INSTITUTE OF TERRESTRIAL ECOLOGY

(NATURAL ENVIRONMENT RESEARCH COUNCIL)

ITE Project 1113

Final Report MAFF/NERC CONTRACT

A COMPARISON OF 1986 and 1987 CAESIUM ACTIVITIES OF VEGETATION IN WEST CUMBRIA

N A BERESFORD, J K ADAMSON & BRENDA J HOWARD

Institute of Terrestrial Ecology Merlewood Research Station Grange-over-Sands Cumbria LA11 6JU This Report is an official document prepared under contract between the Ministry of Agriculture, Fisheries and Food and the Natural Environment Research Council. It should not be quoted without the permission of both the Institute of Terrestrial Ecology, and the Ministry of Agriculture, Fisheries and Food.

CONTENTS

		Page
1	SUMMARY	1
2	INTRODUCTION	2
3	MATERIALS AND METHODS	3
4	RESULTS	4
5	DISCUSSION	5
6	ACKNOWLEDGMENTS	6
7	REFERENCES	7

1 SUMMARY

Vegetation from sites within and around the restricted area of West Cumbria, initially visited in late May 1986, has been resampled and analysed for ¹³⁷Cs activity. At most sites the ¹³⁷Cs activity of vegetation has declined to less than 30% of the 1986 value. However there are areas where the caesium activity still warrants the continuation of restrictions on the movement and slaughter of sheep. Those sites where the ¹³⁷Cs activity of vegetation has remained comparatively high were found to have low pH, organic soils.

2 INTRODUCTION

A nationwide survey of the $^{137}\mathrm{Cs}$ activity of vegetation resulting from deposition of fallout from the Chernobyl accident was conducted by the ITE in late May 1986. Particularly intensive sampling was conducted in Cumbria due to initial indications that higher deposition had occurred in part of the county. In West Cumbria, North Wales and areas of Scotland, the caesium activity of vegetation was sufficiently high to cause tissue levels in sheep grazing these areas to exceed the limit, of 1000 Bq kg $^{-1}$ wet weight, recommended by the Group of Experts established under article 31 of the Euratom Treaty meeting in Luxembourg of 1000 Bq kg $^{-1}$ wet weight. Consequently it was necessary to place restrictions on the slaughter and movement of sheep from these areas.

Although the caesium activity of vegetation declined rapidly in most areas, in large upland areas of West Cumbria and North Wales it remained comparatively high. It became evident that caesium uptake by vegetation was occurring and that the need for restrictions in 1987 would be dependent on the caesium activity in the grazed vegetation of the new growing season.

The ¹³⁷Cs activity of vegetation, collected from the same West Cumbria sample sites as were used in late May 1986, following the Chernobyl accident, has been measured to provide a comparision between activities in May 1986 and May 1987. The results should help to determine the potential for reducing the size of the restricted area in 1987.

This report presents 137 Cs results for 70 sites in and around the restricted area of West Cumbria. A similar report giving 1987 caesium activities of vegetation within the restricted area of North Wales is also being prepared (Beresford et al.).

3 MATERIALS AND METHODS

The selection of sampling sites was stratified using a land classification developed by ITE, and has been described in detail by Horrill (1987). Fifty-eight sample sites, within the current or previously restricted area of West Cumbria, were revisited in May and early June 1987. Additional samples were collected from 12 sites around, but outside the area which had been restricted. The location of sample sites is shown in Figure 1.

Vegetation was clipped from 1 $\rm m^2$ or 2 $\rm m^2$ quadrats to a height of 1 cm above ground level. Dead vegetation and species other than grasses were avoided. The samples were dried at 80° C, weighed, ground and counted in plastic containers (130 $\rm ml$) on a NaI (T1) detector to determine $\rm ^{137}Cs$ activity. The 10 most active samples were recounted on a high resolution germanium detector.

Soil samples (20 x 20 x 20 cm) were taken from all sites. Soils were allocated to a series of textural categories on the basis of the estimated content of clay, silt, sand and organic matter. Soils dominated by material from one category were simply given one category name (eg silt). Soils given 2 names (eg sand/silt) had significant quantities of material from 2 categories, the first category being present in greatest quantity (sand in this examples). "Loam" was used for soils with significant quantities of material from 3 or more categories (eg sand, clay and organic matter). The categories were:-

- 1. Clay: particles of less than 2 µm diameter;
- 2. Silt: particles of 2-40 µm diameter;
- 3. Sand: particles of 50 µm 2 mm diameter;
- 4. Loam: mixed;
- 5. Organic: humified plant material.

Soil pH was determined using an antimony electrode pH meter.

4 RESULTS

Table 1 compares the 137 Cs activity of vegetation collected in 1987 to that taken in 1986, together with land classification, soil classification and soil pH. Only 8 of the 70 samples were found to be above 1000 Bq kg $^{-1}$ dry weight in the resampling, the maximum being 2190, compared with 15 samples which were above 10,000 Bq kg $^{-1}$ dry weight in 1986. Thirty-eight samples in 1987 were below the detectors limit of detection (300 Bq kg $^{-1}$). A contour map of 1987 137 Cs results is presented in Figure 2. The south western fells can be seen to be the area where 137 Cs activity of vegetation remains highest.

The 134 Cs activity and the 134 Cs: 137 Cs ratio (approximately 1:2.77) of the 10 most active samples is shown in Table 2.

Figure 3 compares 137 Cs activity of 1987 vegetation samples with both soil class and pH. The majority of samples $^{>300}$ Bq kg $^{-1}$ dry weight can be seen to be from sites with low pH, organic soils.

5 DISCUSSION

Outside the currently restricted area the ^{137}Cs activity of vegetation collected in 1987 was less than 1000 Bq kg $^{-1}$ dry weight. Generally, ^{137}Cs activities were higher within the restricted area, the highest being 2190 Bq kg $^{-1}$ dry weight (National Grid Reference 317503).

Those sites (starred in Table 1) where the $^{137}\mathrm{Cs}$ activity of vegetation has remained proportionately high have low pH, organic soils and belong to upland land classes. The only exception to this was sample number 2 which was collected from a tidally inundated saltmarsh on the Ravenglass Estuary contaminated by liquid effluent from the Sellafield Reprocessing Plant. Other sites along the coast which received high deposition of $^{137}\mathrm{Cs}$ in May 1986 are now all below 300 Bq kg $^{-1}$ dry weight.

On the pessimistic assumption that the transfer coefficient (caesium activity of muscle Bq kg $^{-1}$ fresh wt/daily intake of caesium) for both $^{134}\mathrm{Cs}$ and $^{137}\mathrm{Cs}$ (current ratio approximately 1:2.77) to lamb muscle is 0.79 (Howard et al. 1987), then restrictions will need to remain in force in those areas where the $^{137}\mathrm{Cs}$ activity of vegetation exceeds 1500 Bq kg $^{-1}$ dry weight.

The samples in this report were taken at previously sampled, specific locations one year after the original survey to enable a comparison of current levels in vegetation with those of vegetation shortly after the deposition. The results should not be used to predict seasonal variations of the ^{137}Cs activity of vegetation over the coming year.

6 ACKNOWLEDGMENTS

We would like to thank Elizabeth King, Gill Howson and David Lindley for their help during this study.

7 REFERENCES

- BERESFORD, N.A., HOWSON, G. & HOWARD, B.J. In press. A comparison of 1986 and 1987 caesium activities of vegetation in the restricted area of north Wales. NERC/MAFF Contract Report.
- HORRILL, A.D. 1987. Chernobyl fallout in Great Britain. NERC/DOE Contract report.
- HOWARD, B.J., BERESFORD, N.A., BURROW, L., SHAW, P.V. & CURTIS, E.J.C. 1987. A comparison of caesium activity in sheep remaining on upland areas contaminated by Chernobyl fallout with those removed to less active lowland pasture. J. Soc. Radiol. Prot., 7.

Sof1 pH	66000404000040444040000000000004446000000	0.0
Soil Classifi- cation	Loam Silt Sand/Silt Organic Organic Organic Organic Organic Silt/Organic Silt/Organic Organic/Sand Organic/Sand Organic/Sand Organic Silt/Organic Organic Silt/Clay Silt/Organic Clay Silt/Organic Silt/Organic Organic Organic Organic Organic Organic Silt/Organic Silt/Organic Organic Organic	Organic
Decrease in 137 _{Cs} Activity (1986-1987) Bq kg ⁻¹ dry wt	>10070 9120 10500 4160* 10050 8680* 11380 7170* 6080 6180* 8290* 8290* 11390 9440 11390 9440 10690 > 1290 > 1290 > 2100 > 2100 > 2510 > 2510 > 2510 > 2510 > 2510	200
of Vegetation 1987 Bq kg ⁻¹ dry wt	 300 300 300 300 1150 1150 11340 1950 1130 1970 300 30	22
137Cs Activity of 1986 Bq kg ⁻¹ dry wt	10370 10800 4890 11200 11200 112370 8510 6440 7230 11970 11970 11740 11740 11200 11320 2400 3730 3190 2810 5080 8250	>>++
Restriction Status	Restricted Derestricted	111111111111111111111111111111111111111
ITE Land Classifi- cation	4 8 8 8 6 6 6 4 4 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	,
Grid Reference	318491 309495 309495 319497 317502 311507 311507 311507 311507 311507 311507 311509 312509 314492 314492 314492 315510 316492 316492 316492 316492 316492 316492 316492 316492 316493 316492 316493	1
Sample	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	! }

Soil pH	5.5	0.4	4.1	4.1	4.7	4.5	2.8	5.9	3.6	3.3	3.4	3.3	4.5	4.2	3,3	4.5	4.6	0.9	9.9	4.5	4.1	3.7	3.3	3.9	3.5	3.3	4.1	3.7	4.7	6.4	4.5	5.2
Soil Classifi- cation	Silt/Clay	Organic/Silt S41+/Sand	Silt/Clay	S11t/Sand	Clay/Silt	Silt/Sand	Organic	Clay/Silt	Organic	Organic	Organic/Silt	Organic	Loam	Organic	Organic	S11t/Sand	Silt/Sand	Organic/Sand	Organic/Sand	Organic	Organic	Organic	Organic	Organic/Silt	Organic	Organic	Organic	Organic	Silt	Clay/Sand	Organic	Loam
Decrease in 137 _{Cs} Activity (1986-1987) Bq kg ⁻¹ dry wt	> 6370	27.10			> 11780				610*	4630	3740	8930	6550	> 8500		> 1810	> 11700		0 < 69.70	5830	1730*		> 2000	1770*	2520*	2710		> 1310	> 1790	> 1160	> 430	> 170
of Vegetation 1987 Bq kg ⁻ l dry wt	< 300	400 < 300	< 300	< 300	< 300		< 300	< 300	370	350	470	810	510	< 300	< 300	< 300	< 300	< 300	< 300	360	390		< 300	830	069	370	< 300	< 300	< 300	< 300	< 300	< 300
137Cs Activity 1986 Bq kg ⁻¹ dry wt	6670	3110 1720	3520	1980	12080	2400	2040	1030	086	4980	4210	9740	2060	8800	2630	2110	12000	2360	7270	6190	2120	2770	2300	2600	3210	3080	2670	1610	2090	1460	730	470
Restriction Status	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Derestricted	Unrestricted	Unrestricted	Restricted	Restricted	Derestricted	Unrestricted	Unrestricted	Unrestricted	Unrestricted							
ITE Land Classifi- cation	10	11	11	12	12	12	12	12	15	15	15	15	16	16	16	16	-4	œ	12	15	10	14	14	14	14	15	15	16	, -	ന	m	m
Gr1d Reference	316523	340513	317525	338505	303512	331521	331515	337506	336522	328520	320526	325498	316521	326499	339508	340509	299526	307487	308506	322505	328529	331527	333530	324528	329512	331531	331533	336511	328487	315535	341528	334538
Sample	32	34	35	36	37	38	96	04	41	42	43	77	45	46	47	48	49	20	51	52	53	54	55	99	57	58	59	09	61	62	63	94

Soil Ifi- pH on	Clay 6.6 Silt 5.3 Ic 6.4 Ic 4.1 Ic 3.3
Soil Classifi- cation	Silt/Clay Clay/Silt Loam Organic Organic
Decrease in 137 _{Cs} Activity (1986-1987) Bq kg ⁻¹ dry wt	> 2020 > 3040 > 6370 1830* 5110
of Vegetation 1987 Bq kg ⁻¹ dry wt	<pre>< 300 < 300 < 300 < 490 550 </pre>
137Cs Activity of V 1986 Bq kg ⁻¹ dry wt	2320 3340 6670 2320 5660 540
Restriction Status	Unrestricted Unrestricted Unrestricted Unrestricted Unrestricted
ITE Land Classifi- cation	5 6 9 11
Sample Grid Reference	295512 310531 302535 342517 332496 326538
Sample	65 66 67 68 69 70

Table 2

Caesium activity of vegetation (Bq kg⁻¹ dry wt)

Sample	134 _{Cs}	137 _{Cs}	134 _{Cs:} 137 _{Cs}
5	570	1570	1:2.75
6	770	2150	1:2.79
7	330	880	1:2.67
8	500	1400	1:2.80
10	410	1170	1:2.85
11	870	2210	1:2.54
16	440	1360	1:3.09
17	480	1340	1:2.79
19	470	1280	1:2.72
20	850	2310	1:2.72

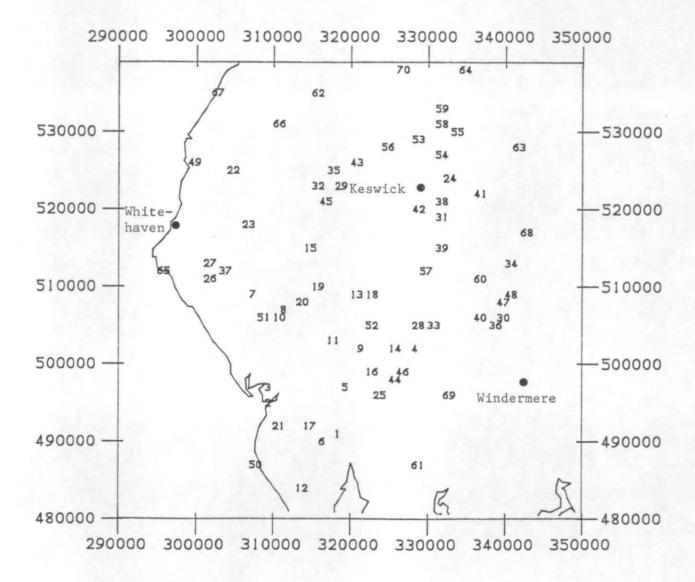


Figure 1. Location of sample sites

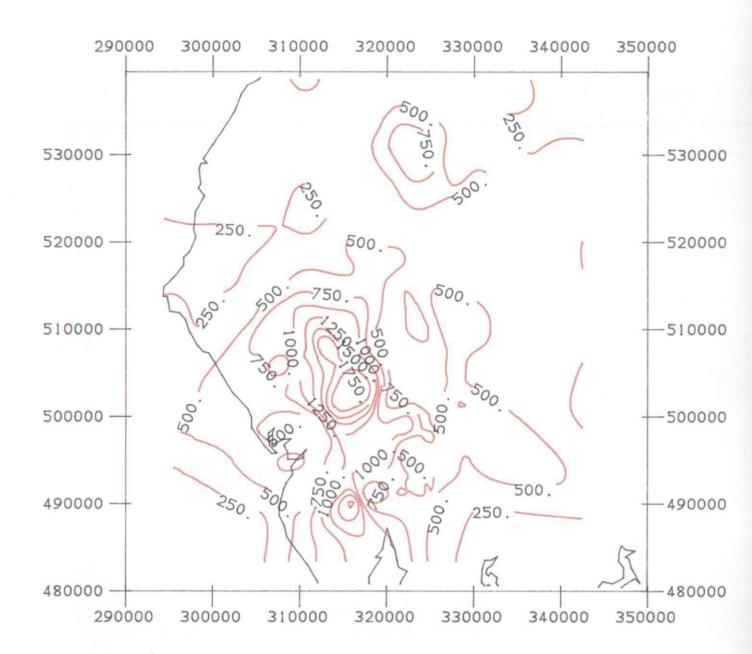
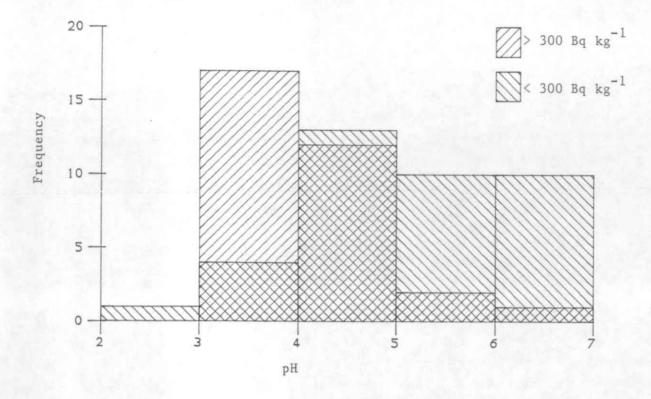



Figure 2. ^{137}Cs activity of vegetation (Bq kg $^{-1}$ dry wt) in West Cumbria May/June 1987

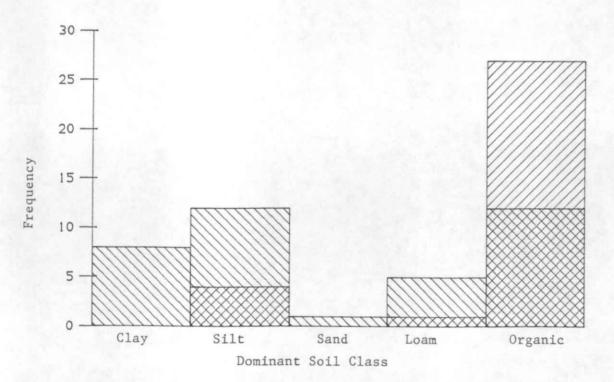


Figure 3. Comparison of the number of vegetation samples above and below 300 Bq $\rm kg^{-1}$ with soil pH and classification.