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ABSTRACT 

We evaluate the application and investigate various formulae (and the associated parameter 

sensitivities) using the constant head well permeameter method to estimate field-saturated 

hydraulic conductivity (Kfs) in a previously glaciated temperate landscape in the Scottish 

Borders where shallow soils constrain the depth of augering.  

In finer-textured soils, the Glover equation provided Kfs estimates, nearly twice those of the 

Richards’ equation. For this environment we preferred the Glover equation with a correction 

factor for the effect of gravity, which does not include soil capillarity effects because: 1) the 

low depth to diameter ratio of the auger holes required in the shallow stratified soils of 

temperate  glaciated environment needs a correction for gravity; 2) the persistently moist 

environment and the use of long pre-wetting times before measurements seem to reduce the 

effect of soil capillarity, 3) the Richards equation is dependent on accurate α* values, but the 

measured auger holes intersected soil horizon boundaries that had different soil structure and 

texture, causing difficulty  to select the most appropriate α* value; 4) when comparing the 

different solutions to estimate Kfs using the CHWP method against the auger hole method 

and ponded permeameter measurements, the Glover solution with a correction for gravity 

gave the best comparable result in fine-textured soil. 

Keywords | constant-head well permeameter, Guelph permeameter, hydraulic conductivity, 

infiltration, unsaturated soil 

accepted in Hydrology Research 2014 doi:10.2166/nh.2014.159 



 
 

2 
 

INTRODUCTION 

Reliable field estimates of field-saturated hydraulic conductivity (Kfs) (Bouwer 1966; Talsma 

1987) in unsaturated soils are prerequisites for estimating water flow through soil profiles and 

are essential in estimating rates of soil water infiltration and soil permeability. Measurements 

of field-saturated hydraulic conductivity, for example, have been used to investigate land 

cover effects on the dominant stormflow pathways (Elsenbeer et al. 1999; Chappell et al. 

2007; Bonell et al. 2010), water flow modelling and solute transport for drainage 

investigation (Noshadi et al. 2012), development of class pedotransfer functions (Lilly 2000) 

and estimating permeability of superficial deposits for characterising groundwater/surface 

water interactions (MacDonald et al. 2012).  

The early development to more rapidly measure Kfs from a ‘thin line source’ (as 

defined by Talsma and Hallam 1980) using a constant-head well permeameter (CHWP) or 

simplified well permeameter was undertaken and described by Talsma and Hallam (1980). 

Through the use of the CHWP approach, Kfs could be more rapidly determined (Talsma and 

Hallam 1980; MacKenzie 2002) vis-a-vis its predecessor the ‘shallow well pump-in method’ 

(Boersma 1965; Bouwer and Jackson 1974). This instrument consists of an outer acrylic tube 

that contains the water for soil water infiltration and an inner smaller air entry tube. Vertical 

adjustable legs allow the tube to maintain a constant head height in an augered hole. The 

CHWP is particularly appropriate to deeply weathered soils where the water table occurs 

below the ground surface and the H/a ratio (H being the wetted auger hole depth, a being the 

auger hole radius) is preferably near to 10 (Talsma and Hallam 1980; Talsma 1987); see 

review in Mackenzie (2002). However, like its predecessor the ‘shallow well pump-in 

method’ (Talsma 1960; Bouwer and Jackson 1974), the CHWP was theoretically still based 

on the assumptions of the Glover solution (Zanger 1953), which corresponds to a line source 

from the bottom of the auger hole (H = 0) to the water surface (h = H) with no line sink 
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(Reynolds et al. 1983). The Glover solution was re-examined by Reynolds et al. (1983), who 

then provided improved approximations (C values) of pressure gradients derived from 

various line sources with various source strength distributions. 

The development of the Guelph permeameter (Reynolds and Elrick 1986) later 

provided analytical solutions of the Richards equation, which accounts for both the apparent 

effect of saturated and unsaturated components of flow from an auger hole (Elrick and 

Reynolds 1992). Using a Guelph permeameter requires the determination of a C factor and 

α*. This C factor is a dimensionless shape factor approximating unsaturated steady-state flow 

out of an uncased, cylindrical hole into unsaturated soil and is derived from numerical 

simulations. Further, this factor is primarily a function of H/a ratio and has a secondary 

dependence on soil type (Elrick and Reynolds 1986). The α* parameter is the ratio of Kfs to 

matric flux potential (ψm) and can be estimated using the two-ponded height technique, 

which uses two or more H depths. Alternatively, this ratio can be determined by the one-

ponded height technique that a priori requires a soil description to determine the soil 

structure being measured which then leads to a pre-determined α* using a ‘look-up’ table 

(Elrick et al. 1989).  

Using the two-ponded height technique to estimate α* often produces negative Kfs 

values, as was experienced by Lilly (1994) in an earlier Scottish study. Negative Kfs values 

have been attributed to random soil heterogeneities and systematic soil textural changes with 

depth (Salverda and Dane 1993). The one-headed technique requires soil descriptions to 

describe soil texture/structure to determine which α* value to use (Elrick et al. 1989). 

Elsewhere Bosch (1997) investigated the sensitivity of the Guelph permeameter solution to 

variations of α* and found the greatest uncertainty in error occurred in the estimate of α* 

when α* < 0.015 mm-1, which corresponds to fine-textured and compacted clays. Bosch 

(1997) also calculated that the misinterpretation of describing the soil structure to be medium 
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to fine sand (0.012 mm-1), rather than unstructured fine-textured soil (0.004 mm-1), could 

result in Kfs being overestimated by 140%. A study by Laase (1989) compared the two-

ponded height technique with the one-ponded height approach, and concluded that the one-

ponded height technique was preferred, because it produced a smaller variance of Kfs results 

than the two-ponded height technique. 

As described by Talsma (1987), overestimation of field-saturated hydraulic 

conductivity (Kfs) can occur if capillarity of the soil surrounding the saturated region of an 

auger hole is disregarded, and this is particularly important for fine-textured soils that have 

low α* values, or H/a ratios which fall below 5 (Reynolds et al. 1983). To counter such 

concerns, Talsma and Hallam (1980) recommended respectively a 10 or 20 minute pre-

wetting period for auger holes inserted in ‘wet’ and ‘dry’ soils. On the other hand, in a 

comparative study of various field methods in gley-type soils, Chappell and Lancaster (2007) 

determined that of all the errors embedded within Kfs results, by far the most important was 

the smearing factor, i.e. smearing of the cavity walls as a result of augering. From early work 

by Talsma (1960) in an environment with marked dry/wet seasons in Australia, Talsma 

compared the Kfs (‘shallow well pump-in method’) with saturated hydraulic conductivity 

(Ksat) (auger hole pumping test) using the same auger holes. He determined the Kfs/Ksat 

ratio to be about 0.5. Later this 50% underestimation of Ks based on Kfs, as determined by 

the CHWP (Talsma and Hallam 1980, including the Reynolds et al. (1983) correction) was 

further supported using data from an experimental basin study (Talsma 1987). Based on the 

limited range of Australian soils considered by Talsma (1987), he thus suggested the need to 

multiply Kfs by a factor of 2. The study of Chappell and Lancaster (2007) however indicated 

an even greater underestimation of Ks in terms of orders of magnitude when concerning gley 

soils. 
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In addition to smearing, it is also common to observe lower Kfs values measured by 

the Guelph permeameter compared with other methods such as the auger hole method 

(Talsma 1960; Gallichand et al. 1990), undisturbed soil cores (Scotter et al. 1982; Paige and 

Hillel 1993; Mohanty et al. 1994), and velocity and disc permeameters (Mohanty et al. 1994). 

There are various reasons for these differences, such as the possibility of smaller volumes of 

soil being sampled by the Guelph permeameter (Mohanty et al. 1994), smearing created by 

augering or boring and silting-up of the hole (Talsma 1987; Koppi and Geering 1986; 

Chappell and Ternan 1997; Chappell and Lancaster 2007); or the lack of continuity of pores 

(Scotter et al. 1982), and air entrapment within the vadose zone, the latter of which slows 

down infiltration rates (Wang et al. 1998). 

The CHWP method is recognised as being well suited to measuring deeply weathered 

regoliths such as those commonly found in the tropics and old landscapes (e.g. Australia, 

India) that have not experienced Quaternary glaciation. Less attention has been given to the 

application of the CHWP method in shallow soils under different land covers associated with 

previously heavily glaciated landscapes. Topsoils under forest and grassland have variable 

depths of organic horizons where horizons merge into each other within a shallow depth, and 

also the presence of a dynamic biological component (such as roots, detritivores and organic 

matter) can create larger macropores. In areas subject to glaciation, retreating ice and 

meltwater deposit variable amounts of clay, silt, sand and gravel within relatively small areas, 

creating a landscape of poorly-sorted deposits of variable particle size. As a result, the soils 

are heterogeneous, including coarse gravels in a fine soil matrix, silts and organic soils, some 

of which overlay weathered bedrock. This nature of the soils causes difficulties in classifying 

them into the appropriate α* value class, as described by Elrick et al. (1989). Further, the 

finer silty alluvial soils pose problems for possible smearing effects by augering holes. In 

heterogeneous soils it is not always possible to auger below 0.15 m, because of stony layers 
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below this depth resulting in H/a ratios below 5. These circumstances cause problems in the 

determination of reliable Kfs measurements from the two-head height approach to determine 

α* for different soil types.  

There is therefore a requirement to investigate the most appropriate mathematical 

formulae for interpreting CHWP data in the heterogeneous soils common in previously 

glaciated areas. In this study, we explore the use of the CHWP method of Talsma and Hallam 

(1980) and we investigate more than one formula (and the associated various parameter 

sensitivities) to decide which mathematical solution is best to adopt for shallow glaciated 

soils. Our purpose for measuring Kfs is part of a study connected with Natural Flood 

Management (Werritty et al. 2010). A comparison of the upper soil permeability with 

extreme rainfalls using rainfall intensity duration frequency (IDF) was carried out and is 

described in Archer et al. (2013). Such an investigation required accurate and reliable Kfs 

measurements near the soil surface that are representative of field conditions. This created the 

basis for this paper. Thus, in this study we aim to understand how the different formulae 

affect the resulting Kfs values by carrying out a comparative analysis of results of different 

formulae applied to in-situ field data. We also make some preliminary measurements of Ks 

using the auger hole method (Van Beers 1985) to investigate the possible effect of auger hole 

smearing supplemented by surface measures of Kfs (Perroux and White 1988) on a flat 

floodplain zone.  

Field site 

The field site is in the Scottish Borders (55º42.9'N, 3º13'W) within the Tweed catchment and 

is located near Eddleston village in the Eddleston Water Catchment (Fig. 1). It consists of a 

hillslope extending to a floodplain that varies from 0 to 22% gradient and has an altitudinal 

range from 192 m to 255 m (above Ordnance Datum).  
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The field site area (Fig. 2) is mainly agriculturally improved grassland, where cattle 

and/or sheep graze from spring to autumn. In the lowest-lying depression of the floodplain, a 

rush community (Juncus effuses with some Ranunculus repens) dominates the gley soils. 

Neighbouring the steep grazed slope is a Pinus sylvestris plantation, which was planted over 

45 years ago. Further upslope, west of the river, the grazed grassland area borders onto 

Barony Castle, set in grounds of 10 ha, which contain old remnants of woodland dating back 

to 1536. Some of this woodland has been disturbed and partially cut down in the last 180 

years and other areas have remained wooded for at least 500 years. Woodland species are 

mainly deciduous comprising of Fagus sylvatica, Prunus spinosa, Quercus petraea, Betula 

pendula, Acer pseudoplatanus and a few Fraxinus excelsior. Some Pinus sylvestris are also 

found in the woodland. Fig. 2 shows the location of measurement points that are divided into 

four pairs, i.e. each pair containing woodland and an adjacent grassland. Table 1 describes in 

detail these sites in terms of soil structure, superficial geology and land cover. 

According to a recent survey of the geology (British Geological Survey 2011), there is 

brittle very resistant rock (Ordovician meta-sandstone greywacke), which crops out near the 

soil surface on parts of the hillslope. Till outcrops are located between DW2 and G2. Most 

measured areas are located on Head deposits, which are typically gravelly sediments, derived 

from local materials transported by colluvial processes, and produce poorly-sorted, stony 

soils. DW1 and G1 have high contents of sand, which are likely to have been brought in by 

glacial meltwater from the north-west. Within the floodplain (FW4 and G4) mainly silts 

occur which formed as overbank deposits. Also there are some beds of coarse gravel and sand 

within this floodplain that were laid down by laterally migrating river channels. Soil texture, 

measured from soil samples taken from auger holes, ranged from silt in the floodplain, fine to 

coarse gravels on the steeper slope, and subsequently sandy silt with some gravels on the 

upper flatter slopes. Clay content was relatively low throughout the site, being approximately 
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6% on the slope and up to 15% in the floodplain. The site is dominated by two Associations: 

Alluvium soils in the floodplain and Yarrow soils on the hillslope (Scotland Soil Survey Staff 

1975), as shown in Fig. 2. The Yarrow Association on the hillslope comprises brown earths 

developed on gravels derived mainly from greywackes, and can be classified as Cambisols in 

the World Reference Bank (WRB) soil classification system (WRB 2006). The topsoil is 

mainly strong brown to yellow-brown stony loamy sand, and the subsoils are coarse gravel. 

These soils drain easily and are associated with a low water-holding capacity (Bown and 

Shipley 1982). The Alluvium soils are relatively young alluvial sediments developed on 

freshwater alluvial deposits (Fluvisols in the WRB classification), mainly consisting of silts 

varying with some sand and clays. Fine to coarse gravels occur throughout the soil profile. 

The Alluvium soils are poorly-draining depending on the occurrence of clay material and the 

presence of the water table in the floodplain. 

METHODOLOGY 

Description of soil structure 

As the focus of this study was to measure Kfs in the upper soil surface, the depths at which 

soil horizons changed within the shallow topsoil were noted. Some soil horizons (particularly 

organic horizons) changed to other horizons within 0.1 m. To provide an understanding of 

such soil structure, soil descriptions were taken for each augered layer, i.e. 0 to 0.15 m and 

0.15 to 0.25 m.  

Soil texture was determined by taking bulk samples from four auger holes in each 

measured area for particle-size analysis. This was undertaken by dry sieving the bulk soil 

samples into sieve sizes: 60 mm, 20 mm, 6.3 mm and 2 mm and the particle size distribution 

of material < 2 mm was measured using a Beckman and Coulter LS13 320 Laser Diffraction 

Particle Size Analyser. 
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Field experimental methods 

Fig. 2 shows the distribution of points where Kfs was measured. Three measurement 

techniques were available for use in the field: the constant-head well permeameter (CHWP) 

(Talsma and Hallam 1980), the ponded disc permeameter (PD) developed by Perroux and 

White (1988) and the auger hole (AH) method (Van Beers 1985). Each of these methods is 

well described in the literature. The application of each method for each point, where valid, 

was determined by field conditions as described in the following sections. 

CHWP method 

The CHWP was the only method used to measure Kfs in all sites, because it is able to 

measure Kfs in areas that have steep topography and in topsoils which are above the water 

table. A preliminary survey of the hillslope found a gravel layer prevented augering below 

0.15 m in the steepest part of the hillslope. So that all areas of the hillslope and floodplain 

could be compared, all auger holes were augered to 0.15 m. To avoid interference from the 

soil surface, the CHWP was set to measure 0.04 m below ground surface. In the 500 year-old 

deciduous woodland, adjacent grassland and the floodplain, it was possible to auger another 

hole to 0.25 m because the gravel layer was deeper in these areas. Therefore, Kfs was 

measured at a soil depth between 0.15 and 0.25 m in these three areas (shown in Fig. 2). 

Before pre-wetting the auger hole for 20 minutes, pea gravel was added into the hole to 

prevent the cavity walls from collapsing. For very permeable soils the auger holes were pre-

wetted for a longer time, to ensure the fall of water reached a steady-state. 

The AH method 

The auger hole (AH) method measures Ks below the water table and is considered to measure 

actual Ks, because measurements are taken below groundwater level, where soils are 

completely saturated. The only area where the water table was near the surface was in a 
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small, marshy grassland area on the floodplain. For this reason, the AH method could be used 

only in a very small area (Fig. 2), where holes were augered from 0.5 to 1 m depths. The 

water in the auger hole was rapidly pumped out and then left to be replaced by groundwater. 

This procedure was done several times, to open the soil pores and reduce the effect of 

smearing. The rate of recovery was measured by the rate of rise of the water table within the 

auger hole. 

The PD method 

This method measures Kfs at the ground surface and can be undertaken only on flat ground 

where the water table is at least 0.5 m below ground; the only area to fit these criteria was on 

the floodplain in area G4 (Fig. 2). Therefore in the G4 area, PD and CHWP measurements 

were taken at adjacent locations within 0.5 m of one another.  

Soil conditions during measurements 

Field measurements took place during two summers (2011, 2012), when weather conditions 

were dry. Initial soil water contents were measured gravimetrically from cores taken at the 

same time as Kfs measurements and capacitance probes (ThetaProbes: ML2x Delta-T, 

Cambridge, UK) automatically logged soil water content in the grassland. Soil water content 

ranged from 15% to 35%. Such water contents are below field capacity in all soil types, 

ensuring that there was no free water available to flow into the auger holes from surrounding 

soil horizons. 

Effect of smearing 

In an attempt to avoid smearing, a hard nylon cylindrical brush was used to lightly scrape the 

sides of each augered hole. This was done mainly in the floodplain, where silt contents were 

higher, but in auger holes that contained more sand and gravel, this was not done. 
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Because silty gley soils were mainly found in the floodplain and the effects of smearing for 

such soils have been found to introduce errors (Chappell and Lancaster 2007), we 

investigated the CHWP results for the floodplain in more detail. Shallow soil descriptions 

taken in the areas where the AH method was used (Fig. 2) were found to be similar to the 

grassland floodplain area (G4, Fig. 2). Because of soil similarity between the wetland and 

drier grassland floodplain it was considered that measurements using the AH method could 

be compared to the CHWP data from the floodplain area. However, the scope for a direct 

comparison between Kfs and Ks within the floodplain zone was limited, as there was only a 

small area in the wetland where the soils below the water table are comparable to soils above 

the water table in the floodplain zone. Therefore in this small area, only four auger holes 

could be augered to depths between 0.47 m and 0.77 m. 

As there was limited data from the AH method, we also compared the CHWP 

measurements in the floodplain zone with the results from the PD method, as it could be used 

as a ‘benchmark’ to compare Kfs values measured at soil depths between 0.04 and 0.15 m. 

Such steps were taken because the PD method measures surface Kfs and does not require the 

augering of a hole; therefore no smearing effects occur. In making such comparisons it is 

acknowledged that the surface soil conditions would have relatively higher Kfs values 

because of the presence of an organic layer in the top 0.04 m of soil surface compared with 

the soil between 0.04 and 0.15 m depth, as measured by the CHWP. On the other hand, the 

Kfs estimates measured by the PD method are biased to the vertical component of Kfs, vis-a-

vis the horizontal component for Kfs (CHWP) and Ks (AH method), so they are strictly not 

comparable. Nonetheless some inferences may still be possible linked to the effect of 

smearing. 
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Investigated formulae 

For each formula investigated, the same field data from measured points (shown in Fig. 2) 

were used; this included: steady-state flow out of an auger hole (Q), auger hole radius (a) and 

auger hole head height (H). The compared data all had H/a ratios of approximately 3. Kfs was 

calculated under five categories: (1) the Glover solution (Zangar 1953) based on the Laplace 

equation; (2) improvements of the Glover solution, where gravity is an added component 

(Reynolds et al. 1983) and the pressure head distribution along the auger hole wall is 

numerically solved; (3) adding the component of capillarity based on the Richards equation 

(Elrick et al. 1989); and (4) taking away the component of capillarity using the Elrick et al. 

(1989) solution and calculating Kfs assuming only saturated flow. Finally (5) the effect of 

smearing (Talsma 1960; Talsma 1987) on the resulting values is investigated. Table 2 

provides a key overview of the 10 variations of the solutions used to calculate Kfs and these 

are described in detail below:  

Solution	1	

The Glover solution (Zangar 1953) is defined by: 

ݏ݂ܭ ൌ 	
ܳ ቂsinhିଵ ቀܽܪ െ 1ቁቃ

ଶܪ2  

                  Eq. (1) 

where Q is steady-state flow out of the auger hole, H is auger hole head height and a 

is auger hole head height. 

Solution	2A	

Analysis of the Glover solution theory by Reynolds et al. (1983) demonstrated that the 

influence of gravity to steady-state flow is inversely proportional to the square of H/a ratio. 

This relationship, shown by Elrick and Reynolds (1992), is of particular importance when the 
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ratio H/a is low, as the effect of gravity on the total flow out of the well hole is >30% when 

H/a = 0.5, but falls to only 1.5% when H/a = 10. To provide better approximations to the 

boundary conditions along the submerged wetted surface of the well, Reynolds et al. (1983) 

published improvements on the theory using Eq. 2, defined by: 

 

ݏ݂ܭ ൌ
௧ܳܥ

ଶܪߨ2 ൤1 ൅ ܿ
2 ቀ

ܽ
ቁܪ

ଶ
൨
 

                     Eq. (2) 

Based on the theory given by Reynolds et al. (1983), the shape coefficient, C for the 

Glover solution was calculated using: 

ܥ ൌ ଵି݄݊݅ݏ ൬
ܪ
ݎ
൰ െ ඨቀ

ݎ
ܪ
ቁ
ଶ
൅ 1 ൅

ݎ
ܪ

 

                     Eq. (3) 

Solution	2B	

The influence of numerical C factor was also investigated, where the steady-state pressure 

head distribution in a cylindrical flow area surrounding the well is solved numerically. This 

procedure, as explained by Reynolds et al. (1983) p.258, ‘has the advantage of matching the 

pressure head distribution along the wall and base of the well exactly’. 

Solutions	3A,	3B,	3C	and	3D	

As the Glover solution attributes all flow out of the cavity as saturated flow, unsaturated flow 

(or capillary flow) is neglected. To include unsaturated flow, Elrick et al. (1989) developed 

the following solution: 
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ݏ݂ܭ ൌ 	
ܳܥ

ቀ2ܪߨଶ ൅ ܥଶܽߨ ൅ ܪߨ2
∗ߙ ቁ

 

                 Eq. (4) 

The three terms in the denominator represent the approximate contributions of hydrostatic 

pressure, gravity and capillarity respectively. α* is given by 

∗ߙ ൌ 	
ݏ݂ܭ
∅ ௠

 

                  Eq. (5) 

where φm is the matric flux potential. α* can be calculated in the field by ponding water at 

two different heights in the same well and then solving the simultaneous equations for Kfs 

and φm (Elrick et al. 1989), or by taking a soil description for each well to classify the soil 

into four textural groups described by Elrick et al. (1989), which then relates to four pre-

defined α* values: 0.01 cm-1 for compacted structureless, clayey or silt materials, 0.04 cm-1 

for fine textured and unstructured soils, 0.12 cm-1 for structured soils from clays through 

loams, and 0.36 cm-1 for coarse gravelly sands, which can include highly structured soils with 

cracks and macropores (Elrick et al. 1989). Each soil type has a different C, which is 

dependent on the H/a ratio (Reynolds and Elrick 1987). For each of the four soil textural 

groups the C values are based on the Richards equation and were calculated from empirical 

functions developed by Zhang et al. (1998).  

Solutions	4A,	4B	and	4C	

To assume zero capillarity, α* was set to infinity by setting the term 2πH/C in Eq. 4 to zero 

and the C factor was set to the three soil types.  
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Soil structure and the choice of α* to calculate Kfs using Eq. 4 

Investigations which use Eq. 4 should take care to auger into homogenous soil horizons, as 

described by Lilly (1994). The latter excavated a soil pit to identify the horizon depths so that 

the wetted length, H (e.g. Eq. 1) did not cross a soil horizon boundary. In this study, such 

steps could not be undertaken, because of the shallow nature of the soils, especially on the 

steeper slopes, and the organic soil horizons often merge into A horizons within shallow soil 

depths. This results in some auger holes intersecting more than one horizon within some of 

the sites and thus the wetted length H invariably crosses these horizons. In such 

circumstances the inclusion of more than one α* value (as provided by Elrick et al. (1989) 

could be used within the same auger hole. To investigate this problem, possible α* values (as 

described in section ‘Solutions, 3A, 3B, 3C and 3D’) were used where auger holes for 

different sites and soil layers crossed more than one horizon. The results from using Eq. 4 

with different α* are compared with the results from using the Laplace solutions (i.e. 

solutions 1 and 2A), to decide the best analytical solution for measuring soils where the 

wetted length H crosses more than one soil horizon. 

RESULTS 

Description of topsoil structure and texture 

Table 1 summarises the auger hole soil descriptions for each site area. The depth of the 

organic horizon was particularly variable under the woodland areas, and because organic 

horizons changed to A/B horizons within the shallow layer of the topsoil, many auger holes 

intersected these boundaries.  

Field data used in the comparative analysis of different formulae 

The high diversity of soil structure and texture that also changes within shallow depths (as 

described in Table 1) provides a large range of steady-state flows out of the auger hole (Q), 
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ranging from 1 mm3 s-1 (in the floodplain zone) to 9,505 mm3 s-1 (in the old deciduous 

forest), as shown in Table 3. The areas of highest variability occurred in the woodland areas 

(Table 3).  

Comparative analysis of CHWP formulae to calculate Kfs 

Fig. 3 illustrates the calculated Kfs for each of the described solutions against the Glover 

solution (Eq. 1). In addition, Table 2 summarises the various solutions and assumptions used 

in the comparative analysis and the magnitude of difference between each solution against 

the Glover solution (Eq. 1). 

Fig. 3 illustrates that the Kfs values calculated from the Glover solution (Eq. 1, shown 

as solution 1) are located midway between the Reynolds et al. (1983) solution 2B, which 

obtained 172% higher Kfs values than the Glover solution (Table 2) and the Elrick et al. 

(1989) solutions 3A, 3B, 3C and 3D where the addition of capillary flow for the different soil 

types gives lower Kfs values. The lower the α* value, the lower the estimation of Kfs as is 

shown in Table 2. For example when α* = 0.01 cm-1, calculated Kfs values are 86% lower 

than Kfs values calculated by the Glover solution, whereas α* ≥ 0.12 cm-1 produces Kfs 

values only 21% lower than the Glover solution. Removing the effect of capillarity from the 

Richards equation increases the Kfs values up to 36% higher than the Kfs values calculated by 

the Glover solution (Table 2). The net result is that the Kfs values are similar to solution 2A, 

where the addition of the gravity flow component provides 24% higher Kfs values than the 

Glover solution (Table 2). The three shape curve factors (C) cause little difference to Kfs 

values, when the H/a ratio is near 3 (as is the case in this study). This is because the shape 

factor curves are very similar at low H/a ratios, as shown by Zhang et al. (1998).  
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Effects of soil structure and α* values for Eq. 4 

Table 4 compares the geometric means of calculated Kfs values using the Richards equation 

(3A, 3B and 3C, Table 2) and two Glover solutions (1 and 2A, Table 2) for the different 

measured sites (shown in Fig. 1) and soil depths. These particular solutions were chosen 

because they are the most common formulae used in field research to calculate Kfs. To 

calculate the Richards equation, the most appropriate α* value for each site and soil depth 

was chosen on the basis of soil descriptions shown in Table 1. Sometimes two α* values are 

given when the auger hole crosses two different horizons. For example, using soil 

descriptions for depth 0.04 to 0.15 m for site G2 (Fig. 4 ii), the upper half of the auger hole 

was considered to be more permeable than the lower part because of the soil structure, 

therefore the chosen α* for the upper part of the auger hole was 0.12 cm-1 and for the lower 

part was 0.04 cm-1. 

The results calculated from the different solutions were log transformed and plotted as 

box plots for each site and soil depth (Fig. 4). The resulting log transformed Kfs values were 

then analysed using analysis of variance (ANOVA) and Fisher’s least significant difference 

(LSD) method (as described by Dytham 1999, p.108) to determine mean significance at a 

95% confidence level between the different solutions for each site and soil depth. The results 

of the solutions using the Fisher’s LSD method are illustrated in Fig. 4. Fig. 4 is divided into 

i) each woodland site (DW1, DW2, CW3, FW4), ii) each grassland site (G1, G2, G3 and G4) 

and iii) each floodplain site (DW1, G1 and G4). The different solutions are identified on the 

x-axis, as 1, 2A, 3A, 3B, 3C (and are described in Table 2). Non-shaded box plots indicate 

that these calculated Kfs values have means significantly different (P < 0.05) to Kfs values 

calculated by other solutions within each site. For example, in Fig. 4 ii) in site G2, solution 

3C has significantly lower Kfs values than any of the other solutions within site G2. For the 

Richards equation, the chosen α* values were considered to be high (0.36 cm-1) under 
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woodland because of large macropores present in the upper soil layer. In the floodplain 

woodland (FW4), the upper 0.04 to 0.15 m layer intersected a more dense silt layer, therefore 

a lower α* value (0.12 cm-1) could be considered more appropriate. However, in the 

woodland areas, where Kfs was highly variable, mean Kfs values calculated from the different 

solutions proved not significantly different. 

Under grassland and at the greater soil depth (0.15 to 0.25 m), the different solutions 

gave significantly different mean Kfs values. The upper soil layer (0.04 to 0.15 m) under 

grassland and the lower soil layer intersected a more permeable organic layer and then a less 

permeable layer, therefore the choice of α* values was not clear. The greatest significant 

difference between the different solutions was the Richards equation using α* value 0.04 cm-1 

in comparison to 0.12 and 0.36 cm-1, which corroborates the theoretical observations of 

Bosch (1997). 

Fig. 4 shows that the two Glover solutions (1 and 2A) and the Richards equation using 

α* value 0.36 cm-1 (solution 3A) do not result in significantly different mean Kfs values. 

Effects of smearing  

Fig. 5 shows the log transformed Kfs results as box plots to compare the different CHWP 

solutions against the Kfs results of the AH and PD methods in the floodplain zone. Outliers 

were removed from the dataset, as they were considered to have been taken in gravel 

sediments. The three auger holes measured using the AH method had Ks values ranging from 

5.50 to 7.34 mm hour-1 and had a mean value of 6.13 mm hour-1. The log transformed means 

of the CHWP solutions and the PD Kfs values were all found to be below the log mean auger 

hole value (Fig. 5). A two-sample T-test analysis for unequal variances compared the log 

transformed Kfs values calculated by the CHWP solutions to the AH and PD methods in the 

floodplain zone. All the CHWP solutions had highly significantly different Kfs values in 

comparison to the AH method Ks values (P-values < 0.05). Even the numerical solution (2B), 
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which consistently provided the highest Kfs values throughout the field site, had significantly 

lower Kfs values (P-value = 0.033) than the AH Ks values. The PD Kfs values were not 

significantly different to solutions 2A, 2B and all the Richards equations without capillary 

flow (4A to 4C). The mean PD Kfs values were lower than the AH method values, but were 

not significantly different. 

DISCUSSION 

CHWP Kfs solution comparison 

The lowest Kfs values were estimated using the Richards equation, particularly using the 

lowest α* value (0.01 cm-1), which decreased Kfs values by over 80% in comparison to the 

Glover solution (Table 2). The highest Kfs values were associated with the numerical solution 

derived by Reynolds et al. (1983) and were found to overestimate Kfs values by about 170% 

over the Glover solution, corroborating results previously noted by Reynolds et al. (1983). 

However, for the most commonly used solutions, i.e. Glover solutions (1 and 2A) and 

Richards equations (3A and 3B), the results show that for many situations in the field site 

there is little significant difference in Kfs calculated using these different solutions (Fig. 4). It 

is only when the soil type becomes more silty, creating a soil description which suggests a 

lower α* value, that difficulties arise. Here the choice of α* values are found to make 

significant differences to mean Kfs values (Fig. 4). In the case of this study, this has particular 

importance because, as described in the methodology, the measured auger holes intersected 

two different horizons, and it is difficult to select an absolute α* value for all experimental 

areas. This could result in significant over or under estimation of Kfs, particularly if there is 

confusion between choosing an α* value of 0.04 or 0.12 cm-1. On the other hand, solution 2A 

gives consistently higher Kfs values and is the most comparable to the Richards equation 3A, 

where capillary flow has the least influence.  
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Choosing the ‘best’ solution 

To choose the ‘best’ solution, three important site features that are relevant to Kfs 

measurements were considered: 

1) Initial soil water content: soil water contents were below field capacity, but they were 

moist and therefore quickly wetted-up, unlike dry soils in arid environments. Auger 

holes were also pre-wetted for at least 20 to 30 minutes to attain steady-state 

(following Talsma and Hallam 1980). In combination, these two soil factors would 

minimise the effects of soil capillarity and therefore it is plausible to assume near-zero 

capillarity effects. 

2) Soil type: as outlined in the study site description, the soils measured for Kfs were 

variable not only in soil texture and structure, but also in terms of biological activity 

where the presence of shallow dense root mats under grassland and deep coarse roots 

under forest were significantly different. The glacial alluvial soils were also 

heterogeneous particularly within the surface profile (0.04 to 0.15 m) and at some 

measurement locations the auger hole intersected more than one horizon. This causes 

more than one soil textural group to occur within one auger hole, which makes 

selecting the most appropriate α* more problematic. Thus, there exists uncertainty in 

the appropriate selection of α* at some points. 

3) H/a ratio: Elrick et al. (1989) observed that Kfs measured using the Guelph 

permeameter is least sensitive to the choice of α* when H is large. In cases where H 

incorporates two soil horizons and the H parameter is small, a question arises as to the 

reliability of using α* values to estimate Kfs for this investigation. The particularly 

low H/a ratio also meant that gravity had a relatively large effect on Kfs values, as 

explained by Elrick and Reynolds (1992). Therefore the original Glover solution, 

which does not include the effect of gravity, was inappropriate to estimate Kfs.  
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Taking into account the results given in Figs. 3 and 4 and Tables 2 to 4, the field 

conditions, and the low H/a ratios for the auger holes measured, solution 2A (the Glover 

solution corrected for the effect of gravity) was selected as the preferred method to provide 

the most representative Kfs values for the study area. Solution 2A was thus subsequently 

adopted for comparison of measured Kfs to rainfall intensity-duration-frequency curves to 

infer dominant stormflow pathways (Chapell et al. 2007), as undertaken by Archer et al. 

(2013). 

It was also useful to examine the effect of α* values set to infinity, to remove the effect of 

capillarity (solutions 4A, 4B and 4C), as this was considered to produce maximum Kfs values 

as described by Elrick et al. (1989). As the Kfs values calculated from solution 2A are lower 

than the resulting Kfs values calculated by solutions 4A, 4B and 4C, it was therefore 

considered that solution 2A was not overestimating Kfs. The numerical correction (solution 

2B), on the other hand, is considered to overestimate Kfs values even though it was found to 

produce estimates of Kfs closer to the air entry method (Reynolds et al. 1983). 

Effect of smearing and the over/under-estimation of CHWP Kfs values 

The significant differences between the Ks values measured by the AH method and the Kfs 

resulting from CHWP solutions (but accepting the constraint of a small AH sample) suggest 

that the effect of smearing caused underestimation of Kfs in the floodplain zone, where the 

alluvial soils had a finer matrix. When comparing the auger hole method to the CHWP results 

using the Glover solution, Talsma (1987) suggested a correction factor by multiplying the 

CHWP results by 2 to correct for smearing on Laplace solutions. In this study if we multiply 

solutions 1, 2A and 2B (variations of Laplace solutions) by 2, then solution 2B provides the 

closest mean Kfs value to the auger hole method, thus corroborating Talsma’s (1987) 

conclusions.  
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Following on from the above findings, it is interesting to note the contrasts by other 

researchers in the over/underestimation of Kfs when comparing the other methods with 

solutions. According to Reynolds et al. 1983, the CHWP method using the Laplace solutions, 

i.e. the Glover solution, overestimates Kfs when compared to the Richards equation, but 

according to Talsma (1987) the CHWP method using the Glover solution underestimates Kfs 

in comparison to the AH method (Talsma 1987). Even though the Richards equation provides 

the lowest Kfs of all the solutions in most studies, it is the main solution used to estimate in 

situ Kfs in the UK (Ragab and Cooper 1993; Lilly 1994; Chandler and Chappell 2008; 

Marshall et al. 2009; MacDonald et al. 2012). It is also worth noting that other studies have 

multiplied the Guelph permeameter values (calculated using the Richards solution) by 2 to 

obtain similar Ks values to the auger hole method (Noshadi et al. 2012), which they attribute 

to air entrapment (Bouwer 1978, p. 45). 

A comparison of the surface soil Kfs using the PD method, to the Kfs as calculated by 

the preferred CHWP Glover solution with the effect of gravity included (solution 2A), 

indicates similar results. This outcome adds strength to the argument against multiplying the 

Kfs values in the floodplain zone by a factor of 2. If smearing was an issue, it would have 

been expected that the surface Kfs values (measured by the PD method) would be 

significantly higher than the Kfs values measured by the CHWP under moist soil conditions. 

Such remarks remain valid despite bias in the respective PD and CHWP methods towards 

different Kfs components, i.e. vertical vis-a-vis horizontal. 

The low Kfs values estimated by the Richards equation are more of a concern 

considering its wide use in the UK and the dependency on soil descriptions for pre-

determined α* values (Lilly 1994; Marshall et al. 2009; MacDonald et al. 2012). In this study 

the high silt content in the floodplain (G4) suggests an α* value of 0.04 cm-1 at a depth below 

0.15 m. If we used the Richards equation with this low α* value, the resulting Kfs values 
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would be significantly lower than the Kfs values of the AH method (as shown in Fig. 5). This 

suggests that the effect of capillarity may not be such an issue. 

In humid temperate regions where rainfall is relatively high and potential evaporation 

is low, moist antecedent soil conditions often close to field capacity can prevail. In such 

conditions, the effect of capillary flow may not be so great when measuring Kfs and therefore 

the use of the Richards equation may cause underestimation of Kfs. Acknowledging the 

persistent moist soil conditions, particularly in Scotland, saturated soil conditions enveloping 

auger holes should easily be reached by adding water to the cavity for 20 minutes. 

Considering also the high soil structural and textural variability and the dependency of the 

Richards equation on an accurate estimate of α*, the Glover solution may be more 

appropriate in such soil conditions. 

The highest Kfs values recorded in this study were related to organic forest soils, 

which include high macro-porosity due to the presence of relatively large diameter roots, and 

were considered to cause some preferential flow. Germann et al. (2007) suggest that 

preferential infiltration is positioned between the domains of the Richards equation and 

Darcy’s law, and as suggested by Beven & Germann (2013), 'macropores carry water quite 

independently from antecedent soil moisture and capillary flow'.The Richards equation may 

therefore cause underestimations of macropore flow measured by the CHWP, so the Laplace 

equations may be more appropriate. However, all the equations tested ignore preferential 

flow, which is an important aspect particularly under forests, as experienced in this study, 

where organic horizons are deep and tree root systems are extensive, causing preferential 

flow pathways. 
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CONCLUSION 

This comparative study illustrates the importance of understanding the antecedent soil 

conditions, the assumptions of existing Kfs equations and the environmental conditions which 

limit the way Kfs measurements are undertaken. 

We found that in many situations, the results of the Glover solutions were not 

significantly different to the Richards equation when soil was mainly well structured or 

gravelly sand, providing higher α* values, (0.36 and 0.12 cm-1). However, in situations where 

silt contents were high, the Glover solutions estimated significantly higher Kfs (P < 0.05), 

when α* values were lower (<0.04 cm-1) in the Richards equation.  

With this particular investigation in mind we considered that solution 2A, i.e. the Glover 

solution with gravity taken in account (Reynolds et al. 1983), was preferred for the following 

reasons: 

 The Richards equation is dependent on accurate α* values, but the measured auger 

holes intersected soil horizon boundaries that had different soil structure and texture. 

Such circumstances caused difficulties within the framework of the pre-existing 

classification of Elrick et al. (1989) to select the most appropriate α* value. 

  Overestimation of solution 2A was considered to be minimal, because the resulting 

Kfs values were lower than solutions 4A, 4B and 4C (where capillarity was 0 for 

different soil types), which provided maximum Kfs values as described by Elrick et 

al. (1989). 

 Within the floodplain zone where silty soils were present, Kfs values estimated from 

the CHWP method using solution 2A were significantly lower (P > 0.05) than 

estimates from the AH method, but not significantly lower than the PD method. This 

suggests that there were some smearing effects occurring in the floodplain zone using 
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the CHWP method. However, as there was no order of magnitude difference in Kfs 

between these methods, unlike reports from other studies (Chappell and Lancaster 

2007), the CHWP method using solution 2A was considered to give broadly 

representative Kfs values. 

 Unsaturated flow could also be negligible because of the moist (not far below field 

capacity) soil conditions and the pre-wetting of auger holes before taking 

measurements, following Talsma and Hallam (1980). 

Taking into account various requirements for representative Kfs data, field conditions, 

constraints on measuring Kfs and assumptions of each solution, this study is an example of 

how appropriate solutions to estimate Kfs were chosen. The Kfs results secured from this 

study have subsequently been compared with rainfall intensity duration frequency data to 

infer storm runoff generation processes and are described in detail in Archer et al. (2013).  

However, none of these solutions take into account preferential flow, which could cause 

an underestimation of Kfs for all solutions. This aspect needs to be taken into account, 

particularly in soils that have a network of root systems, are highly organic and are 

biologically active, which can cause high macropore connectivity and result in preferential 

flow. 
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Site 
area 

Description Topsoil Description Soil structure and texture Superficial Geology 

G1  Improved grassland 
>265 years 

0 to 0.04 m grass root mat. A horizon extends from 0.05 
to 0.25 m and grades into a B Horizon. Gravels exist 
throughout, but coarse gravel increases in the B horizon 
below 0.25 m depth. 

Loamy sand. Granular, crumb 
structure 0 to 0.04 m, becomes sub 
angular blocky around 0.2 m. 

Glaciofluvial gravel 
and sand 

DW1  Deciduous 
Woodland, mature 
Beech > 500 years 

0 to 0.10 m litter layer. Humus layer up to 0.05 m. 
Organic layer extends to 0.15 grading into A horizon 
between 0.15 m to 0.30 m. Gravel B Horizon extends into 
A horizon around 0.25 m. Organic horizons variable 
depending on distance from trees. Gravels increase 
around 0.25 m depth. 

Loamy sand. Granular, crumb, 
structure to depths over 0.2 m, 
below this depth can become 
blocky or structureless, depending 
on sand content and presence of 
roots 

Glaciofluvial gravel 
and sand 

G2  Improved grassland 
>265 years 

Dense grass root mat 0 to 0.05 m. A horizon to 0.20 m. 
Coarse gravel throughout profile, at variable depth 
increasing from 0.20 m.  

Sandy loam. Granular, crumb 
structure 0 to 0.4 m, becomes sub 
angular blocky around 0.2 m. 

Till occurring within 
the upper half of the 
site area. The rest of 
the area underlain by 
Head. 

DW2  Deciduous mixed 
woodland <160 
years 

0 to 0.05 m litter layer. Humus layer variable thickness 
from 0.01 to 0.05 m. Organic layer between 0.10 m to 
below 0.20 m depth, extending into A horizon. Organic 
horizons variable depending on distance from trees. 
Gravels exist throughout, but increase around 0.20 m. 

Sandy loam. Granular, crumb, 
structure to depths over 0.15 m, 
below this depth can become 
blocky or structureless, depending 
on sand content and presence of 
roots 

Till occurring within 
the lower half of the 
site area. The rest of 
the area is underlain by 
Head. 

G3  Improved grassland 
>265 years 

Dense grass root mat 0 to 0.05 m. Silty A horizon extends 
to around 0.20 m. Coarse gravel throughout profile, 
increasing at 0.20 m. 

Sandy loam. Granular, structure 0 
to 0.05 m becomes sub angular 
blocky around 0.1 m. 

Gravels derived from 
bedrock 

CW3  Conifer plantation 
50 years 

0 to 0.05 m litter layer. Dark humus layer variable 
thickness from 0.01 to 0.05 m. Organic silt A horizon 
extends from 0.10 m to below 0.15 m and colour changes 
to red-brown, showing possible illuviation of organic 
colloids. Cobbles present from 0.15 m grading into a B 

Sandy loam. Granular, crumb 
structure 1 to 0.15 m. Becomes 
blocky below 0.15 m 

Gravels derived from 
bedrock 
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horizon and in some points reaching a shallow C horizon. 

G4  Improved grassland 
>265 years 

0 to 0.04 m organic layer. Clay silt A horizon extends 
between 0.04 m to below 0.3 m. Gravel occasionally 
present from 0.2 m. Some gleying below 0. 2 m. 

Loam. Granular, crumb structure 0 
to 0.04 m. Becomes unstructured 
around 0.1 m. 

Recent riverine alluvial 
deposits 

FW4 Deciduous 
Woodland, mature 
Willows < 180 
years 

0 to 0.08m, highly heterogeneous organic layer. A 
horizon extends from 0.08 m to below 0.3 m. Areas of 
gleying occur around 0.015 m soil depth. 

Loam. Granular structure 0 to 0.1 
m, becomes unstructured 0.1 to 
0.15 m. 

Recent riverine alluvial 
deposits 

 

Table 1) Summary of soils measured for each site area, describing soil horizons, texture, structure and superficial geology. The mix of letters 

indicate: G is grassland cover, W relates to woodland cover, D is deciduous woodland, C is conifer and F is floodplain. 
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Solution 
ID 

Reference Kfs Eq. and C factor formulae Assumptions Percentage 
difference to 
Eq. 1 

1 Glover solution (Eq. 3 
and 4, p.320 Elrick and 
Reynolds (1992) 

ݏ݂ܭ † ൌ  ଶሻܪߨሺ2/ܳܥ

ܥ ൌ ଵି݄݊݅ݏ ൬
ܪ
ܽ
൰ െ ሺ

ܽଶ

ଶܪ ൅ 1ሻ
ଵ
ଶ ൅  ܪ/2

Saturated flow, capillarity is zero 
and flow as a component of gravity 
is negligible, based on the Laplace 
solution. 

 

2A Glover solution (Eq. 2) 
C factor calculated from 
Eq. 3. (Reynolds et al. 
1983) 

௙௦ܭ ൌ CQ/2πHଶሾ1 ൅ 2/ܥ ቀ
ܽ
ܪ
ቁ
ଶ
ሿ 

 

ܥ ൌ ሻܽ/ܪଵሺି݄݊݅ݏ െ ටሺܪ ൗݎ ሻଶ ൅ 1 ൅  ܪ/ܽ	

 

Saturated flow, capillarity is zero 
and component of gravity added 
based on the Laplace solution. 

 
+ 24% 

2B Glover solution. C factor 
calculated from the 
numerical solution 
(Reynolds et al. 1983) 
 

The numerical factor C for H/a = 3 in saturated 
conditions was estimated from Fig. 1 p.321 (Elrick 
and Reynolds 1992). 

Saturated flow, capillarity is zero 
and component of gravity added 
based on the Laplace solution 
where gradient solution is obtained 
by solving numerically for steady-
state head distribution. 

 
+ 172% 

3A α* = 0.36 cm-1 (Elrick et 
al. 1989, Eq. 13, p.186), 
C factor Eq. 1, p. 220, 
Zhang et al. (1998)  

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅ ܥଶܽߨ ൅  ∗ܽ/ܪߨ2
When α*=0.36cm-1 

  

ܥ ൌ ൬
ܽ/ܪ

2.074 ൅ 0.093ሺܪ/ܽሻ
൰
଴.଻ହସ

 

Includes saturated and unsaturated 
flow. C value based on Richards 
Eq. includes components of gravity 
and capillarity. 

 
+ 9% 

3B  α* = 0.12 cm-1 (Elrick et 
al. 1989, Eq. 13, p.186), 
C factor Eq. 1, p. 220, 
Zhang et al. (1998) 

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅ ܥଶܽߨ ൅  ∗ܽ/ܪߨ2
When α* = 0.12 cm-1 

  

ܥ ൌ ൬
ܽ/ܪ

2.074 ൅ 0.093ሺܪ/ܽሻ
൰
଴.଻ହସ

 

Includes saturated and unsaturated 
flow. C value based on Richards 
Eq. includes components of gravity 
and capillarity. 

 
 - 21% 

3C α* = 0.04 cm-1 (Elrick et 
al. 1989, Eq. 13, p.186), 
C factor Eq. 2, p. 220, 

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅ ܥଶܽߨ ൅  ∗ܽ/ܪߨ2
When α* = 0.04 cm-1 

  

Includes saturated and unsaturated 
flow. C value based on Richards 
Eq. includes components of gravity 

 
- 57% 

accepted in Hydrology Research 2014 doi:10.2166/nh.2014.159 



 
 

35 
 

Zhang et al. (1998)  
ܥ ൌ ൬

ܽ/ܪ
1.992 ൅ 0.091ሺܪ/ܽሻ

൰
଴.଺଼ଷ

 
and capillarity. 

3D α* = 0.01 cm-1 (Elrick et 
al. 1989, Eq. 13, p.186), 
C factor Eq. 3, p. 220, 
Zhang et al. (1998)  

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅ ܥଶܽߨ ൅  ∗ܽ/ܪߨ2
When α* = 0.01 cm-1 

  

ܥ ൌ ൬
ܽ/ܪ

2.102 ൅ 0.118ሺܪ/ܽሻ
൰
଴.଺ହହ

 

Includes saturated and unsaturated 
flow. C value based on Richards 
Eq. includes components of gravity 
and capillarity. 

 
- 86% 

4A  α* = ∞,  C ≥ 0.12 cm-1 

(Elrick et al. 1989, Eq. 
13, p.186), C factor Eq. 
1, p. 220, Zhang et al. 
(1998) 

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅  ܥଶܽߨ
When C > 0.12 cm-1 

  

ܥ ൌ ൬
ܽ/ܪ

2.074 ൅ 0.093ሺܪ/ܽሻ
൰
଴.଻ହସ

 

Includes saturated flow with 
capillary flow removed. C value 
based on Richards Eq. includes 
components of gravity. 

 
+ 35% 

4B α* = ∞,  C = 0.04 cm-1 

(Elrick et al. 1989, Eq. 
13, p.186), C factor Eq. 
2, p. 220, Zhang et al. 
(1998)   
 

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅  ܥଶܽߨ
When C = 0.04 cm-1 

  

ܥ ൌ ൬
ܽ/ܪ

1.992 ൅ 0.091ሺܪ/ܽሻ
൰
଴.଺଼ଷ

 

Includes saturated flow no 
capillary flow. C value based on 
Richards Eq. includes components 
of gravity. 

 
+ 36% 

4C α* = ∞,  C = 0.01 cm-1 
(Elrick et al. 1989, Eq. 
13, p.186), C factor Eq. 
3, p. 220, Zhang et al. 
(1998)  

ݏ݂ܭ ൌ ଶܪߨሺ2/ܳܥ ൅  ܥଶܽߨ
When C = 0.01 cm-1

ܥ ൌ ൬
ܽ/ܪ

2.102 ൅ 0.118ሺܪ/ܽሻ
൰
଴.଺ହହ

 

Includes saturated flow no 
capillary flow. C value based on 
Richards Eq. includes components 
of gravity. 

 
+ 29% 

Table 2) Summary of the various solutions used in the sensitivity analysis. †The Glover solution is normally written:  

௙௦ܭ  ൌ Qሺsinhିଵሺܪ ⁄ݎ ሻ െ 1ሻ/2ܪߨଶ 

  

accepted in Hydrology Research 2014 doi:10.2166/nh.2014.159 



 
 

36 
 

Site ID Number of 

measurements 

Soil depth 

(m) 

Mean H 

(mm) 

Mean a 

(mm) 

†Mean Q  

(mm3 s-1) 

SE Max. Q  

(mm3 s-1) 

Min. Q  

(mm3 s-1) 

DW1 13 0.04 – 0.15 110 36 2686 764 9505 166 

DW1 13 0.15 – 0.25 100 34 498 87 1175 166 

G1 13 0.04 – 0.15 110 33 407 182 2143 60 

G1 13 0.15 – 0.25 100 33 194 33 503 83 

DW2 16 0.04 – 0.15 110 34 2305 536 8045 617 

G2 16 0.04 – 0.15 110 34 420 69 1382 202 

CW3 16 0.04 – 0.15 110 37 889 184 2886 313 

G3 16 0.04 – 0.15 110 36 653 538 2239 152 

FW4 12 0.04 – 0.15 110 33 154 516 4812 1 

G4 16 0.04 – 0.15 110 32 28 13 216 7 

G4 16 0.15 – 0.25 100 33 48 12 199 16 

 

accepted in Hydrology Research 2014 doi:10.2166/nh.2014.159 



 
 

37 
 

Table 3) Site IDs relate to Fig. 1. H is the head height of water in the auger hole, a is the radius of the auger hole, Q is the steady-state rate of 

water entry into the auger hole, Max. Q is the maximum steady-state infiltration and Min. Q is minimum steady-state infiltration. † Mean Q is 

the geometric mean because the Kfs is log normally distributed. 
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Site ID Soil depth 

(m) 

Mean Kfs  (3A, 3B, 3C) 

(mm hour-1) 

Mean Kfs  (1) 

(mm hour-1) 

Mean Kfs  (2A) 

(mm hour-1) 

 

DW1 0.04 – 0.15 (0.36 cm-1) 120 102 130  

DW1 0.15 – 0.25 (0.36 cm-1) 23, (0.12 cm-1) 16 21 26  

G1 0.04 – 0.15 (0.36 cm-1) 18, (0.12 cm-1) 13 18 21  

G1 0.15 – 0.25 (0.12 cm-1) 7, (0.04 cm-1) 4 8 10  

DW2 0.04 – 0.15 (0.36 cm-1) 106 98 120  

G2 0.04 – 0.15 (0.12 cm-1) 14, (0.04 cm-1) 8 18 21  

CW3 0.04 – 0.15 (0.36 cm-1) 38 34 42  

G3 0.04 – 0.15 (0.12 cm-1) 21, (0.36 cm-1) 29 26 32  

FW4 0.04 – 0.15 (0.36 cm-1) 5, (0.12 cm-1) 5 6 7  

G4 0.04 – 0.15 (0.12 cm-1) 1, (0.04 cm-1) 0.64 2 2  

G4 0.15 – 0.25 (0.04 cm-1) 1 2 3  

 

Table 4) Comparison of geometric mean Kfs calculated from Solution 1 (the Glover solution), Solution 2A (the Glover solution corrected for 

gravity) and Solutions 3A, 3B and 3C (the Richard’s equation, using one of the α*: 0.04 cm-1, 0.12 cm-1 and 0.36 cm-1) for each site and 

measured soil layers. 0.01 cm-1 α* is not included, because it was considered that none of the soils fitted into this category. The values in 

brackets are selected α* values used in the calculation. More than one α* is added to some sites, when it was difficult to define which α* to use 

where the auger hole intersected more than one soil horizon.
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Fig. 1) The location of the field area in Scotland and in the catchment of the Eddleston Water 

accepted in Hydrology Research 2014 doi:10.2166/nh.2014.159 



 
 

40 
 

 

Fig. 2) Aerial photo of site area showing the locations of the CHWP measurements (white 

circles) and area of auger hole measurements (white square). Four auger hole measurements 

were carried out within the white square. Ponded disc permeameter measurements (Perroux 

and White 1988) were undertaken within G4 only. CHWP measurements were taken at two 

depths (0.04 to 0.15 m and 0.15 to 0.25 m) for DW1, G1 and G4. All other areas were 

measured at one layer (0.04 to 0.15 m). White lines represent contours and the black lines are 

the delineations of Associations shown in the Peebles soil map: Soil Survey of Scotland, 

systematic soil survey; sheet 24 & part of sheet 32. Scale 1:250 000 (Soil Survey of Scotland 

Staff 1975). © UKP/Getmapping Licence No. UKP2006/01 
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Fig. 3) Comparison of logarithmic Kfs values calculated using different formulae described in 

Table 2 against the Glover solution (Equation 1), shown as 1:1 line. The number of data 

points was reduced, to provide more clarity to the graphs.  
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Fig 4) Box plots illustrating Kfs values calculated for the different sites (located in Fig. 2) using solutions 1, 2A, 3A, 3B and 3C (as described in 

Table 2). G1, G2, G3 and G4 are grassland areas and DW1, DW2, CW3 and FW4 are woodland areas and are explained in Table 2. Open box 

plots have significantly different (P < 0.05) mean Kfs values within each site group.  
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Fig. 5) Box plot comparing log transformed Kfs results in the floodplain area (site G4) of the CHWP solutions (1, 2A, 2B, 3A, 3B, 3C, 3D, 4A, 

4B, 4C), the ponded disc permeameter (PD) and the auger hole methods (AH). The description for each solution ID is given in Table 2.  
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