal species

remained unchanged throughout the simulation: the Type I

error rate, a, is the proportion of 1000 simulated data sets in

which the null hypothesis was rejected at P = 0�05. In the test

of power, we simulated a linear decline in occupancy: each

occupied site had a constant probability of extinction per year,

such that occupancy declined on average by 30% over the 10-

year period (i.e. the species would qualify as Vulnerable under

IUCN Criterion A2). A simple estimate of power would be

1 � b, where b is the rate at which we failed to reject the null

hypothesis (i.e. the Type II error rate). However, some scenar-

ios are designed to introduce negative bias in the trend esti-

mates, so b is not comparable across scenarios. Instead, we

defined power as 1 � b � a: in cases where a + b > 1, we

set power equal to zero.

Results

About half the methods return appropriate Type I error rates

(a = 0�05) under the control scenario of unbiased even record-

ing, including the Na€ıve model (Fig. 1; Table S5). The Repor-

tingRate, RR+SF and RR+LL (but not RR+Site) methods

return significant results around twice as frequently as

expected. Themethods that split the data into two time periods

(Telfer and Frescalo_P) are both conservative (a � 0�05), as is
themost complexmodel (OD+SF+LL+Site).

All methods experience at least one combination of record-

ing scenario and input parameters in which the Type I error

rate is inflated by a factor of two compared with the Control

(Fig. 1, Table S5). Under most scenarios, the failures become

Fig. 1. Type I error rates of all methods under all scenarios (the proportion of simulated data sets in which a significant trend was detected, even

though no trend exists). Note the square root scale on y-axis. Results are shown for medium levels of recording intensity. The solid and dashed lines

indicate a = 0�05 and a = 0�1, respectively.
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more acute as the recording intensity increases (Fig. S9),

reflecting the fact that small data sets contain insufficient data

to detect the bias and reject the null hypothesis.

As predicted, the Na€ıve model performs badly under virtu-

ally all departures from random sampling. Other methods are

robust to growth in the number of visits (MoreVisits); that is,

the Type I error rate is similar to that observed under the Con-

trol (Fig. 1).

The performance of most methods deteriorates markedly in

our scenario with biased site selection (MoreVisits+Bias):

only Telfer, Frescalo_P and the two multi-component models

(RR+SF+LL+Site, OD+SF+LL+Site) returned Type I

error rates below a = 0�1 at medium recording intensity

(Fig. 1), and only OD+SF+LL+Site showed no increase in

Type I error rates at high recording intensity (Fig. S9).

When recording visits become progressively more incomplete

(LessEffortPerVisit), theReportingRate, RR+SF andRR+Site

all fail, reflecting the fact that it becomes increasingly less likely

that the focal species will be recorded on an average visit. Other

models, including those with List Length coefficients, performed

reasonably well, althoughOccDetSimple returned lower Type I

errors thanOD+SF+LL+Site.

Changes in detectability (MoreDetectable) elevate Type I

error rates in almost all methods. For Frescalo_P and Telfer,

the elevation is slight (a < 0�1 under all levels of recording

intensity, Fig. S9). Only the two occupancy–detection models

are robust.

NonFocalDeclines induce poor performance of RR+LL

models (including RR+SF+LL+Site) and Frescalo_Y, and

moderate elevations for Frescalo_P (Fig. 1, Fig. S9).

Not surprisingly, power is strongly affected by overall sam-

pling intensity, with a twofold increase going from low- to

high-intensity recording (Fig. 2). Power declines under most

deviations from the Control (Fig. 3), but the relative power of

each method is fairly consistent. Models with site filtering

(+SF) are less powerful than those without, and two time per-

iod models (Frescalo_P and Telfer) are less powerful than per-

year models. All except the two occupancy–detection models

lost most of their power under the MoreDetectable scenario.

Three methods (Telfer, RR+LL, RR+SF+LL+Site) com-

pletely failed to detect a trend under theNonFocalDeclines sce-

nario; the power of Frescalowas alsomuch reduced.

Discussion

Our simulations have provided a rigorous test of candidate

methods for estimating trends in species’ distributions from

opportunistic data. Many studies have emphasized the prob-

lem that opportunistic data are characterized by uneven sam-

pling effort over time (Prendergast et al. 1993; Botts, Erasmus

&Alexander 2012;Maes et al. 2012), but we observe that most

methods are robust to variation in the number of visits (More-

Visits scenario). Other forms of variation in recorder activity

present serious problems for many methods, yet are rarely dis-

cussed. We found that no method is wholly robust under all

scenarios, but some perform well enough to be useful, and

some general principles have emerged about how to apply

them to real-world data sets.

We have clear evidence that simple methods easily fail under

realistic scenarios of recording behaviour. The poor perfor-

mance of theNa€ıvemodel is not unexpected, but theReportin-

gRate and its ‘one component’ variants all failed under a

majority of scenarios (Table 3). The variants lacking a site

effect failed even under the Control scenario of random sam-

pling: this occurs because they treat repeat visits to the same

site as independent (the proportion of visits to occupied sites

varies stochastically from year to year). Our findings draw into

question the conclusions of studies that have used such meth-

ods (Szabo et al. 2011; Breed, Stichter & Crone 2012). Telfer’s

method, which is also relatively simplistic, was among themost

robustmethods, but was least powerful, as expected.

Previous studies have compared only simplemethods (Botts,

Erasmus & Alexander 2012), but our results show that sophis-

ticated methods outperform simple ones. To a large extent, we

understand why some methods fail and others perform well.

Models with site effects (+Site) are more robust than those

without, because they control for uneven sampling of sites over

time. Models with list length coefficients (+LL) are robust to

variation in sampling intensity among visits, although this

comes at a cost of sensitivity to changes in non-focal species.

Occupancy–detection models are robust under MoreDetect-

able because they explicitly model the detection process. As

predicted, our multi-component models were robust to more

scenarios than single-component models. Our results clearly

show that methods which model the data collection process,

such as Frescalo and occupancy–detection models, have the

greatest potential for delivering robust and timely trends from

opportunistic data.

Fig. 2. Power to detect a 30% decline in the focal species under the

control scenario, plotted against recording intensity.
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We were surprised that Frescalo_P (although not Frescalo_Y)

appears to bemoderately robust to scenarios where the focal spe-

cies undergoes separate treatment (MoreVisits+Bias, MoreDe-

tectable). We need a better understanding of Frescalo, perhaps

using real data incorporating information on neighbourhood

weights (whichwe did not include in our simulation).While Fres-

calo_P performed well in our simulations, we have a number of

reservations about its usage. First, using the method requires the

user to make a variety of choices, in addition to the number of

time periods. The selection of benchmark species and neighbour-

hoods are defined by input parameters (Hill 2012) which have

considerable impact on the trend estimates that are produced

(A.J. van Strien, M.P. de Zeeuw and A. Doroszuk, unpublished

data). Secondly, our simulations compared all methods at the

same spatial scale, but the typical grain size for Frescalo is 100-

fold larger (100 km2 vs. 1 km2) than used by methods which

treat the visit as the fundamental unit (Roy et al. 2012; van

Strien, van Swaay & Termaat 2013), so the number of unique

observations (andhence power) is also lower.This coarse-grained

approach reflects both computational limitations (neighbour-

hoods are definedby anN*Nmatrix,whereN is number of sites),

and the need to robustly estimate recording intensity for each

neighbourhood. Estimating recording intensity reflects the fact

that Frescalo was specifically designed for situations in which

information from individual visits is unavailable (Hill 2012),

which makes Frescalo_P the most appropriate method for

describing long-term change where the periods are well-defined

(e.g. published atlases).

Our multi-component occupancy–detection model

(OD+SF+LL+Site) is the clear winner in our simulations

(Table 3). The Type I error rates were among the lowest of all

methods: this is a simple consequence of the fact that it is the

most generalized model we tested, with components to deal

with multiple forms of bias. It also has considerably more

power than we expected. These results clearly validate the use

of occupancy–detection models for analysing opportunistic

data (van Strien, van Swaay&Termaat 2013), but raise a num-

ber of questions about which components should be employed

for real data sets.

The worst performance ofOD+SF+LL+Site came under

LessEffortPerVisit: the Type I error rates were around eight

times higher than under the Control, while less sophisticated

models (notablyRR+SF+LL+Site andOccDetSimple) were

unaffected (Fig. 1). This result implies that the detection

submodel may be sufficient to control for uneven sampling

Fig. 3. Power to detect a 30%decline in the focal species undermedium recording intensity for all scenarios.

Table 3. Summary ofmethod performance across all tests

Method Summary of key findings

Na€ıve Inflated type I errors under amajority of

scenarios

Telfer Robust but least powerful

Frescalo_P Mildly inflated under two scenarios

(MoreVisits+Bias&

NonFocalDeclines) but otherwise

robust. Less powerful than ‘per-year’

methods

Frescalo_Y More powerful than Frescalo_P but

inflated type I errors under 3 scenarios

ReportingRate Inflated type I errors under amajority of

scenarios

RR+Site Filtering Inflated type I errors under amajority of

scenarios. Some loss of power due to site

filtering

RR+List Length Inflated type I errors under amajority of

scenarios

RR+Site effect Inflated type I errors under 3 scenarios.

Most powerful underControl scenario

RR+SF+LL+Site Inflated type I errors under 3 scenarios.

Some loss of power due to site filtering

OccDetSimple Inflated type I errors under

MoreVisits+Bias. Otherwise robust

OD+SF+LL+Site Generally robust and powerful
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effort per visit, and that the+LL component may be superflu-

ous or even counterproductive. We found that filtering the

data to include only ‘well-sampled sites’ (+SF variants) was

partially, but not wholly, successful in dealing with uneven

sampling of sites (MoreVisits+Bias). It is conceivable that per-

formance could have been improved by increasing our thresh-

old to 3 years (as in Roy et al. 2012), but at the cost of

substantially reduced power: under medium recording inten-

sity, about 80% of sites were visited in 1 year, 50% in at least

2 years and just 20% in three or more. Data filtering is funda-

mentally limited by the assumption that subjective thresholds

can separate the signal from the noise, so we need another way

to deal with uneven sampling of sites.

Ultimately, the robustness of any model is dependent on its

assumptions, and whether those assumptions are valid. We

modelled a suite of recording scenarios, but there is a gap

between our idealized simulations and the reality of how

opportunistic data are collected. There is a clear need to devise

diagnostic tests to assess the validity of these assumptions for

real data sets, but this is challenging because we lack informa-

tion about how the records were generated. Most methods we

compared assume, at some level, that species are recorded

within assemblages during site visits (i.e. failure to record is

interpreted as non-detection, as opposed to ‘not searched for’).

Our +LL models relax this assumption using list length as a

proxy for sampling effort, which assumes that short lists are

the result of incomplete surveys, but this is not universally true

(e.g. on sites with few species). The growth of technology in

wildlife recording, including smartphone apps, offers great

potential to capture metadata about sampling intensity (e.g.

start and end times of the survey) with minimal input from the

recorder. These data would go a long way to make inferences

from opportunistic data more robust in future (K�ery et al.

2009; van Strien, van Swaay&Termaat 2013).

Our results provide further confirmation that opportunis-

tically gathered data have enormous potential to make

meaningful contributions in biodiversity science and policy-

making (Schmeller et al. 2009; Tulloch et al. 2013). All the

variants of our generalized trend model (but not Frescalo)

can easily incorporate covariates, making them ideal for

testing hypotheses about the drivers of biodiversity change

(c.f. Roy et al. 2012). Our results provide an evidence base

for producing quantitative trends from opportunistic data

and a benchmark against which future methods can be

compared.
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