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Abstract 

A Confidence Index is proposed that expresses the confidence of experts in the quality of a 

3-D model as a representation of the subsurface at particular locations.  The Confidence 

Index is based on the notion that the variation of the height of a particular geological surface 

represents general geological variability and local variability.  The general variability 

comprises simple trends which allow the modeller to project surface structure at locations 

remote from direct observations.  The local variability limits the extent to which borehole 

observations constrain inferences which the modeller can make concerning local fluctuations 

around the broad trends.  The general and local geological variability of particular contacts 

are modelled in terms of simple trend surfaces and variogram models.  These are then used 

to extend measures of confidence that reflect expert opinion so as to assign a confidence 

value to any location where a particular contact is represented in a model.  The index is 

illustrated with an example from the East Midlands region of the United Kingdom. 

1.   Introduction. 

Geologists understand the geology of a region in three dimensions, and recent technological 

developments allow them to represent this understanding in 3-D geological models.  

Geological information in the form of 3-D models, rather than traditional 2-D maps, is now 

the state of the art for planning and decision making (Mathers and Kessler, 2010; Royse et 

al., 2010).   

All geological information is subject to uncertainty, since at most sites in a region information 

is inferred indirectly from observations at other locations, observations which may 

themselves be subject to error.  As a result the final model has an inevitable uncertainty.  

This is of interest because the model may be interpreted as indicating the subsurface 

positions of particular features or the volumes of particular units over a specified  region.  
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Engineering decisions such as the route of a tunnel or the suitability of the subsurface for 

particular structures should be robust given the model errors that may be expected.  

Similarly, if the model is used in resource assessment or in hydrogeological modelling then 

the user requires some understanding of the model's uncertainyt, and how this might vary in 

space.  For this reason the problem of how to measure and represent model uncertainty is 

the subject of some considerable research interest. 

Where 3-D structure is predicted from observations by purely geostatistical methods a 

measure of uncertainty is computed directly for individual predictions (Lark and Webster 

2006; Blanchin and Chilès 1993).  However, most models are not generated by a statistical 

algorithm but rather through expert interpretation; either expert `manual’ editing of surfaces 

produced by mechanical interpolation, or by interpolation from cross sections interpreted by 

the modeller, subject to constraints (e.g. 2-D coverages for particular units) imposed by the 

modeller as in the GSI3D software (Kessler et al., 2009; Mathers et al., 2011).  

Lark et al. (2013) report a post-hoc evaluation of uncertainty in a model produced in GSI3D 

by a designed experiment in which a team of modellers studied a common region.  However, 

this approach is resource-intensive and not suitable for conditions where borehole data are 

sparse.  It can be used to obtain benchmark statistics on model quality for particular 

geological terrains and settings, but is not suitable as a routine approach to quantify 

uncertainty in particular models. 

Lelliott et al. (2009) propose a structured approach to represent the uncertainty in 3-D 

models.  This was based on an initial analysis of factors that contribute to the uncertainty of 

a model in a specific geological setting produced with the GSI3D software.  The factors 

identified include the reliability of the absolute elevations of the boreholes, the quality of the 

borehole logging, the drilling method, the geological complexity and the density of data.  Any 

borehole may be given some index which reflects the quality of information it provides 

according to the above-listed constraints (e.g. under drilling method the quality of information 

was deemed best for cores obtained by sonic drilling and poorest for those obtained by 

cable percussion).  The combination of information on the different sources of uncertainty 

into a single index was done by a machine-learning algorithm; this uses the various sources 

of information on model uncertainty as predictors of the expert score provided at a few 

calibration sites. 

The present paper describes an index of confidence similar to that proposed by Lelliott et al. 

(2009).  It differs from the previous measure in certain respects.  It is designed specifically 

for models of subsurface structure inferred from subsurface observations (boreholes, 

seismic lines) rather than by projection from surface structure.  We are concerned, therefore, 
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with cases where the expert may make inferences about the height of a contact at some 

unobserved site by identifying a trend in the height of the same contact shown in boreholes 

or interpreted seismic data at other locations.  We consider two general constraints on the 

model that the expert will form.  The first is the overall geological complexity; this source of 

uncertainty will be small if there is strong evidence for relatively simple trends in surface 

heights, as may arise from a consistent dip or a dip with flexure.  Lelliott et al. (2009) 

measure geological complexity by multiple fitting of a trend surface model to subsets of 

available data, which gives a measure of complexity in more general cases than ours but 

also risks confounding complexity as a source of uncertainty with data density since the 

multiple refitted surface will be more variable in areas where data are sparse, and less 

variable where the observations are strongly clustered in space.  The second constraint on 

the model is local geological complexity which is, essentially, the variability of surface height 

about the overall trend. In our index the effect of this source of uncertainty depends on the 

proximity of local observations, such that the confidence in the model decays with distance 

from a borehole.  By this simple partition of the sources of uncertainty in a model we are able 

to compute directly a simple Confidence Index which is interpretable in terms of a scale used 

to elicit information from geological experts and which varies in ways which are directly 

interpretable in terms of the distribution of borehole and other data and the distribution of 

faults.  In this way the Confidence Index is entirely transparent. 

In the remainder of this paper we describe the general form of our proposed Confidence 

Index, and the methods required to compute it.  We then present a case study in which the 

index is computed for a model of some subsurface contacts in a part of the East Midlands of 

England. 

2.  The Confidence Index 

2.1. General principles 

The key idea implemented in the Confidence Index is that the confidence in the modelled 

surface is influenced by overall geological variability (the extent to which pronounced simple 

trends in the elevation of particular surfaces allow the modeller to project with some 

confidence beyond the range of data) and local geological complexity, which determines 

over what distance information in a borehole constrains the interpretation of local fluctuations 

around an overall trend.  In order to implement the Confidence Index we use data on the 

elevation of the modelled surfaces of interest, either from boreholes or geophysical data.  

These data are then analysed to partition the observed variation in elevation of each surface 

into a simple trend (a polynomial of degree 1 or 2 in the 2-D coordinates) and fluctuation 

about the trend.  The latter is treated as a Gaussian random variable which may be spatially 
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correlated, that is to say the observed deviations from the trend model at two locations are 

more likely to be similar if the locations are close together than if they are far apart.  The 

correlation between the deviations from the trend at any two locations declines with the 

distance between them to zero, which is either reached or asymptotically approached at a 

distance called the range of autocorrelation.  The autocorrelation is modelled as a function of 

distance by a suitable mathematical expression.  As described in more detail below the 

proportion of the variation in observed heights which is described by the trend component of 

the model characterizes the overall complexity of the modelled surface, and the dependence 

of the autocorrelation function for the deviations from the trend characterizes the local 

geological variability.  The rationale for this is that if the distance to the nearest borehole 

from some location, x, is longer than the range of autocorrelation of the variations of a 

surface about the general trend, then that borehole provides no direct information on the 

local geological variability at x. 

Consider four contrasting locations in a modelled area. 

A.   The first is a location that coincides with a logged borehole used to produce the model.  

It is assumed that the borehole data are of good quality, and are reliably coded.  At this 

location there is complete confidence in the model, because it is directly supported by an 

observation and the Confidence Index is allocated a maximum value, a1. One might, 

however, identify among all the boreholes in a region subsets which command different 

degrees of confidence because of factors such as age, logging quality, drilling method etc.  

In these circumstances one may elicit from geologists with local knowledge and experience, 

which includes experience of the borehole sets, values of the Confidence Index at sites that 

coincide with the different borehole subsets.  These values may be denoted a2, a3 .. all less 

than a1

B.  The second location is one that coincides not with a borehole but with a point on a 

seismic line or some other geophysical measurement which provides information used in the 

model.  Here the confidence in the model is enhanced by the extent to which the observation 

constrains the modelled surface, but it is likely that the value of the Confidence Index at such 

a location should be less than at a borehole location.  That is because the depth of a contact 

at a location on a seismic line is inferred mathematically on the basis of assumptions about 

the seismic velocity of the units in the stack.  This is an additional source of uncertainty.  

Once again it would be necessary to elicit from experts, with experience of geophysical 

measurement in the particular geological setting, a value for the Confidence Index relative to 

the maximum value a

. 

1 for the best-quality borehole data.  We denote this value by b, but 
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recognize that it might be necessary to elicit more than one value for different subsets of 

geophysical data. 

C.  The third situation is a location some distance from any direct observation such that the 

observations only constrain the model at the location through any general trends in the 

height of the surfaces of interest that are identified in the data as a whole. The confidence in 

the model will be at a minimum at such a location, the question is what value should be 

ascribed to the Confidence Index in such circumstances.  There are two general cases here.   

C.i.  In the first, the depth of the surface of interest shows no large-scale structure (dip or 

similar trend) across the modelled region, but is influenced by fine-scale fluctuations 

around a constant mean depth.  Such variation is not readily predictable by the modeller. 

C.ii. In the second, there is some long-range structure, such as a gentle dip across all or 

much of the region, which is not markedly affected by faulting.  This broad-scale 

structure is predictable by the modeller, it represents the kinds of geological feature that 

can be understood and interpreted and used to make well-constrained predictions about 

the form of a unit at a distance from hard observations. 

It is proposed that the minimum value of the Confidence Index is set to some value c relative 

to the maximum a1

D.  Here we consider a location near one or more boreholes or geophysical observations.  

The datum provides some information about local geological complexity, which improves the 

confidence in the model relative to value c but confidence will be less than at the location of 

the observation itself.  In this study we use the autocorrelation function for deviations from 

the trend surface to determine the rate of decay of the Confidence Index from a local 

maximum (a or b) to the minimum value (c) which it reaches at a distance equivalent to the 

range of the autocorrelation.  That is to say, we assume that the influence of a borehole on 

our confidence in the model at some neighbouring location is proportional to the correlation 

that we expect between the variations of surface height about the overall trend between the 

borehole and the location of interest.  Note that we assume that no fault intervenes between 

the borehole and the location under consideration, so it is the correlation with the nearest 

borehole such that the straight line to the borehole intersects no faults which determine the 

value of the Confidence Index at any location. 

.  Different values of c may be allocated according to the strength of 

evidence for a simple trend in the data for a particular surface.  This is described in detail in 

section 2.3 below. 

2.2. Definition and implementation  
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The first step to implement this index is statistical analysis of available data on the heights of 

target surfaces to assess their general and the local geological complexity.  The second is 

an elicitation from experts, familiar with the geological setting and with any geophysical data 

used, of appropriate values for the parameters of the index, appropriate values of {a1, a2..; 

b1, b2..; c1, c2

2.2.1   Statistical analysis: exploratory data analysis   The first step in the data analysis is the 

exploratory analysis of the data to investigate their variability.  The data are on heights of 

target surfaces, and may be obtained from boreholes, from interpretation of observations on 

seismic lines or both.  Geophysical data may be particularly appropriate for this analysis 

because they are likely to be numerous.  The data are examined for evidence of spatial 

trends.  To do this one may plot surface height against eastings and northings separately, 

and supplement these plots with classified post-plots in which the locations of observations 

are displayed on a 2-D map with colour or a symbol indicating a range of values to which 

each observation belongs.  

..;} as described in the previous section. 

 Another exploratory tool to examine evidence for a trend is to compute the empirical 

variogram of the data.  This is estimated by 
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where N(h) pairs of observations among the available data are separated by an interval h, 

called the lag, and z(x) denotes an observation at location x (Matheron, 1962).  Note that h, 

the lag, is a vector with a distance and a direction. The variogram can be computed for 

random variables on some simple assumptions (Webster and Oliver, 2007).  In this particular 

setting we are not interested in variation in surface height due to faulting and so, throughout 

the analyses described here, the variogram is estimated only from pairs of observations 

such that the straight line joining those observations intersects no faults. 

The variogram is displayed by plotting the values, determined from Equation (1), against the 

lag distance.  Key features of a typical empirical variogram are illustrated in Figure 1.  The 

variogram generally increases with lag distance, commonly to some upper bounding value, 

called the sill variance, which it reaches, or approaches, at a lag distance called the range.  

Observations separated by a distance longer than the range can be regarded as statistically 

independent.  If the variogram of a variable reaches a sill variance or approaches it 

asymptotically then this tells us that it is possible to write an autocorrelation function for that 

variable, as we explain in detail in section 2.2.3 below. 
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An empirical variogram often appears to have a non-zero intercept at lag zero.  This is called 

the nugget variance, and represents the variation of the variable which occurs at very fine 

scales not resolved by the spatial sampling. 

If the variogram depends only on the lag distance it is said to be isotropic.  An anisotropic 

variogram depends only on the lag direction.  There are two kinds of anisotropy.  Geometric 

anisotropy can be modelled by a simple transformation of the coordinate system; and 

variograms different directions have a common sill.  If the variograms for different directions 

have different sills, this is called zonal anisotropy and it is not so readily-modelled (Webster 

and Oliver, 2007). 

If data are affected by a long-range trend, then the variogram will tend to increase 

parabolically with lag distance.     

2.2.2 Statistical analysis: statistical modelling of a trend  We consider a polynomial trend 

model up to a full quadratic:  

z = β0 + β  1x + β  2y + β  3x2 + β  4y2 +β  5

where z is the depth of the surface of interest and x and y denote eastings and northings 

respectively.  This quadratic model could accommodate a simple trend such as a dip or a dip 

with flexure. We do not necessarily include all terms in this model.   We propose that the 

final trend model is selected by searching through all subsets of the full model in Equation 

(2) (with 5 predictors) to find the best-fitting subset according to the Akaike information 

criterion (AIC), Akaike (1973).  The general method is described by Miller (1990), we used 

the implementation in the RSEARCH procedure in Genstat (Payne, 2010) to do this.   

xy,   (2) 

Having fitted a trend model we may evaluate the overall strength of evidence for a trend.  If 

the exploratory analysis and the model-fitting indicate that there is no trend, then the 

parameter c for the Confidence Index takes a minimum value c1

c

.  We propose that values of 

c are elicited from experts according to the following criteria: 

1 The smallest possible value, for variables which show no spatial trend. 

c2  The background value for variables which show weak spatial trend.  

c3  The background value for variables which show moderate spatial trend.  

c4

The strength of the trend may be judged from the coefficient of determination of the fitted 

trend model, R

   The background value for variables which show strong spatial trend.  

2.  This is a measure of the proportion of variation in variable z which is 

accounted for by the trend model.  The following rule of thumb is suggested: 
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Weak trend  R2

Moderate trend  0.25< R

 ≤ 0.25 

2

Strong trend   R

≤0.75 

2

2.2.3 Statistical analysis: computing the autocorrelation function for local geological 

variability   Having selected a trend model, the variability about the trend may be examined 

by computing the empirical variogram  for discrete lags, using Equation (1), for the residuals 

from the trend, i.e. the difference at each observed location between the trend model and the 

observed height of the target surface.    A standard second-order stationary variogram 

function was fitted to the estimates by weighted least squares as described by Webster and 

Oliver (2007) and implemented in the MVARIOGRAM procedure in Genstat (Payne, 2010).    

The model variogram takes the general form: 

 > 0.75 

                             γ(h) = g0 + g1

   = 0   h = 0, 

s(h)  h > 0  (3) 

where h is a lag distance and s(h) is a function of distance.  The two terms g0 and g1 are 

variances.   The term g0 is the nugget variance, introduced in section 2.2.1 above.  The sum 

g0 + g1

ρ(h) =1 – {γ(h)/(g

 is the sill variance, the upper bounding value of the variogram.  In this study we 

found the spherical and circular variogram models to be appropriate, these have a single 

parameter, the range at which the autocorrelation goes to zero (Webster and Oliver, 2007).    

Once a second-order stationary variogram model has been fitted one may compute the 

autocorrelation of observations separated by lag distance h as 

0 + g1

Note that the autocorrelation at distance zero is 1, and that it goes to zero at the range of 

autocorrelation.   

)}.  (4) 

The form of the autocorrelation function is informative for our purpose in defining a 

confidence index.  Consider a case in which the only variation in the depth of the surface of 

interest is represented by the trend model (Equation 2) and independent random noise.  In 

this case the term  g1 in Equation (3) above is zero, all the variation about the trend is in the 

nugget term g0.  The variogram is therefore a constant for h>0, which means that the 

autocorrelation function is 1 at h=0, and 0 for h>0.  Let us consider the significance of 

entirely independent variation about the trend.  What this tells us is that the departure of the 

height of the surface of interest at a borehole is entirely uncorrelated with variation about the 

trend at any other location, and so our confidence in the model at a location a short distance 
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from the nearest borehole is no greater than at another location a longer distance from  the 

nearest borehole.  Our confidence declines from a to c as soon as we move some distance 

h>0 from a borehole, just as ρ(h) declines from 1 to 0. 

More usually we would expect to see some spatial correlation in the variation of the elevation 

of a surface about a general trend (e.g. Lark and Webster, 2006).    That means that g1

2.3. Elicitation of parameters of the Confidence Index.  

 

The discussion of the Confidence Index above shows that we require parameters which 

reflect the geologist’s expert judgement on uncertainty.  These may be obtained by the 

following questionnaire: 

 > 0, 

and so the autocorrelation declines to zero at some distance, the range of the 

autocorrelation function.  In this case the knowledge that the surface of interest is somewhat 

higher (for example) than the trend surface at a particular borehole is informative about the 

likely elevation at locations which are closer to the borehole than the range.  The closer a 

location of interest is to the nearest borehole the larger the value of the autocorrelation for 

the lag distance between them, reflecting the extent to which the borehole is informative 

about conditions at that location, and so provides us with confidence in the model. 

i.  Do you regard all borehole observations used in the production of this model 

(whether directly in cross-sections or to support interpretations) as being of uniform 

quality?  If not, then indicate how you would divide the boreholes into subsets which 

are all internally of fairly uniform quality. 

ii.  If there are nb 

This will provide us with a set of values a

such subsets of boreholes, then indicate how you would rate the 

reliability of boreholes in each subset, if the best possible boreholes were given 

rating 10, and boreholes with no information content at all were rated 0. 

1, a2, ..anb

iii. Do you regard all geophysical observations used in the production of this model 

(whether directly in cross-sections or to support interpretations) as being of uniform 

quality?  If not, then indicate how you would divide the available observations into 

subsets which are all internally of fairly uniform quality. 

. 

iv.  If there are ng such subsets of geophysical data, then indicate how you would rate 

the reliability of data in each subset, if the best possible borehole observation were 

given rating 10, and data with no information content at all were rated 0. 
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This will provide us with a set of values b1, b2, ..bng

v. Consider a location in the modelled area remote from any borehole or geophysical 

data where the model is dependent entirely on interpretation of any trend in the 

surfaces of interest.  How would you rate confidence in the model at such a location 

in each of the following circumstances, relative to confidence at the location of a 

borehole of best possible quality which has score 10? 

. 

1.  When there is no spatial trend to project from available observations, so 

the only information these provide is on the mean height of the surface. 

2.   When there is a weak spatial trend to project from available observations. 

3.  When there is a moderate spatial trend to project from available 

observations. 

4.  When there is a strong spatial trend to project from available observations. 

This will provide us with a set of values c1, c2, c3, c4

This entire questionnaire may be sent to all available experts, or questions i, ii, and v might 

be considered by geologists with modelling experience whereas iii and iv are considered by 

geophysicists with experience of the particular geophysical methods in comparable 

geological settings. 

. 

The information above allows the Confidence Index to be computed for a given surface at 

any location.  For simplicity we consider the case where the autocorrelation function is 

isotropic so its argument is a scalar (distance).  Consider some location x, let the distance to 

the nearest borehole, not separated from x by a fault, be d′b and let this borehole belong to 

quality subset i of the available boreholes, as obtained from question (ii) of the elicitation.  

Let the distance to the nearest geophysical observation, not separated from x by a fault, be  

d′g 

I (x)  =  max{c+ (a

and let this borehole belong to quality subset j of the available data, as obtained from 

question (iv) of the elicitation.  Let c be the minimum value of the Confidence Index, obtained 

by defining the strength of the trend from the exploratory analysis and the experts’ answers 

to question (v) of the elicitation.  The value of the Confidence Index is then given by  

i – c)ρ(d’b), c+ (bj – c) ρ(d’s

It can be seen from this expression that the local maximum values of a

)}.   (5) 

i or bj will be returned 

at the locations of boreholes or seismic observations respectively, and the background value 

of c at any location where the distance to the nearest observation exceeds the range of 
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autocorrelation.  At other locations the Confidence Index will take intermediate values, 

depending on the proximity of observations. 

3.  Case study 

3.1. The study area and model. 

In order to illustrate the use of the Confidence Index data have been used from the East 

Midlands region of the UK specifically a portion of the BGS 1:250,000 resolution bedrock 

geology model of the region. The entire East Midlands model covers approximately 15 000 

km2

The geology of the study area includes three main geological components or structural 

levels: Mesozoic cover sediments (Triassic, Jurassic and Cretaceous), Carboniferous and 

Basement.  From the surface there is a shallow, eastward-dipping, sparsely-faulted 

Mesozoic sedimentary cover sequence, several hundred metres in thickness and 

predominantly of Jurassic and Triassic age.  These deposits rest on the Variscan 

Unconformity and overlie more intensely faulted and folded Carboniferous strata containing 

hydrocarbon resources and source rocks.  Locally these deposits exceed a kilometre in 

thickness and rest on the Caledonian Unconformity.  Below this unconformity, a third level 

composed of tightly folded and faulted metasedimentary and metavolcanic  Lower 

Palaeozoic and Neoproterozoic rocks are present, cut by several large granitic intrusions. 

 stretching from Nottinghamshire and Leicestershire in the west to the Lincolnshire coast, 

the Wash and the western parts of North Norfolk (Pharaoh et al., 2011).  The area selected 

for this study has British National Grid co-ordinates as follows: lower left (south west corner) 

460 290 and top right (north east corner) 540 340. 

The stratigraphy of the East Midlands region, with the surfaces produced in the construction 

of the model shown in red, is shown in Figure 2.  These surfaces comprise the major 

stratigraphic boundaries, marker horizons and unconformities that are consistently 

identifiable in subsurface data in the region.  In this paper we focus on two surfaces in the 

model: the Variscan Unconformity and the top of the Dinantian Carboniferous limestones (a 

unit shown in Figure 2  which Pharaoh et al (2011) divided into the Tournaisian and Viséan). 

The East Midlands model was built using the GOCAD® software (http://www.gocad.org/w4/) 

following initial processing and interpretation of the seismic reflection data, and earlier 

modelling and hand contouring of stratigraphic surfaces.  The model is supported and 

constrained by these interpreted data described in Pharaoh et al. (2011). The distribution of 

boreholes contributing to the model within the study area is shown in Figure 3, there is a 

http://www.gocad.org/w4/�
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strong concentration of boreholes in the north-western quadrant reflecting exploration for 

hydrocarbon resources within the deep Carboniferous basin. 

3.2.  Geophysical data 

The locations of 2-D seismic reflection lines used in modelling within the study area are 

shown in Figure 3.  As with the boreholes, there is a strong concentration of data in the 

north-western quadrant of the area.  The data contains regional hydrocarbon exploration 

data, combined with Coal Authority high-resolution seismic data of more localised extent.  

The seismic data for the model were sourced from the DECC 

(http://og.decc.gov.uk/en/olgs/cms/data_maps/data_release/data_release.aspx) and the United 

Kingdom Onshore Geophysical Library (UKOGL) (http://www.ukogl.org.uk/seismic-

coverage.htm) 

3.3.  Geostatistical analysis 

websites.  Horizons mapped from the seismic data in two-way-travel-time 

(TWTT) were converted to depth using velocity functions based on depths and times in 

reference boreholes that have velocity data available. 

Seismic data are the most widespread and numerous, so these were used in the statistical 

analysis to evaluate evidence for simple trends in elevation of the target surfaces and for 

geostatistical analysis of the local variability about the trend.  This was undertaken on 

seismic data for the Variscan Unconformity (UVAR) surface and the top of the Dinantian 

strata (DIN).  Figure 4 shows post-plots of the seismic data.  A post plot shows the spatial 

distribution of data with symbols that indicate recorded values.  Here the colour coding of the 

symbols indicates quintiles of the data, that is to say the range of values is divided into 5 

intervals, each of which contains 20% of the observations.  The positions of faults cutting 

these surfaces are also shown on the post plots.  

The Variscan Unconformity, shows a pronounced  trend with the surface becoming deeper 

to the north-east.  This is apparent in the post plot (Figure 4a) The top of the Dinantian, 

shows a more complex structure, it is deepest in the north-western part of the study area.   

When trend surface models were fitted to the data for each surface, a full quadratic model 

was selected in each case on the basis of the AIC,that is a model with all the terms in 

Equation (2).  Table 1 presents the coefficient of determination of the fitted trend model (R2) 

values for the trend model for both surfaces and the inference drawn from that about the 

strength of the trend and so the value of the term c in the Confidence Index.  Figure 5 shows 

the empirical variograms for the standardized residuals from both surfaces. Note that both 

show some degree of directional dependence, although this is small for the top Dinantian 

http://og.decc.gov.uk/en/olgs/cms/data_maps/data_release/data_release.aspx�
http://www.ukogl.org.uk/seismic-coverage.htm�
http://www.ukogl.org.uk/seismic-coverage.htm�
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surface (DIN), and is small at lag distances of up to 2 km.  In both cases the directional 

dependence is seen in the sill variance, so the anisotropy is zonal.  For this reason isotropic 

variograms were estimated for use in the Confidence Index.  

The authorized variogram models were fitted to the isotropic estimates, and these are shown 

in Figure 6.  The parameters of the variograms are shown in Table 1.  Recall from section 

2.2.3  that the distance parameter r is the range of the circular and spherical variograms, the 

distance at which the autocorrelation goes to zero. 

3.4.  Elicitation of parameters of the Confidence Index 

The elicitation procedure described in section 2.3 above was followed in two steps.  In the 

first step we obtained values of parameters a and c from a geologist with substantial 

modelling experience and familiarity with the target units.  This expert provided values for the 

parameters a and c which are presented in Table 2.  Parameter b was elicited from a group 

comprising a mix of the three geological modellers and three geophysicists who have 

worked extensively with seismic interpretation who were asked to provide a confidence 

rating for the available seismic data, relative to parameter a with a score of 10.  This was set 

following almost unanimous agreement to 7 for all locations and surfaces on the available 

seismic lines.  

3.5. Computation of the Confidence Index. 

The procedure to determine the value of the Confidence Index for a given surface at location 

x consists of the following steps. 

1  Given the target surface, identify the variogram model  and the values of its 

parameters from Table 1.  Given the strength of evidence for a trend, identify the 

appropriate value of parameter c. 

2.  Measure db

3. Measure d

, the distance from x to the nearest borehole which proves the surface of 

interest such that the line from x to the borehole does not cross a fault which cuts the 

surface. 

s, the distance from x to the nearest seismic datum which reports a depth 

for the surface of interest such that the line from x to the datum does not cross a fault 

which cuts the surface. 

 

4. Using the variogram model type and parameters extracted in step 1, and Equation (4) 
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above compute the autocorrelation over distance db,ρ(db

 

). 

5. Using the variogram model and parameters extracted in step 1, and Equation (4) 

above compute the autocorrelation over distance ds, ρ (ds

6.  Using the elicited values of a and b, the value of c identified at step 1 and the 

autocorrelations computed at steps (4) and (5), compute the value of the Confidence 

Index using Equation (5) above  

). 

 

 

Calculation of the Confidence Index was implemented using ESRI’s ArcGIS 10.0.  This 

required the production of some newly-written code which was validated by comparing its 

output with manually-calculated values. 

The resulting elevation grids and corresponding Confidence Index plots are shown for the 

Variscan Unconformity (Figure 7) and the top of the Dinantian strata (Figure 8). 

The elevation grid for the Variscan Unconfomity shows that the surface is present across the 

entire study area.   The overall pattern shows a fall from the southwest towards the northeast 

of the area (Figure 7a), in detail the pattern is disrupted by some of the major W-E trending 

faults. The corresponding Confidence Index plot (Figure 7b) shows small values in the south 

and east with local large values induced by individual deep boreholes or clusters. In the 

heavily-faulted Carboniferous basin in the northwest of the area Confidence Index is 

generally large because of the density of seismic profiles and deep boreholes; the truncation 

of the confidence index values at faults is also well-illustrated.  

The Dinantian strata are restricted to the Carboniferous Basin in the northwest of the study 

area. The elevation grid of the unit top exhibits strong fault control on the top Dinantian 

surface which descends to depths of about 1 km below Ordnance Datum in the extreme 

northwest (Figure 8a). The corresponding Confidence Index plot (Figure 8b)  shows large 

values in red associated with the deep borehole data in that area and the alignment and 

density of seismic lines (shown by linear runs and coalescing area of green values 

respectively. As discussed above the high confidence values associated with the boreholes 

are truncated by the faults. 
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4.  Discussion 

The Confidence Index that we propose in this paper is a means to summarize and present 

the sources of uncertainty in surfaces modelled on the basis of subsurface information from 

boreholes and geophysics.  It is based on the concept that the modelling process entails the 

identification of broad geological variation, which can be identified with simple trends in 

elevation which may be projected to some distance form observations; and local geological 

variation, represented by variations in elevation about such simple trends.  Although 

statistical analysis of data is used to express the uncertainty in models arising from local 

geological variation and broad trends, the Confidence Index is not a statistical measure of 

uncertainty, it is appropriate for geological models based on expert interpretation of 

subsurface data. 

 

The purpose of this confidence index is to display spatially the implications for model 

uncertainty of particular expert judgements on the reliability of data sources, and statistical 

analysis of the strength of simple trends in geological surfaces and the autocorrelation of 

variations about these trends.  The index is transparent in that its minimum and maximum 

values are explicitly based on expert opinion, which can be challenged and discussed, and 

the lateral variations of the index depend on the distribution of boreholes and the spatial 

statistical model fitted to available data in accordance with established and robust 

methodology.   

 

The purpose of this paper was to illustrate the potential of this index.  One aspect of the 

procedure which could be developed is the elicitation of parameters from experts.  Here we 

used values which were agreed by the whole expert set, or represented a majority opinion.  

Variability of expert opinion could be taken into account by alternative elicitation methods.  

One approach, which might be particularly appropriate for the elicitation of an index, which is 

more prone to subjective differences of interpretation between experts than a variable such 

as a measureable rock property, is to define the index parameters as fuzzy numbers and to 

use methods of elicitation based  on fuzzy logic (Zadeh, 1965) to obtain them.  An interesting 

recent application of these ideas in environmental risk management is provided by Page et 

al. (2012).   

The study of uncertainty in 3-D geological modelling is at an early stage, and this Confidence 

Index should be developed in the future.  In particular we need a more sophisticated 

understanding of how different steps in the modelling work flow introduce uncertainty into the 

final model, and how the error at one stage is propagated by subsequent operations.  

Without this understanding it may be difficult to relate the actual uncertainty in the model at 
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some location to evident sources of such uncertainty such as proximity to boreholes or to 

outcrop (Lark et al., 2013).  We also note that this Confidence Index is explicitly designed for 

models based on subsurface information, boreholes and geophysical data.  In other 

geological settings such information may be very sparse and modelling may depend heavily 

on the projection to depth of observed structures at the surface.  A different approach is 

required to represent uncertainty in such circumstances. 

 

5.  Conclusions 

In this paper we have introduced a confidence index which can be evaluated across a 

modelled region in a transparent and repeatable way to indicate the degree of confidence 

we can have in a model given some expert-elicited values and a simple concept of model 

uncertainty which depends on broad geological structure and local variability.  The index has 

been implemented for a geological model typical of geological conditions in many parts of 

the UK, based on an extract from the BGS 1:250,000 resolution bedrock model of the East 

Midlands. 
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Figure Captions 

 

1.  A hypothetical empirical variogram with key features indicated. 

2. The generalised stratigraphy of the study area with the surfaces modelled shown in red. 

 3.  Distribution of boreholes and  2-D reflection seismic lines within the study area used in 

the construction  of the East Midlands model.  The observations shown here are restricted to 

those that prove the modelled surfaces.  Coordinates in this map and subsequent ones are 

in metres relative to the origin of the British National Grid. 

 4.  Post plots of seismic data and faults for each surface.  Coordinates are in metres relative 

to the origin of the British National Grid and Ordnance Datum (a) The Variscan Unconfomity 

and b) the top of the Dinantian.  The colour code indicates the depth of the surface relative 

to Ordnance Datum (scale is for quintiles of the distribution).  The black symbols indicate 

faults. 

5.  Empirical variograms of residuals from fitted trend models for seismic data on the depth 

of the Variscan Unconformity (UVAR) and the top of the Dinantian (DIN) surfaces. The 

variograms are obtained only from comparisons between pairs of points that do not cross 

faults. An empirical variogram plot is presented as a plot of a variance against lag distance 

(in metres).  Different symbols indicate the lag directions. 

 6.  Isotropic empirical variograms of residuals from a quadratic trend surface with fitted 

parametric models for the Variscan Unconformity (UVAR) and the top of the Dinantian (DIN) 

surfaces 

7. The elevation grid for (a) the Variscan Unconformity surface and (b) the corresponding 

Confidence Index plot.  White space indicates that the surface is not present in the model.  

Where the surface is faulted  it may be shown as absent from individual raster cells where 

the fault is at the centre of the cell.  

8. The elevation grid for (a)  the top of the Dinantian (DIN) surface and (b) the corresponding 

Confidence Index plot. White space indicates that the surface is not present in the model.  

Where the surface is faulted  it may be shown as absent from individual raster cells where 

the fault is at the centre of the cell. 
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Table 1.  Coefficient of determination for the trend surface for the geological 
surfaces of interest (R2), the inferred value of c and parameters of the fitted 
variogram model. 

 

 

Surface 

 

R2 for fitted 

trend 

surface 

 

Inferred 

strength of 

trend, and 

value of c 

 

Parameters of fitted isotropic 

variogram model 

Model type g0 g1 

 

range 

(m) 

Variscan 

Unconformity 

(UVAR) 

0.88 Strong 

 

Circular 0.04 0.93 

 

6899 

Top Dinantian 

(DIN) 
0.66 Moderate 

 

Spherical 0.0 1.01 

 

7620 

 

  



Table 2.  Elicited values of parameters for the confidence index in the study area. 

 

 
Parameter 

 
Meaning of parameter 
 

 
Elicited value 

 
Comments 

 
a 
 

Value of the confidence index at 
the site of a borehole 

 
10 

All boreholes regarded 
as equal in quality 

 
b 
 

Value of the confidence index at 
the site of a seismic observation 

 
7 

All seismic observations 
regarded as equal in 
quality 

 
c1 
 

Value of the confidence index at a 
site remote from a borehole in the 
absence of spatial trend. 

 
1 

 

 
c2 
 

Value of the confidence index at a 
site remote from a borehole in the 
presence of weak spatial trend. 

 
3 
 

 

 
c3 
 

Value of the confidence index at a 
site remote from a borehole in the 
presence of moderate spatial 
trend. 

 
4 

 

 
c4 
 

Value of the confidence index at a 
site remote from a borehole in the 
presence of strong spatial trend. 

 
5 
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