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Abstract. We present a new seafloor map for the northern

Antarctic Peninsula (AP), including swath multibeam data

sets from five national programs. Our map allows for the

examination and interpretation of Last Glacial Maximum

(LGM) paleo-ice-flow paths developed on the seafloor from

the preservation of mega-scale glacial lineations, drumlin-

ized features, and selective linear erosion. We combine this

with terrestrial observations of flow direction to place con-

straints on ice divides and ice domes on the AP continental

shelf during the LGM time interval. The results show a flow

bifurcation as ice exits the Larsen B embayment. Flow em-

anating off the Seal Nunataks (including Robertson Island)

is directed toward the southeast, then eastward as the flow

transits toward the Robertson Trough. A second, stronger

“streaming flow” is directed toward the southeast, then south-

ward as ice overflowed the tip of the Jason Peninsula to reach

the southern perimeter of the embayment. Our reconstruction

also refines the extent of at least five other distinct paleo-ice-

stream systems that, in turn, serve to delineate seven broad

regions where contemporaneous ice domes must have been

centered on the continental shelf at LGM. Our reconstruction

is more detailed than other recent compilations because we

followed specific ice-flow indicators and have kept tributary

flow paths parallel.

1 Introduction

The reconstruction of paleo-ice sheets/stream-flow directions

depends first upon an accurate assessment of ice domes,

ice divides, and outlet flow paths (Andrews, 1982). Stud-

ies of the configuration of the Antarctic Peninsula Ice Sheet

(APIS) during the Last Glacial Maximum (LGM; time inter-

val ∼ 23–19 kyr BP) suggest that the grounded ice reached

the continental-shelf break (e.g., Larter and Barker, 1989;

Banfield and Anderson, 1995; Larter and Vanneste, 1995;

Wellner et al., 2001; Canals et al., 2002; Evans et al., 2005;

Heroy and Anderson, 2005; Amblas et al., 2006; Wellner et

al., 2006; Simms et al., 2011). The seafloor of the Antarc-

tic Peninsula (AP) continental shelf is characterized by over-
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deepened troughs and basins where mega-scale glacial lin-

eations (MSGLs) (Clark, 1993; Clark et al., 2003) and large-

scale flow line bedforms such as glacial flutes, mega-flutes,

grooves, drumlins, and crag-and-tails provide geomorphic

evidence for former regional corridors of fast-flowing ice and

drainage directions of the APIS on the continental shelf. Also

of importance is their synchroneity as the ice flows change

during the ice sheet evolution from ice sheet to ice stream to

ice shelf (Gilbert et al., 2003; Dowdeswell et al., 2008).

Our capability to image specific flow directions and styles

on the Antarctic continental shelf is critical to any glacial re-

construction because they help us to understand the present

and future ice sheet’s behavior. Recently, Livingstone et

al. (2012) published an inventory of evidence for paleo-ice

streams on the continental shelf of Antarctica at LGM. Their

reviews are in agreement with previous studies and highlight

that the western (Pacific) AP continental shelf is character-

ized by preferred regional ice-flow pathways on the middle

shelf through cross-shelf troughs connected to major flow

paths on the outer shelf (e.g., Evans et al., 2004; Heroy and

Anderson, 2005). On the other side, the eastern (Weddell

Sea) AP continental shelf is less well defined but charac-

terized by multiple deep tributaries on the inner shelf that

converge in shallow troughs on the mid- to outer shelf (e.g.,

Evans et al., 2005). Nevertheless, our knowledge on the APIS

configuration at the LGM time interval, such as paleo-flow

paths in the Larsen B embayment, is limited and particu-

larly relevant to the ice sheet reconstruction, where the broad

continental shelf served as a platform for extension of the

glacial systems that spilled off the Detroit and Bruce Plateau

ice caps. In fact, the AP is believed to have experienced the

largest percentage change in areal extent of glacial cover of

any sector of the Antarctic margin through the last glacial cy-

cle (i.e., MIS stages 2 to 1). For instance, our reconstruction

shows that the current APIS covers ∼ 23 % of the total area

of grounded ice coverage at LGM. The APIS system in par-

ticular is a significant bellwether system in the evolution of

the Antarctic Ice Sheet because it is

1. the one system today that is most closely tied to surface-

driven ablation and accumulation change (Rebesco et

al., 2014) rather than driven mainly by oceanographic

change such as in the West Antarctic Ice Sheet, hav-

ing equilibrium lines above sea level (a.s.l.) as a conse-

quence of significantly warm summer temperatures;

2. exposed to a contrasting oceanographic regime of cold

and warm water on the eastern and western sides, re-

spectively; and

3. the most northern of the ice sheet systems and is ex-

posed to southward excursions in westerly winds and

the Antarctic Circumpolar Current.

In this paper, we examine and interpret the paleo-ice-flow di-

rections of the APIS based on a new synthesis of single and

swath bathymetry data and provide a comprehensive assess-

ment of the flow paths, ice divides, and ice domes pertaining

to the glacial history of the northern APIS at the LGM time

interval. These ice divides can either be ice ridges or local

ice domes with their own accumulation centers, which are

ice divides with a local topographic high in the ice surface

and flow emanating in all directions (although not necessar-

ily equally). The shape of an ice dome may range from cir-

cular to elongated; elongated ridge-like ice domes are com-

mon amongst the present-day ice streams of West Antarc-

tica. The spatial coverage of the bathymetric data is exten-

sive (Fig. 1) and for this and the above reasons we focus on

regional systems by dividing it into seven sectors. These in-

clude the (1) Larsen B embayment, (2) Larsen A and James

Ross Island, (3) Joinville Archipelago Platform, (4) Brans-

field Strait, (5) Gerlache–Croker–Boyd straits, (6) Palmer

Deep and Hugo Island Trough, and (7) Biscoe Trough. First,

we highlight the geomorphic features that define the specific

flow paths at LGM and glacial tributaries across the inner

to outer shelf. We combine this with terrestrial observations

of flow direction to place constraints on ice divides and ice

domes that controlled the APIS flow drainage and subsequent

retreat history. Finally, we discuss the characteristics of the

reconstructed northern APIS and its regional significance for

ice sheet modeling.

2 Methods

2.1 Data sets

Extensive multibeam swath bathymetry data have been ac-

quired from several regions including those recently uncov-

ered by the collapse of the Larsen Ice Shelf system. Ice-

flow directions within the Larsen B embayment are indicated

by a series of interconnected (1) multibeam surveys begin-

ning with a USAP program in 2000 and followed by the

British Antarctic Survey (2002), additional USAP surveys

(2001 and 2006), Alfred Wegener Institute, Helmholtz Cen-

tre for Polar and Marine Research surveys (2007 and 2011),

Korea Polar Research Institute survey (KOPRI, 2013) under

the LARISSA project, and (2) single-beam sonar data from

USAP in 2005. Detailed observations of the seafloor mor-

phology in the Larsen A embayment, the area surrounding

James Ross Island and offshore from Joinville Archipelago

were collected by the USAP program between 2000 and

2002, 2005 and 2007, and in 2010 and 2012, including

work by the British Antarctic Survey (2002) and United

Kingdom Hydrographic Office (2006–2008). The Bransfield

Strait has been covered by the Spanish Antarctic program

between 1991 and 1997, USAP program (1995–1997, 1999–

2002, and 2005–2011), and United Kingdom Hydrographic

Office (2006–2008, 2010 and 2012). The multibeam swath

bathymetry data from the Gerlache–Croker–Boyd Strait,

Palmer Deep and Hugo Island Trough, and Biscoe Trough
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Figure 1. Location map and details of the swath bathymetry database, as compiled up to 2013, around the northern Antarctic Peninsula (AP).

Offshore topography is gridded at 30 m. The shelf break is shown as a black dashed line. The gray box indicates the regions detailed in Fig. 2.

The background image on land is from RAMP AMM-1 SAR Image 125 m Mosaic of Antarctica; the coastline is from the British Antarctic

Survey (BAS; http://www.add.scar.org/); the bathymetry contour interval of 250 m is from IBCSO (Arndt et al., 2013). The inset shows the

location of the northern AP in Antarctica. Abbreviations: HIT – Hugo Island Trough, LFT – Lafond Trough, LCT – Laclavere Trough, MST

– Mott Snowfield Trough.

are from the USAP program (1995–1997, 1999–2002, and

2005–2012), the Spanish Antarctic program in 1996–1997

and 2001–2002, and KOPRI (2013). The data set was grid-

ded at a cell size of 30 m× 30 m and analyzed with illu-

mination at variable azimuths. The high-resolution seabed

images were gridded at a cell size of 25 m× 25 m. Addi-

tional single-beam sonar data from NOAA National Geo-

physical Data Center Marine Trackline Geophysical database

(http://ngdc.noaa.gov/mgg/geodas/trackline.html) were used

to support the delineation of the continental-shelf ice domes.

2.2 Bedform mapping

We assume that our flow line reconstructions over sedimen-

tary deposits are contemporaneous to the LGM time interval

and that observed seafloor lineations over resistant substrate

were carved last by the APIS at LGM, although formation of

the latter may derive from time-integrated glacial processes

(e.g., Nývlt et al., 2011). While it is possible that some por-

tion of the preserved flow line features we examine are repre-

sentative of the “death mask” state of the APIS (i.e., Wellner

et al., 2006) rather than the mature LGM stage of the system,

we suggest that this in general is not the case. We base this

hypothesis upon specific observations and assumptions that

include

1. only slight modification of flow trajectory as preserved

along recessional grounding zones (i.e., Evans et al.,

2005, Fig. 7), and such flow relationships are easily re-

solved;

www.the-cryosphere.net/9/613/2015/ The Cryosphere, 9, 613–629, 2015
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2. a general shelf slope gradient that does not, except very

locally, provide significant reversal in relief to have in-

fluenced evolving flow paths as ice would have thinned

(drawn-down) and receded toward the coast;

3. clear association of converging flow paths from areas

that would have provided divergent flow during stages

of retreat (i.e., as from shelf ice domes).

From the observed seafloor lineations, we establish a cen-

tral flow line at the root of each tributary glacier adjacent to

areas of reasonable coverage in the multibeam data. We pre-

served these central flow lines by forcing tributary contribu-

tions to remain parallel and consistent with observed seafloor

lineations. In this way converging flow can be evaluated more

easily than by using “idealized” single-line flow arrows (as

has been done on previous reconstructions). The number of

lines in a given flow path is defined by the number of tribu-

taries and is only a visual approximation of the ice discharge

for that flow path. In some cases, ice flow across the seafloor

diverged around obstacles but remained parallel within the

larger confining troughs or fjords. Small-scale basal-flow di-

vergence patterns such as these were not preserved in our

reconstruction.

The orientation of the bedrock striations at Cape Framnes

and Foyn Point (Larsen B embayment; Fig. 2) were measured

with a Brunton Compass, corrected for regional declination,

and compared to visual data of large-scale bedrock fluting

from overflights during 2010 (USAP-ship-based helicopters

during LARISSA NBP10-01 cruise).

2.3 Ice volume estimation and assumptions

We utilize two different algorithms to estimate volumes of

the ice sheet, depending upon the type of system, streaming

flow, or ice domes. The average depths along the flow paths

are estimated from our swath bathymetry map and the Inter-

national Bathymetric Chart of the Southern Ocean (IBCSO)

map gridded at 500 m (Arndt et al., 2013). For the mini-

mum volumes, we assume that the ice streams were lightly

grounded until the shelf break or to the end of the defined

flow path (except for Larsen B/Jason Trough), where the ice

thickness must be about 10 % more than the average depth

to prevent flotation (allowing the deepest areas to be sub-

glacial lakes rather than full of ice). We assume a minimal

surface slope (0.001) similar to the lowest sloping modern

ice streams. For the maximum volumes, we assume that the

ice was grounded to the continental-shelf break (except for

Larsen B/Jason Trough). We assume the surface slope of the

ice was steeper (0.005) but not too steep to exceed the nearby

ice divide elevations. The real slope will depend on the geol-

ogy. A softer more malleable bed would favor a lower profile

ice stream, while a stiffer bed would lead to a slightly steeper

profile. For the ice domes in this reconstruction, we use a ra-

dially symmetric Bodvarsson–Vialov model as presented in

Bueler et al. (2005). This model assumes the shallow-ice ap-

proximation (no sliding bed) and Glen-type ice flow with a

softness that depends on the average temperature. The model

can directly predict the thickness as a function of distance

from the dome center (r = 0) as

H (r)=

(
2(n−1) ḃ

0

)1/(2n+2)

(1)

(L1+1/n
− r1−1/n)n/(2n+2),

0 =
2A(ρg)n

n+ 2
, (2)

where H is the ice thickness, ḃ is the accumulation rate, L is

the lateral extent of the ice dome, assuming it is circular, and

n= 3 for typical Glen-type ice flow. 0 is a parameter that de-

pends on the ice softness, A, which is temperature dependent,

the density (ρ) of ice, and gravity (g). The specific values

of A used are for warm ice 6.8e−15 s−1 kPa−3 and cold ice

4.9e−16 s−1 kPa−3 (Cuffey and Paterson, 2010). Because we

lack specific data for LGM accumulation rate and ice temper-

ature, we use our best guesses to bound the ice thicknesses

and volumes as follows. We assume that the same strongly

orographic precipitation occurred during LGM interval as to-

day and the ice temperature was around 0 ◦C (mostly temper-

ate) for the western AP domes and averaging −20 ◦C for the

domes located on the eastern side. For the modern AP, the

western side has higher average temperatures than the eastern

side, suggesting that, in the past, the ice domes on the western

side were warmer on average than the eastern side. We based

the minimum and maximum dome volumes on a low-end

and high-end approximation of the accumulation rates, re-

spectively. In these accumulation rate assumptions, we took

into account that some domes are more exposed to the pre-

vailing storm direction and some will be in the lee, result-

ing in higher or lower accumulation rates. Also, we take the

geologically defined aerial dome extent and assume a dome

base of circular area that has the same area as the geolog-

ically defined dome. The approximation of a circular dome

with the same average radius as the estimated bathymetric

features will introduce additional source of uncertainty into

the volume estimates. This circular dome assumption may

overestimate volume if the real feature is a oval ridge shape,

but it may underestimate the volume if the dome is bounded

by thick ice streams. Without more constraints, we feel the

uncertainties due to the circular dome assumption are small

compared to the uncertainties due to the accumulation rate

and temperature assumptions.

3 Results

3.1 Larsen B embayment

The major collapse of the Larsen B Ice Shelf in 2002 (Scam-

bos et al., 2003), unprecedented in the Holocene history of

The Cryosphere, 9, 613–629, 2015 www.the-cryosphere.net/9/613/2015/
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Figure 2. Details of seabed morphology in Larsen B embayment associated with paleo-flow-line trajectories based on examination of swath

bathymetry imagery of the seafloor. Distinct flow trajectories split the Larsen B embayment into two outlets by ice-flow bifurcation. The

bathymetry contour interval of 250 m is from IBCSO (Arndt et al., 2013). The gray boxes show the regions detailed in Fig. 3. For location

see Fig. 1.

this glacial system (Domack et al., 2005; Curry and Pud-

sey, 2007), has provided a unique opportunity for seafloor

mapping. This work reveals a far more detailed flow pattern

in Larsen B embayment than that inferred by general ori-

entation of bathymetric troughs derived from sparse swath

or single-line bathymetric data. Such earlier approaches sug-

gested that all Larsen B ice flowed out toward the Robertson

Trough (e.g., Evans et al., 2005; Davies et al., 2012; Living-

stone et al., 2012).

By using a more detailed analysis of flow indicators avail-

able from the swath data, we now recognize two distinct

flow trajectories that split the Larsen B embayment into two

outlets (Fig. 2). The first relates to the attenuated drumlin-

ized bedforms and highly attenuated MSGLs observed in the

northern perimeter of the Larsen B embayment. The ice flow

emanating off the Seal Nunataks and Robertson Island di-

rected flow toward the southeast and then eastward as the

flow transits toward the Robertson Trough, a feature that con-

nects Larsen A and B (Evans et al., 2005). This flow pattern

extends across relatively shallow depths of less than 500 m

and was probably fed by small tributary confluence.

In contrast, the southern perimeter is marked by stronger

“streaming flow” indicators fed by large tributaries draining

the APIS, including the Crane Glacier and most likely the

Evans, Green, and Hektoria glaciers. The well-defined drum-

linized bedforms with crescentic scour and MSGLs indicate

that ice flow was funneled into the Cold Seep Basin (Fig. 3a)

and moved toward the southeast from the interior. From the

southern edge of Scar Inlet (Larsen B Ice Shelf), the swath

bathymetric map shows evidence of a northeastward flow

(Fig. 3b) that shifted in a downstream direction toward the

southeast, thus convergent with the flow streaming from the

Cold Seep Basin corridor. The Scar Inlet ice stream system

was fed by the tributaries of the Starbuck, Flask, and Leppard

www.the-cryosphere.net/9/613/2015/ The Cryosphere, 9, 613–629, 2015
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Figure 3. Close-up on the seabed morphology and swath

bathymetry perspective views. The location of (a)–(c) is presented

in Fig. 2. Offshore topography is gridded at 25 m and shown with

a vertical exaggeration of X3. (a) Bathymetry image shows the

Cold Seep Basin region with drumlinized bedforms and mega-scale

glacial lineations (MSGLs) associated with a paleo-ice-flow direc-

tion, (b) Scar Inlet, and (c) Cape Framnes, south of the Jason Penin-

sula. The paleo-ice-flow direction is indicated by the white arrows.

Figure 4. Photograph from Cape Framnes showing bedrock stria-

tions and flute orientations ESE in agreement with the southward

flow orientation observed on the seafloor (this study). The location

of the photograph and its aspect are indicated by the black arrow on

the Landsat Scenes LIMA. The insets show an isolated bedrock rib,

its location on the landscape, and the flow direction of striations and

bedrock flutes (orange and white arrows) in each case (figure mod-

ified from a map compiled by Spences Niebuhr, Polar Geospatial

Center).

glaciers. Our flow line bedform compilation suggests that the

southeastward flow in the southern part of the Larsen B em-

bayment changed to a southward direction with ice overflow-

ing the tip of the Jason Peninsula, offshore the northern re-

gion of the Larsen C Ice Shelf (Figs. 2 and 3c), to reach the

Jason Trough. This southward flow orientation is supported

by east-southeast bedrock striations and flute orientations at

Cape Framnes, Jason Peninsula (Fig. 4), that are in similar

orientation to the flow indicators found directly offshore.

Finally, the southernmost swath bathymetry data at the

edge of the northern Larsen C Ice Shelf indicate a southeast-

ward ice-flow orientation on a seafloor deeper than 400 m.

Recent seismic reflection soundings close to the northern ice

shelf front and inward show a uniform water cavity thickness

beneath the ice shelf of around 220 to 240 m (Brisbourne et

al., 2014).

3.2 Larsen A and James Ross Island

Our mapped flow pattern of the Larsen A and James Ross

Island sector differs only in fine detail to those of earlier re-

constructions (e.g., Evans et al., 2005; Johnson et al., 2011;

Davies et al., 2012). The data show the establishment of two

major outlets: the Robertson Trough system and the Erebus–

Terror system (Fig. 5). The Robertson Trough system col-

The Cryosphere, 9, 613–629, 2015 www.the-cryosphere.net/9/613/2015/



C. Lavoie et al.: Northern Antarctic Peninsula Ice Sheet at LGM 619

lected flow out of the Larsen A, southern Prince Gustav

Channel, and portions of Admiralty Sound. The ice flowed

from the Larsen A, derived mainly from the Detroit Plateau

(AP), toward the south and then east. It then coalesced with

the southern Prince Gustav Channel flow across the shelf to-

ward the southeast and finally directly east (Pudsey et al.,

2001; Gilbert et al., 2003; Evans et al., 2005). On the outer

shelf the ice flow coalesced with the northern perimeter of the

Larsen B flow to form a major ice-flow trend in the Robert-

son Trough.

The Erebus–Terror system captured flow out of the north-

ern Prince Gustav Channel, Antarctic Sound, and Admiralty

Sound. The northern Prince Gustav Channel shows evidence

of a main eastern flow direction fed by tributaries from ice

caps on Trinity Peninsula and James Ross Island before coa-

lescing with the Antarctic Sound and Admiralty Sound flows

into the Erebus and Terror Gulf to reach the shelf break. Flow

within the Prince Gustav Channel was separated from the

south Larsen A system by an ice divide that extended from

the Detroit Plateau across to James Ross Island (Camerlenghi

et al., 2001). Recent observations and cosmogenic isotope

exposure age dating on erratic boulders on James Ross Is-

land by Glasser et al. (2014) suggest that the ice divide that

crossed the central Prince Gustav Channel may only have

been developed during the post-LGM recession.

3.3 Joinville Archipelago platform

The platform surrounding the northernmost extension of

the AP terrain (D’Urville, Joinville, and Dundee Islands)

has very limited multibeam coverage. Only two distinctive

troughs have been imaged and flow lines are conjectural and

defined (as in earlier approaches) by recognition of bathy-

metric troughs. Portions of the flow out of the Larsen Chan-

nel, between D’Urville Island and Joinville Island, and out

of Active Sound between Joinville Island and Dundee Is-

land ran in a southwestern direction, coalescing with the

Antarctic Sound flow to the Erebus–Terror system. The other

portion shows evidence of east and southeast flows. South

of Joinville Island, the multibeam data imaged drumlin-like

features indicating that ice was grounded on the Joinville

Plateau, suggesting that the APIS extended across the shelf

(Smith and Anderson, 2011; their Fig. 6).

3.4 Bransfield Strait

The continental shelves off the Trinity Peninsula (e.g.,

Lawver et al., 1996; Canals et al., 2002) and the South Shet-

land Islands (Simms et al., 2011) reveal paths of paleo-ice

streams that drained into the Bransfield Strait. This narrow

and deep (greater than 1000 m) strait was formed by rifting,

actively spreading for the past 4 million years in response

to subduction in the South Shetland Trench (Barker, 1982).

Based on seafloor evidence, the grounded ice flow along the

Bransfield Basin’s perimeter transitioned to an ice shelf in

deeper water (floating glacier ice that was not in contact with

the seafloor). This system must have been confined to the

Bransfield Basin between tributary flow out of the Orleans

Strait, off the Trinity Peninsula, and the South Shetland Is-

lands (Figs. 5 and 6). As indicated by the curvature of bed-

forms on the surface of the grounding zone fans (i.e., mouths

of both Maxwell and Admiralty bays) and major troughs (i.e.,

Lafond, Laclavere, and Mott Snowfield Troughs) that extend

into Bransfield Strait, flow of the ice shelf was conjectured to

involve a northeastern direction more or less parallel to the

trend of the basin (Canals et al., 2002; Willmott et al., 2003).

Outlets in the eastern portions of the basin are even less well

defined but must have involved partitioned grounded flow out

across the northern end of the South Shetland Platform (just

northeast of King George Island), out beyond Elephant Is-

land, and into the Powell Basin (Fig. 6). According to the

swath bathymetry data, it is likely that there was a small ice

dome over Elephant Island providing a plug to the northeast-

flowing Bransfield Ice Shelf system.

3.5 Gerlache–Croker–Boyd straits

In the Gerlache–Croker–Boyd straits, the streaming ice flow

is confined in a spectacular bundle structure 100 km long and

flowing to the north-northwest (Canals et al., 2000). Almost

the entire ice drainage out of the Gerlache Strait was fun-

neled through the Croker Passage, which included glaciers

draining the eastern side of Anvers and Brabant islands and

the western flank of the Bruce Plateau (Domack et al., 2004;

Evans et al., 2004). These tributary systems converged at

various depths (submarine hanging valleys) where fjord val-

leys joined the Gerlache Strait and the Croker Passage. This,

along with the large number of tributaries, requires consider-

able constriction of parallel arrangement of flow lines within

the Croker Passage and Boyd Strait outlet path (Fig. 5). Near,

near the shelf break the grounding line system shows a spread

of flow trajectories out toward the shelf break (Canals et al.,

2003; their Fig. 2b).

3.6 Palmer Deep and Hugo Island Trough

The outflow from the Palmer Deep and Hugo Island Trough

is one of the three major tributary systems that terminate as

an outlet system along the western AP continental-shelf edge

(Fig. 5). This flow system was delineated first by Pudsey et

al. (1994), then by Vanneste and Larter (1995), and later out-

lined in detail by Domack et al. (2006). The systems include

tributary glaciers from the Graham Land Coast between 65

and 66◦ S and ice which flowed out of Dallmann Bay around

the northeast corner of Anvers Island (Fig. 5). Along the Gra-

ham Land Coast the ice flow emanating from the fjords di-

rected flow to the northeast, coalescing with the Palmer Deep

ice flow in Hugo Island Trough, and crossed the mid-shelf in

a northern direction to the outer shelf (Domack et al., 2006).

On the outer shelf the ice flow coalesced with the Dallmann

www.the-cryosphere.net/9/613/2015/ The Cryosphere, 9, 613–629, 2015
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Figure 5. Inferred paleo-ice-flow directions and continental-shelf ice domes around the northern AP continental shelf at LGM showing ice

divides (black short-dashed lines), shelf ice domes (gray areas), and the bifurcating flow in the Larsen B embayment. The modern divide

along the AP (black dash line) is probably not at the same location of the LGM divide, but it is close. Also identified are the topographic

banks by Sloan et al. (1995) and the shoal and reef areas of Fig. 7. The bathymetry contour interval of 250 m is from IBCSO (Arndt et al.,

2013).

Bay flow that runs out around the north end of Anvers and

Brabant islands.

3.7 Biscoe Trough

The cross-shelf Biscoe Trough system consists of three flow

branches with overly deepened troughs up to 800 m depth,

a topographic ridge of 300 m high crosses the main branch

of the Biscoe Trough system in a southwest and northeast di-

rection, and a smoother surface toward the shelf edge at 400–

500 m depth (Canals et al., 2003; Amblas et al., 2006). The

flow line bedforms show a general converging westward flow

directions toward the shelf edge. The Biscoe Trough system

also shows a spread of flow trajectories out toward the shelf

break. This system was fed by ice flow primarily off Renaud

Island archipelago but notably also contains indications of

ice flow off mid- to outer shelf banks, with a distinct flow di-

vide between the Biscoe Trough and Palmer Deep and Hugo

Island Trough systems, and south along the trend defined by

Hugo Island.

4 Interpretation and discussion

Based on the above observations we recognized six major

outlets for paleo-ice-stream drainage off the APIS during the

LGM and refined the locations of their ice divides (Fig. 5).

In addition, the patterns revealed by our flow direction re-

construction indicate the locations and areal dimensions of at

least seven major ice domes centered on the middle to outer

AP continental shelf. Below we focus on a comprehensive

interpretation of the new seabed morphology and discuss the

regional implications regarding flow paths, ice divides, and

ice domes.

4.1 Flow bifurcation in Larsen B embayment

Our observations of streamed bedforms in the Larsen B em-

bayment indicate that the modern glaciers (i.e., Crane, Lep-

pard, and Flask Glaciers) were not tributaries of the Robert-

son mid-outer shelf paleo-ice stream as previously inter-

preted by Evans et al. (2005) and highlighted in previous re-

views (e.g., Davies et al., 2012; Livingstone et al., 2012).
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Table 1. Reef and shoal areas in the northwestern Weddell Sea∗.

Latitude Longitude Notes

65.237◦ S 59.251◦W to “Robertson reef”: 49 km long, bearing numerous 005◦ high

65.183◦ S 58.213◦W points, shallow depth (est. ∼ 100 m depth)

66.912◦ S 60.133◦W to “Bawden reef”: extending 34 km from southern end of ice rise,

66.813◦ S 59.468◦W arcuate, bearing numerous 020◦ high points,

shallow depth (est. ∼ 100 m depth)

66.174◦ S 58.968◦W W “Jason shoals”: 12× 18 km region,

66.177◦ S 58.721◦W E 3–4 high points, shallow depth at west end

66.025◦ S 58.806◦W N (est. 100–150 m depth)

65.784◦ S 58.237◦W “Hektoria 1 shoal”, single point (est. > 150 m depth)

65.849◦ S 57.276◦W “Hektoria 2 shoal”, single point (est. > 150 m depth)

65.692◦ S 56.956◦W “Hektoria 3 shoal”, single point (est. > 150 m depth)

66.292◦ S 56.975◦W “Hektoria 4 shoal”, single point (est. > 150 m depth)

∗ Based on sea ice and small iceberg strand sites and winter sea ice fracture loci seen in MODIS image data archived at

http://nsidc.org/data/iceshelves_images/index_modis.html.

Figure 6. Seabed morphology in Bransfield Strait showing the in-

ferred paleo-flow-line trajectories based on the multibeam imagery

(black arrows) and assumptions (black dashed arrows). Background

image is from BedMap2 (Fretwell et al., 2013); the island coast-

line is from the British Antarctic Survey (BAS; http://www.add.

scar.org/); the bathymetry contour interval of 250 m is from IBCSO

(Arndt et al., 2013).

Keeping in mind that there are no surface expressions of

seismic stratigraphic boundaries on the shelf interpreted as

a LGM ice stream bifurcation (Smith and Anderson, 2009),

we provide two possible explanations to explain the flow di-

vergence we observe in the Larsen B embayment. The first

explanation is based on the hypothesis of a non-uniform geo-

logical framework. The diverging flow could be explained by

the southeastward extension of the Seal Nunatak and Robert-

son Island post-Miocene volcanic sequence, in contact with

Mesozoic rocks in the Larsen embayment. We infer from

some seismic data (M. Rebesco, personal communication,

2014) the presence of Mesozoic mudrocks similar to the Nor-

densköld Formation (Jurassic black shale; Reinardy et al.,

2011) and Cretaceous sedimentary sequences of Robertson

Island within the Larsen B embayment. These are known to

have influenced bed deformation within tills derived from

them (Reinardy et al., 2011). One hypothesis, therefore,

would suggest that the divergence of flow was related to

faster flow and was funneled out of the inner Larsen B em-

bayment by a bed that was more easily deformed (mud base)

than the higher friction of the sandy volcaniclastic palagonite

units that comprise the Seal Nunatak massif. Detailed petro-

graphic analysis of the respective tills could test this hypoth-

esis.

We also consider the pre-determined topography and

glacial dynamics that could have split the flow direction on

the mid-shelf. The existence of a slightly elevated seabed

over the middle shelf could have acted as a prow between

the Robertson Trough and Jason Trough, thus causing di-

verging flow. This hypothesis cannot be fully tested at this

time because heavy ice cover in this particular region makes

navigation and acquisition of key swath bathymetry very dif-

ficult. However, some bathymetric data and seismic profiles

from shipboard surveys south of Jason Peninsula do exist

(Sloan et al., 1995) and these show evidence of shallow shelf

banks at less than 300 m water depth. Such topographic highs

could have divided the glacial flow (Fig. 5). The examination

of a time series of MODerate-resolution Imaging Spectro-

radiometer (MODIS) images from the northeastern AP also

shows unequivocal evidence of several previously unknown

reef and shoal areas based on their influence on sea ice drift

and grounding of small icebergs (Table 1, Fig. 7, Supplement

S1, and video S2; see also http://nsidc.org/data/iceshelves_

www.the-cryosphere.net/9/613/2015/ The Cryosphere, 9, 613–629, 2015
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Figure 7. MODerate-resolution Imaging Spectroradiometer (MODIS, 36-band spectrometer) images showing unequivocal evidence of sev-

eral shoal and reef areas (yellow circle) in the northwestern Weddell Sea, based on sea ice drift and grounding of small icebergs (see also

Table 1). The shelf ice domes Hektoria and Robertson are showed in dashed white lines. (a) 5 October 2007, band number (BN) 02 (band-

width 841–876 nm, spatial resolution of 250 m); (b) 20 August 2010, BN 32 (bandwidth 11770–12270 nm, spatial resolution of 1000 m); and

(c) 26 January 2013, BN 02 (bandwidth 841–876 nm, spatial resolution of 250 m).

images/index_modis.html). Luckman et al. (2010) demon-

strated the reliability of using satellite remote-sensing tools

to identify western Weddell Sea grounded tabular icebergs

and to estimate their draft, which they interpreted as max-

imum water depth. In the 12-year series of images, shoal

areas appear as frequent stranding areas of small icebergs,

particularly during heavy winter sea ice periods. Larger ice-

bergs (having 200–350 m keels) show drift paths strongly

controlled by the shoals. Stranding of icebergs (especially for

the informally named Bawden, Robertson, and Jason shoal

or reef areas; see Table 1) indicates the shallowest areas of

the region. These high areas could have served as centers of

glacial nucleation similar to the model proposed for shallows

across the Bellingshausen Sea continental shelf (Domack et

al., 2006).

The two mechanisms described above could have inter-

acted to cause the divergence of the flow observed from

the Larsen B embayment; a process combination of a de-

formation of weak bed material and a bifurcation of the

ice around a topographic high. Divergence of flow lines has

been observed at the margin of the Greenland Ice Sheet and

Antarctica. A modern example that shows fast-flowing ice

bifurcation can be observed on the flow velocity field map

of the northeast Greenland Ice Stream, where the southern

flow feeds Storstrømmrn and flows into the northern out-

let glaciers of Zachariæ Isstrøm and Nioghalvfjerdsfjorden

(Joughin et al., 2001, 2010). Modern analogs such as Siple

Dome show diverging flow of marine-based ice streams (bed

600 to 700 m b.s.l. – below sea level) around a topographic

high only 300 to 400 m b.s.l. (Fretwell et al., 2013). In the
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Siple Coast region, only a 200 to 300 m topographic differ-

ence is sufficient to create diverging flow separated by ice

domes. In addition to these real-world examples, modeling

has shown that either a relative topographic high or a relative

increase in the basal drag can lead to divergence of ice flow

and formation of an elongated ice dome between them. A

number of researchers have modeled the surface expression

of variability in bed topography or bed properties; a compre-

hensive analysis is provided by Gudmundsson (2003).

4.2 Evidence of ice divides

We define an ice divide as a boundary separating divergent

ice-flow directions, i.e., the line that separates neighboring

drainage systems, analogous to a water divide. The separa-

tion of the west and east AP along the Bruce Plateau and De-

troit Plateau on the Trinity Peninsula and the Graham Land

Coast formed the primary ice divide for the AP during LGM.

Our results, based on details of the ice-flow directions and

modern subaerial and submarine topography, suggest that

secondary ice divides split off from the primary ice divide

creating several large draining basins (Fig. 5). On the eastern

side of the peninsula, we define four major ice divides:

1. from the AP across the Seal Nunatak and Robertson Is-

land to divide the ice flow between the northeast Larsen

B embayment and the western area of Larsen A;

2. from the Bruce Plateau (AP) to Cape Longing to di-

vide flows between Larsen A and southern Prince Gus-

tav Channel;

3. from the Detroit Plateau (AP) southeast across the

Prince Gustav Channel and up across the center of

James Ross Island (Camerlenghi et al., 2001), before

continuing across Admiralty Sound and Seymour Island

to split the ice flow between the southern and northern

Prince Gustav Channel, dividing the ice flow on James

Ross Island and Admiralty Sound; and

4. from the Trinity Peninsula to the Joinville Island Group

and along the axis of D’Urville Island, across the Larsen

Channel, Joinville Island, and Dundee Island according

to the seabed morphology in the Antarctic Sound.

On the western AP, the boundary of major ice divides runs

1. along the South Shetland archipelago;

2. from the AP across the Orleans Strait, Trinity Island,

and along a series of shelf banks at the western end of

the Bransfield Strait that divide the ice flow between the

Bransfield Strait and Gerlache–Boyd Strait;

3. from the Bruce Plateau (AP) across Gerlache Strait,

Wiencke Island, the southern edge of Anvers Island,

Schollaert Channel, and up along the crest of Brabant

Island to explain the constriction of flow lines in the

Gerlache Strait; and

Table 2. Continental-shelf domes estimated area and minimum and

maximum estimated ice volumes using the simple Bodvarsson–

Vialov model (Bueler et al., 2005).

Continental ice dome Area (km2) Ice volume (km3)

Minimum Maximum

Hugo Dome 13 675 10 000 11 200

Marr Dome 4950 2500 3300

Brabant Dome 12 850 8200 10 200

Livingston Dome 8075 5000 5500

Snow Hill Dome 14 835 10 800 14 000

Robertson Dome 7560 5000 6200

Hektoria Dome 12 920 9300 12 000

Total 74 865 50 800 62 400

4. along Anvers Island and Renaud Island to explain the

Palmer Deep and Hugo Island Trough ice-flow system

and its separation from the Biscoe Trough.

Ice divides typically evolve into elongated ice domes with

topographic highs that influence the spatial pattern of accu-

mulation rate and the ice-flow directions. These divides are

not stationary and can evolve under variations in climate or

boundary conditions (e.g., Nereson et al., 1998; Marshall and

Cuffey, 2000). Indeed, an entire ice dome can change shape

as climate conditions change on a timescale of a few hun-

dred to thousand years, depending on the accumulation rate

and size of the divide (Nereson et al., 1998; Marshall and

Cuffey, 2000).

4.3 Inferred ice domes on the continental shelf

The existence of two separate shelf ice domes at LGM, one

covering the northern AP and the other upon the South Shet-

land Islands, was suggested by early work that recognized

centers of ice accumulation over the highest existing bedrock

topography (Banfield and Anderson, 1995; Bentley and An-

derson, 1998). Our LGM ice-flow reconstruction of at least

six distinct systems across the northern AP continental shelf

and evidence of ice divides serves to delineate at least seven

broad regions where additional ice domes may have been

centered out on the continental shelf. The presence of the

domes is required to constrain lateral spreading of each of

the paleo-ice-stream outlets and also to explain the observa-

tion of radial flow that, in part, converges with flow within

several of the paleo ice stream trajectories. We define each

of these features here by assigning names associated with

the nearest prominent headland for each ice dome; head-

lands likely provided some axial orientation to the ice dome.

These include Hugo Dome, Marr Dome, Brabant Dome, Liv-

ingston Dome, Snow Hill Dome, Robertson Dome, and Hek-

toria Dome (Fig. 5).

The exact dimensions and character of each of these

domes is difficult to define because these areas of the con-
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Figure 8. Range of ice thickness expected from (a) Marr (M), Livingston (L), Brabant (B), and Hugo (Hu) west AP continental-shelf domes

with ice temperature averaging 0 ◦C and (b) Robertson (R), Hektoria (H), and Snow Hill (SH) east AP continental-shelf domes with ice

averaging −20 ◦C using the Bodvarsson–Vialov model (Bueler et al., 2005). The blue dot is the modern analog, 1000 m thick Siple Dome in

West Antarctica that fits well the model. See Fig. 5 for the location of the domes.

Table 3. Flow path systems estimated area (continental shelf) and minimum and maximum estimated ice volumes.

Flow path system Area (km2) Approximate Ice volume (km2)

length (km) Minimum Maximum

Biscoe Trough 4625 125 2842 4254

Palmer Deep and Hugo Island Trough 15 000 230 9570 17 255

Barbant 850 60 564 719

Gerlache–Croker–Boyd straits 10 675 300 9234 16 402

South Bransfield Strait streams 5600 110 4211 5834

Erebus–Terror 7125 190 3905 6935

Robertson Trough 18 300 330 13 066 26 149

Larsen B embayment 10 700 217 6736 11 937

Total 72 875 1562 50 128 89 485

tinental shelf are generally devoid of multibeam coverage.

Furthermore, extensive iceberg scouring across these banks

has largely obscured original glacial flow indicators, which

might have provided some sense of paleo-ice-flow direction.

Nevertheless, some small troughs and lineated features do

exist for at least three of the inferred domes. For the Marr,

Brabant, and Livingston domes some radial flow indicators

can be seen in small troughs that drain the mid-point divides

in about the middle of the continental shelf (Fig. 5). Further-

more, the Hugo Dome can be seen to have directed flow into

the Biscoe Trough from a position considerably far out on

the continental shelf. Hence, this evidence does indicate that

the mid-shelf hosted ice domes as centers of ice accumula-

tion which contributed ice drainage contemporaneous with

the large paleo ice streams (Fig. 5). In this hypothesis, the

continental-shelf ice domes do not necessarily require exces-

sive elevation, only sufficient height to have grounded the

system and allowed each dome to constrain the surrounding

paleo-ice streams. Our hypothesis for these ice domes is not

without precedent; some work on the East Antarctic margin

has postulated a similar situation, where major divides were

diverted and constrained by large ice domes that rested upon

shelf banks (Eittreim et al., 1995). Also, an independent ice

dome centered over the west of the Alexander Island, west-

ern AP, persisted through the LGM and deglaciation (Gra-

ham and Smith, 2012). Furthermore, there are existing mod-

ern ice domes that separate fast-flowing, marine-based ice in

West Antarctica, including Siple Dome (with surface eleva-

tion of 600 m a.s.l. and an ice thickness of 1000 m; Gades et

al., 2000; Conway et al., 2002).

The seaward extent of each of the shelf ice domes would

seem to correspond to the outer continental shelf, as outlet

systems are uniformly constrained out to the grounding line

position (the outer shelf) in each of the systems we examined.

The exception to this is the broad apron of the grounding line

associated with the Gerlache–Croker–Boyd Strait and Biscoe

ice streams. In those cases diverging flow is clearly imaged

out across the continental-shelf break, indicating spreading

flow toward the grounding line. Indeed, the extensive relief

of Smith Island (maximum elevation of 2100 m a.s.l.) would

likely have blocked any ice flow associated with the Bra-

bant Dome from reaching the outermost shelf (Fig. 5). This
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spreading flow is similar to that observed for unrestricted

paleo-ice-stream fans such as in the Kveithola Trough off

Svalbard (Rebesco et al., 2011).

While the areal dimensions of the ice domes are fairly cer-

tain, their thickness is less well defined. We can assume that

these features were thick enough to have served as effec-

tive lateral constraints to ice stream outlets and to have al-

lowed the dome to have been grounded across a bathymetry

of approximately 350 m on average. The thickness of an ice

dome in steady state depends on the regional accumulation

rate average, the temperature of the ice, and the aerial extent

of the dome outlined in Sect. 2.3 (Bueler et al., 2005). Fig-

ure 8 shows the results of our model with red ellipses defin-

ing the range of possible ice thickness values for each dome.

We assume that the western-side domes (Marr, Livingston,

Brabant, and Hugo) have an average ice temperature of 0 ◦C

(Fig. 8a), while the eastern-side domes have an average ice

temperature of −20 ◦C (Fig. 8b). The colder ice is stiffer,

which can result in thicker domes when all other parame-

ters are the same. The minor axis of the red ellipses shows a

possible range of error in the ice radius associated with the

irregular aerial extent of the real ice dome.

For accumulation rates, we base our assumptions on the

modern AP, which has a strong orographic precipitation gra-

dient that ranges from 4 m yr−1 on the western side to less

than 0.1 m yr−1 on the eastern side. High accumulation sites

will result in thicker ice domes if all other parameters are

equal. In the LGM case, the distribution of domes will create

multiple precipitation highs and lows as each dome creates

its own pattern of orographic precipitation (Roe and Lindzen,

2001). Therefore, we predict the highest accumulation rates

for Brabant, Livingston, and Hugo Domes. Marr Dome will

likely be shielded somewhat from the highest accumulation.

On the eastern side, Hektoria and Snow Hill Domes are likely

to have slightly higher accumulation than Robertson Dome,

as they may receive some precipitation from the Weddell Sea.

We have selected a broad range of accumulation rates be-

cause we have only general atmospheric patterns from which

to draw our assumptions. Despite this large range of input

values, we can bracket the ice thicknesses for each dome as

presented in Fig. 8 and estimate volumes as shown in Table 2.

4.4 Regional implications

We have presented a compilation of paleo-ice-flow indicators

for the northern AP and used the resulting map to infer ice-

flow patterns, ice divides, and ice domes. This allows an inte-

grated view over the full extent of the APIS at the LGM. This

mapping effort suggests that the seabed topography and the

complex geology influenced the ice-flow route and regime

at the LGM. The bifurcation of the flow lines in the Larsen

B embayment affected the character of the basal ice erosion

mechanisms. In general, diverging ice flow is associated with

an area of decelerating flow (e.g., Stokes and Clark, 2003).

Moreover, the increased flux of ice and debris flowing around

a topographic high could provide a powerful feedback where

an ice stream could deepen existing depressions (Knight et

al., 1994). However, the flow convergences (strongest near

the mid-shelf in the northern AP) led to an increase in flow

speed at the mid- and upper end of the ice streams, promoting

high basal shear stress and significant basal sediment trans-

port (e.g., Boulton, 1990).

It should also be kept in mind that the ice stream catch-

ments include deep basins (i.e., Palmer Deep) that serve as

deposystems for thick interglacial mud and ooze deposits.

For instance, typical thicknesses for Holocene mud within

the Palmer Deep are about 100 m, while across the broader

shelf the interglacial muds are no more than 6–8 m thick. This

mud could serve as basal lubrication as ice systems advance

out across the shelf and eventually ground within the deep

inner shelf, thus enhancing streaming flow within the trough

trajectory via bed deformation. Once ice streaming was initi-

ated in areas where interglacial sediments provided lubrica-

tion, the interglacial sediment would be completely removed

by ice; streaming would continue, having been established

through regional flow patterns, by eroding the underlying

bedrock for more lubricating material and thus enhancing the

focus of the trough through multiple cycles.

The presence of multiple APIS ice domes centered on the

mid-shelf implies that ice thickness was not uniform on the

northern AP continental shelf during the maximum extension

of the APIS at LGM. These domes may have harbored sig-

nificant ice volume above buoyancy, even under minimal sce-

narios of ice thickness due to their large areal extent. Com-

paring the estimated total area of the ice domes with the one

estimated for the flow paths (Tables 2 and 3) shows that the

ice domes were at least as important, if not more so, as the

paleo-ice streams, in terms of areal coverage. The minimum

estimate for total ice volume of the domes and the paleo-ice

streams are similar. However, because the convergent flow

paths have significantly deeper beds (as they flow in troughs)

the ice streams contain 43 % more maximum ice than the

domes.

The presence of multiple ice domes on the shelf would

have influenced the ice sheet dynamics (e.g., basal melting

and sliding parameters) and the sediment transport to be-

yond the margin of the ice. The ice velocity would have

been slower near the ice divides with lower sediment trans-

port rates than at the peripheral regions where the domes fed

out into fast-flowing ice streams with high sediment transport

rates. Because of feedbacks between ice dome formation and

the orographic precipitation, all of these domes may not have

reached their largest extent at the same time; the growth of

one dome may “starve” another of its accumulation (e.g., Roe

and Lindzen, 2001).

Finally, the delineation of ice domes and faster-flowing

outlets is important because it would help to gauge the rel-

ative contribution of each system to post-glacial eustatic rise

in sea level or, conversely, how each system might have re-

sponded to a eustatic or ocean-climate event. For instance,
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recent models for glacial recession within the Palmer Deep

and along the East Antarctic margin suggest a calving bay

re-entrant model, wherein ice streams retreat preferentially

landward thus creating a linear “fjord-like” bay surrounded

by slower-flowing ice of the domes (Domack et al., 2006;

Leventer et al., 2006). This model and others (i.e., Kilfeather

et al., 2011) deserve consideration in that our reconstruc-

tion clearly outlines differences in the boundary conditions of

flow, thickness, bed character, accumulation, and ice sourc-

ing for the domes and converging flow systems. Thus the two

systems would logically be expected to respond differently to

any forcing factors involved in deglaciation.

The identification of ice domes, ice divides, and diverg-

ing/converging flows help us to understand ice-sheet evolu-

tion and processes. While considerable effort has been put

forward recently toward understanding the character and tim-

ing of the retreat of the APIS, more work needs to focus on

the reconstruction and detailed vitality of the APIS during

the last glacial cycle. The features we recognize have im-

portant implications for this effort and the future siting of

ice cores and marine drilling sites. Finally, they provide im-

portant constraints for glaciohydrology, past and future ice-

sheet modeling used, for instance, to look at sediment fluxes

(Golledge et al., 2013) or provide more realistic predictions,

ice-sheet modeling in response to changing environments,

and sea level modeling. The existing challenge includes ar-

ranging models of ice-flow and geological data so that they

resemble each other, especially when geological features are

small compared to the grid scale of ice-flow paths. While the

evidence for the ice domes out on the shelf is largely circum-

stantial, there likely exists today remnants of these features

as is the case for the ice cap on Hugo Island, which stands as

a prominent feature in the middle of the AP continental shelf.

5 Conclusions

Our results provide considerable improvement in the assess-

ment of ice flow and thereby the dynamics that may have

governed the expansion, stabilization, and eventual demise

of the ice mass which comprised the APIS. We now not only

recognize six spatially defined paleo-ice streams but we can

also infer with some confidence the source areas and number

of tributaries which fed them. In addition, our study high-

lights the need to understand the extent and behavior of seven

large shelf ice domes that best explain the configuration of

the ice-flow directions and serve as lateral constraints to the

paleo-ice-stream flow. These ice domes had slower-flowing

ice and were likely frozen to their beds, exhibiting some-

what different behavior from the paleo-ice streams which

were fed almost exclusively from convergence of tributary

glaciers draining the elevated spine of the AP and surround-

ing islands. Also, while the timing of paleo-ice-stream re-

cession is known in a general way from recent syntheses (Ó

Cofaigh et al., 2014), the detailed rates and step backs are far

from resolved. Our reconstruction allows focus on the vary-

ing character of each ice stream and how this might have

influenced differential response to the forcing factors (i.e.,

eustasy, atmospheric and ocean temperature) and accumula-

tion rates which may have induced instability in the region

(Livingstone et al., 2012).

Future research including strategic multibeam coverage,

marine sediment cores, and modeling considering the glacio-

isostatic rebound are needed to confirm the existence of the

ice domes, define their characteristics, and constrain the tim-

ing of their ice retreat. When combined with high-resolution

dating efforts, our flow reconstruction will help elucidate the

retreat history of the ice sheet and, therefore, those forces

that acted to destabilize the system and initiate the most re-

cent deglaciation of the APIS.

The Supplement related to this article is available online

at doi:10.5194/tc-9-613-2015-supplement.
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